Does Mobile Phone Penetration Affect Divorce Rate? Evidence from China
Abstract
:1. Introduction
2. Brief Review of the Literature and Theoretical Analysis
2.1. Theory Related to Marriage and Divorce
2.2. Mobile Phone and Mobile Internet
2.3. Theoretical Analysis of the Possible Impact of the Mobile Phone Penetration on the Divorce Rate in China
3. Research Methods and Data
3.1. Estimation Model and Methods
3.2. Variable Settings and Data Source Description
3.3. Trends for Core Variables
4. Empirical Results and Discussions
4.1. Statistical Analysis of Variables
4.2. Estimation Results of the Benchmark Model
4.3. Mobile Phone Penetration and Divorce Rate: Regional Differences
4.4. Robust Analysis
4.5. The Lagged Effect of Mobile Phone Penetration on Divorce Rate
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S.; Liu, B.; Zhu, D.; Cheng, M. Explaining individual subjective well-being of urban China based on the four-capital model. Sustainability 2018, 10, 3480. [Google Scholar] [CrossRef]
- Gove, W.R.; Hughes, M.; Style, C.B. Does marriage have positive effects on the psychological well-being of the individual? J. Health Soc. Behav. 1983, 24, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Acs, G. Can we promote child well-being by promoting marriage? J. Marriage Fam. 2007, 69, 1326–1344. [Google Scholar] [CrossRef]
- Qari, S. Marriage, adaptation and happiness: Are there long-lasting gains to marriage? J. Behav. Exp. Econ. 2014, 50, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Guner, N.; Kulikova, Y.; Llull, J. Marriage and health: Selection, protection, and assortative mating. Eur. Econ. Rev. 2018, 104, 138–166. [Google Scholar] [CrossRef]
- Zheng, S.; Duan, Y.; Ward, M.R. The effect of broadband internet on divorce in China. Technol. Forecast. Soc. Chang 2018, in press. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. Crude divorce rate. 2018. Available online: http://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed on 30 September 2018). (In Chinese)
- Zhang, C.; Wang, X.; Zhang, D. Urbanization, unemployment rate and China’ rising divorce rate. Chin. J. Popul. Resour. Environ. 2014, 12, 157–164. [Google Scholar] [CrossRef]
- Su, L.; Liu, Y.; Peng, X. Spatial aggregation and spatial-temporal pattern of provincial divorce rate in China. Popul. Res. 2015, 6, 74–84. [Google Scholar]
- Su, L.; Liang, C.; Yang, X.; Liu, Y. Influence factors analysis of provincial divorce rate spatial distribution in China. Discret. Dyn. Nat. Soc. 2018. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Q. China’s divorce and remarriage rates: Trends and regional disparities. J. Divorce Remarriage 2010, 51, 257–267. [Google Scholar] [CrossRef]
- Mu, Z.; Xie, Y. Marital age homogamy in China: A reversal of trend in the reform era? Soc. Sci. Res. 2014, 44, 141–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovčič, A.; Fortunati, L.; Vehovar, V.; Kavčič, M.; Dolničar, V. Mobile phone communication in social support networks of older adults in Slovenia. Telemat. Inform. 2015, 32, 642–655. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Mobile-cellular subscriptions. 2018. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 30 September 2018).
- Wang, Y.; Li, J. ICT’s effect on trade: Perspective of comparative advantage. Econ. Lett. 2017, 155, 96–99. [Google Scholar] [CrossRef]
- Shi, J.; Si, H.; Wu, G.; Su, Y.; Lan, J. Critical factors to achieve dockless bike-sharing sustainability in China: A stakeholder-oriented network perspective. Sustainability 2018, 10, 2090. [Google Scholar] [CrossRef]
- Hwang, Y. Is communication competence still good for interpersonal media?: Mobile phone and instant messenger. Comput. Hum. Behav. 2011, 27, 924–934. [Google Scholar] [CrossRef]
- Vaus, D.D.; Gray, M.; Qu, L.; Stanton, D. The economic consequences of divorce in six OECD countries. Aust. J. Soc. Issues 2017, 52, 180–199. [Google Scholar] [CrossRef]
- McDaniel, B.T.; Coyne, S.M. “Technoference”: The interference of technology in couple relationships and implications for women’s personal and relational well-being. Psychol. Pop. Media Cult. 2016, 5, 85–98. [Google Scholar] [CrossRef]
- Katz, J.E.; Aspden, P. Theories, data, and potential impacts of mobile communications: A longitudinal analysis of U.S. national surveys. Technol. Forecast. Soc. Chang. 1998, 57, 133–156. [Google Scholar] [CrossRef]
- De, G.C.; Truong, L.T.; Htt, N. Who’s calling? Social networks and mobile phone use among motorcyclists. Accid. Anal. Prev. 2017, 103, 143–147. [Google Scholar]
- Islam, M.M.; Habes, E.M.; Alam, M.M. The usage and social capital of mobile phones and their effect on the performance of microenterprise: An empirical study. Technol. Forecast. Soc. Chang. 2018, 132, 156–164. [Google Scholar] [CrossRef]
- Marinescu, I. Divorce: What does learning have to do with it? Labour Econ. 2016, 38, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Becker, G.S. A theory of marriage. J. Political Econ. 1973, 36, 119–133. [Google Scholar]
- Weiss, Y.; Willis, R.J. Match quality, new information, and marital dissolution. J. Labor Econ. 1997, 15, S293–S329. [Google Scholar] [CrossRef]
- Becker, G.S.; Landes, E.M.; Michael, R.T. An economic analysis of marital instability. J. Political Econ. 1977, 85, 1141–1187. [Google Scholar] [CrossRef]
- Hoffman, S.D.; Duncan, G.J. The effect of incomes, wages, and AFDC benefits on marital disruption. J. Hum. Resour. 1995, 30, 19–41. [Google Scholar] [CrossRef]
- Smock, P.J.; Manning, W.D.; Gupta, S. The effect of marriage and divorce on women’s economic well-being. Am. Sociol. Rev. 1999, 64, 794–812. [Google Scholar] [CrossRef]
- Ressler, R.W.; Waters, M.S. Female earnings and the divorce rate: A simultaneous equations model. Appl. Econ. 2000, 32, 1889–1898. [Google Scholar] [CrossRef]
- Han, S.H. Korean family litigation laws toward minor children of divorced families. Korean Law J. Civ. Lawsuit 2010, 14, 311–347. [Google Scholar]
- Amato, P.R.; Beattie, B. Does the unemployment rate affect the divorce rate? An analysis of state data 1960–2005. Soc. Sci. Res. 2011, 40, 705–715. [Google Scholar] [CrossRef]
- Rainer, H.; Smith, I. Staying together for the sake of the home?: House price shocks and partnership dissolution in the UK. J. R. Stat. Soc. 2010, 173, 557–574. [Google Scholar] [CrossRef]
- Battu, H.; Brown, H.; Costagomes, M. Not Always for Richer or Poorer: The Effects of Income Shocks and House Price Changes on Marital Dissolution; ERSA Conference Papers; European Regional Science Association: Louvain-la-Neuve, Belgium, 2013. [Google Scholar]
- Klein, J. House price shocks and individual divorce risk in the United States. J. Fam. Econ. Issues 2017, 38, 628–649. [Google Scholar] [CrossRef]
- Goode, W.J. Economic factors and marital stability. Am. Sociol. Rev. 1951, 16, 802–812. [Google Scholar] [CrossRef]
- South, S.J.; Trent, K.; Shen, Y. Changing partners: Toward a macrostructural-opportunity theory of marital dissolution. J. Marriage Fam. 2001, 63, 743–754. [Google Scholar] [CrossRef]
- Ono, H. Husbands’ and wives’ education and divorce in the United States and Japan, 1946–2000. J. Fam. Hist. 2009, 34, 292–322. [Google Scholar] [CrossRef]
- Sandström, G. Socio-economic determinants of divorce in early twentieth-century Sweden. Hist. Fam. 2011, 16, 292–307. [Google Scholar] [CrossRef]
- Sandström, G. Time-space trends in Swedish divorce behaviour, 1911–1974. Scand. J. Hist. 2011, 36, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Glenn, N.D.; Supancic, M. The social and demographic correlates of divorce and separation in the United States: An update and reconsideration. J. Marriage Fam. 1984, 46, 563–575. [Google Scholar] [CrossRef]
- Landale, N.S.; Ogena, N.B. Migration and union dissolution among Puerto Rican women. Int. Migr. Rev. 1995, 29, 671–692. [Google Scholar] [CrossRef]
- Frank, R.; Wildsmith, E. The grass widows of Mexico: Migration and union dissolution in a binational context. Soc. Forces 2005, 83, 919–947. [Google Scholar] [CrossRef]
- Gautier, P.A.; Svarer, M.; Teulings, C.N. Sin city? Why is the divorce rate higher in urban areas? Scand. J. Econ. 2009, 111, 439–456. [Google Scholar] [CrossRef]
- Caarls, K.; Mazzucato, V. Does International Migration Lead to Divorce?: Ghanaian Couples in Ghana and Abroad. Population 2015, 70, 127–150. [Google Scholar]
- Ramirez-Correa, P.E.; Rondan-Cataluña, F.J.; Arenas-Gaitán, J. Predicting behavioral intention of mobile internet usage. Telemat. Inform. 2015, 32, 834–841. [Google Scholar] [CrossRef]
- Singh, S.; Swait, J. Channels for search and purchase: Does mobile Internet matter? J. Retail. Consum. Serv. 2017, 39, 123–134. [Google Scholar] [CrossRef]
- China Internet Network Information Center (CNNIC). 41st China Internet Development Statistics Report. 2018. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201803/t20180305_70249.htm (accessed on 28 September 2018). (In Chinese).
- Puspitasari, L.; Ishii, K. Digital divides and mobile Internet in Indonesia: Impact of smartphones. Telemat. Inform. 2016, 33, 472–483. [Google Scholar] [CrossRef]
- Bertschek, I.; Niebel, T. Mobile and more productive? Firm-level evidence on the productivity effects of mobile internet use. Telecommun. Policy 2016, 40, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Levendis, J.; Gutierrez, L. Telecommunications and economic growth: An empirical analysis of sub-Saharan Africa. Appl. Econ. 2012, 44, 461–469. [Google Scholar] [CrossRef]
- Chavula, H.K. Telecommunications development and economic growth in Africa. Inf. Technol. Dev. 2013, 19, 5–23. [Google Scholar] [CrossRef]
- Donou-Adonsou, F.; Lim, S.; Mathey, S.A. Technological progress and economic growth in sub-saharan Africa: Evidence from telecommunications infrastructure. Int. Adv. Econ. Res. 2016, 22, 65–75. [Google Scholar] [CrossRef]
- Njoh, A.J. The relationship between modern information and communications technologies (ICTs) and development in Africa. Util. Policy 2018, 50, 83–90. [Google Scholar] [CrossRef]
- Kanyam, D.A.; Kostandini, G.; Ferreira, S. The mobile phone revolution: Have mobile phones and the internet reduced corruption in sub-saharan Africa? World Dev. 2017, 99, 271–284. [Google Scholar] [CrossRef]
- Sassi, S.; Ali, M.S.B. Corruption in Africa: What role does ict diffusion play. Telecommun. Policy 2017, 41, 662–669. [Google Scholar] [CrossRef]
- Asongu, S.A.; Nwachukwu, J.C.; Orim, S.-M.I. Mobile phones, institutional quality and entrepreneurship in sub-saharan Africa. Technol. Forecast. Soc. Chang. 2018, 131, 183–203. [Google Scholar] [CrossRef]
- Kardos, P.; Unoka, Z.; Pléh, C.; Soltész, P. Your mobile phone indeed means your social network: Priming mobile phone activates relationship related concepts. Comput. Hum. Behav. 2018, 88, 84–88. [Google Scholar] [CrossRef]
- Shimamoto, D.; Yamada, H.; Gummert, M. Mobile phones and market information: Evidence from rural Cambodia. Food Policy 2015, 57, 135–141. [Google Scholar] [CrossRef]
- Seo, D.G.; Park, Y.; Kim, M.K.; Park, J. Mobile phone dependency and its impacts on adolescents’ social and academic behaviors. Comput. Hum. Behav. 2016, 63, 282–292. [Google Scholar] [CrossRef]
- Boonjing, V.; Chanvarasuth, P. Risk of overusing mobile phones: Technostress effect. Procedia Comput. Sci. 2017, 111, 196–202. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, X. Brain behavioral systems, self-control and problematic mobile phone use: The moderating role of gender and history of use. Pers. Individ. Differ. 2017, 106, 111–116. [Google Scholar] [CrossRef]
- Merkle, E.R.; Richardson, R.A. Digital dating and virtual relating: Conceptualizing computer mediated romantic relationships. Fam. Relat. 2000, 49, 187–192. [Google Scholar] [CrossRef]
- Rosen, L.D.; Cheever, N.A.; Cummings, C.; Felt, J. The impact of emotionality and self-disclosure on online dating versus traditional dating. Comput. Hum. Behav. 2008, 24, 2124–2157. [Google Scholar] [CrossRef]
- Valenzuela, S.; Halpern, D.; Katz, J.E. Social network sites, marriage well-being and divorce: Survey and state-level evidence from the United States. Comput. Hum. Behav. 2014, 36, 94–101. [Google Scholar] [CrossRef]
- Salehan, M.; Negahban, A. Social networking on smartphones: When mobile phones become addictive. Comput. Hum. Behav. 2013, 29, 2632–2639. [Google Scholar] [CrossRef]
- Hjorth, L.; Qiu, J.; Zhou, B.; Ding, W. The social in the mobile: QQ as cross-generational media in China’. In The Routledge Companion to Mobile Media; Goggin, G., Hjorth, L., Eds.; Routledge: New York, NY, USA, 2014; pp. 291–299. [Google Scholar]
- Kraut, R.; Kiesler, S.; Boneva, B.; Cummings, J.; Helgeson, V.; Crawford, A. Internet paradox revisited. J. Soc. Issues 2002, 58, 49–74. [Google Scholar] [CrossRef]
- Wei, R.; Lo, V. Staying connected while on the move: Cell phone use and social connectedness. New Media Soc. 2006, 8, 53–72. [Google Scholar] [CrossRef]
- Manago, A.M.; Taylor, T.; Greenfield, P.M. Me and my 400 friends: The anatomy of college students’ facebook networks, their communication patterns, and well-being. Dev. Psychol. 2012, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- South, S.J.; Lloyd, K.M. Spousal alternatives and marital dissolution. Am. Sociol. Rev. 1995, 60, 21–35. [Google Scholar] [CrossRef]
- Kendall, T.D. The relationship between internet access and divorce rate. J. Fam. Econ. Issues 2011, 32, 449–460. [Google Scholar] [CrossRef]
- Chen, L.; Yan, Z.; Tang, W.; Yang, F.; Xie, X.; He, J. Mobile phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Comput. Hum. Behav. 2016, 55, 856–866. [Google Scholar] [CrossRef]
- Raacke, J.; Bonds-Raacke, J. MySpace and Facebook: Applying the uses and gratifications theory to exploring friend-networking sites. Cyberpsychol. Behav. Soc. Netw. 2008, 11, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction: A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.W.; Cheung, C.M.; Thadani, D.R. An investigation into the problematic use of Facebook. In Proceedings of the 45th Hawaii International Conference on System Sciences (HICSS), Maui, HI, USA, 4–7 January 2012; pp. 1768–1776. [Google Scholar]
- Patrick, K.; Griswold, W.G.; Raab, F.; Intille, S.S. Health and the mobile phone. Am. J. Prev. Med. 2008, 35, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Muise, A.; Christofides, E.; Desmarais, S. More information than you ever wanted: Does Facebook bring out the green-eyed monster of jealousy? Cyberpsychol. Behav. Soc. Netw. 2009, 12, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, D.; Tzavellas, E.; Balta, G.; Paparrigopoulos, T. P02-232-social network addiction: A new clinical disorder? Eur. Psychiatry 2010, 25, 855–855. [Google Scholar] [CrossRef]
- Helsper, E.J.; Whitty, M.T. Netiquette within married couples: Agreement about acceptable online behavior and surveillance between partners. Comput. Hum. Behav. 2010, 26, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Watanabe, J.; Liu, Q.; Uji, M.; Shono, M.; Kitamura, T. Internet and mobile phone text-messaging dependency: Factor structure and correlation with dysphoric mood among Japanese adults. Comput. Hum. Behav. 2011, 27, 1702–1709. [Google Scholar] [CrossRef]
- Elphinston, R.A.; Noller, P. Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Li, J.; Zhang, H.; Gao, J.; Kong, Y.; Hu, Y.; Mei, S. The influence of alexithymia on mobile phone addiction: The role of depression, anxiety and stress. J. Affect. Disord. 2017, 225, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.B.; Nagurney, A.; Smith, J.R. Cheating, breakup, and divorce: Is facebook use to blame? Cyberpsychol. Behav. Soc. Netw. 2013, 16, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Shin, J.; Hong, A. Does social media use really make people politically polarized? Direct and indirect effects of social media use on political polarization in South Korea. Telemat. Inform. 2017, 35, 245–254. [Google Scholar] [CrossRef]
- Stevenson, B. The Internet and Job Search; NBER Working Paper; NBER: Cambridge, MA, USA, 2009. [Google Scholar]
- Herr, J.L.; Wolfram, C.D. Work environment and opt-out rates at motherhood across high-education career paths. Ind. Labor Relat. Rev. 2012, 65, 928–950. [Google Scholar] [CrossRef]
- Kuhn, P.; Mansour, H. Is internet job search still ineffective? Econ. J. 2014, 124, 1213–1233. [Google Scholar] [CrossRef]
- Spitze, G.; South, S.J. Women’s employment, time expenditure, and divorce. J. Fam. Issues 1985, 6, 307–329. [Google Scholar] [CrossRef]
- Kalmijn, M.; Poortman, A.R. His or her divorce? The gendered nature of divorce and its determinants. Eur. Sociol. Rev. 2006, 22, 201–214. [Google Scholar] [CrossRef]
- Namihira, I. Divorce question in Okinawa: Rasing an issue based on special urbanization processes of postwar cities of Okinawa. Okinawa Int. Univ. J. Cult. Soc. 2006, 9, 1–19. [Google Scholar]
- Wagner, M.; Weiß, B. On the variation of divorce risks in Europe: Findings from a meta-analysis of European longitudinal studies. Eur. Sociol. Rev. 2006, 22, 483–500. [Google Scholar] [CrossRef]
- Cherlin, A.J. Public and Private Families: An Introduction, 5th ed.; McGraw-Hill: Boston, MA, USA, 2008. [Google Scholar]
- Sokoloff, L.; Kennedy, C. Marriage and divorce in Belgium. The influence of professional, educational and financial resources on the risk on marriage dissolution. J. Divorce Remarriage 2006, 46, 151–174. [Google Scholar]
- South, S.J. Economic conditions and the divorce rate: A time-series analysis of the postwar United States. J. Marriage Fam. 1985, 47, 31–41. [Google Scholar] [CrossRef]
- Shim, H.; Choi, I.; Ocker, B.L. Divorce in South Korea: An introduction to demographic trends, culture, and law. Fam. Court Rev. 2013, 51, 578–590. [Google Scholar] [CrossRef]
- González, L.; Viitanen, T.K. The effect of divorce laws on divorce rates in Europe. Eur. Econ. Rev. 2009, 53, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Hiller, V.; Recoules, M. Changes in divorce patterns: Culture and the law. Int. Rev. Law Econ. 2013, 34, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Nam, Y.; Lee, S.; Son, H. Determinants of ICT innovations: A cross-country empirical study. Technol. Forecast. Soc. Chang. 2016, 110, 71–77. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Li, X. The effect of internet penetration on China’s divorce rate. Chin. J. Popul. Sci. 2014, 34, 77–87. (In Chinese) [Google Scholar]
Variables | N | Mean | Standard Deviation | Min | Max | Unit |
---|---|---|---|---|---|---|
Divorce | 496 | 1.937 | 1.017 | 0.303 | 4.979 | ‰ |
Mobile | 496 | 56.660 | 34.746 | 4.280 | 189.424 | % |
Urban | 496 | 49.194 | 15.528 | 19.392 | 89.600 | % |
Education | 496 | 8.423 | 1.239 | 3.738 | 12.546 | Years/per capita |
Dependency | 496 | 37.441 | 7.029 | 19.267 | 57.579 | % |
Policy | 496 | 0.875 | 0.331 | 0 | 1 | – |
Variables | Dependent Variable: Divorce | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Mobile | 0.020 *** | 0.011 *** | 0.009 ** | 0.011 *** | 0.011 *** | |
(0.001) | (0.004) | (0.004) | (0.004) | (0.004) | ||
Urban | 0.054 *** | 0.050 *** | 0.045 *** | 0.036 ** | 0.033 ** | |
(0.011) | (0.016) | (0.016) | (0.014) | (0.015) | ||
Education | 0.666 *** | 0.187 * | 0.356 *** | 0.371 *** | ||
(0.149) | (0.099) | (0.095) | (0.094) | |||
Dependency | 0.042 *** | 0.043 *** | 0.048 *** | |||
(0.010) | (0.008) | (0.009) | ||||
Policy | 0.158 ** | 0.133 ** | ||||
(0.074) | (0.059) | |||||
Constant | −8.036 *** | 0.815 *** | −1.170 * | −2.344 ** | −5.080 *** | −5.321 *** |
(1.128) | (0.099) | (0.611) | (0.968) | (0.953) | (0.910) | |
F | 105.630 | 86.760 | 103.720 | 93.250 | 112.040 | 113.000 |
Hausman | 52.750 | 2.120 | 22.360 | 24.950 | 24.720 | 22.630 |
(0.000) | (0.347) | (0.000) | (0.000) | (0.000) | (0.000) | |
Observations | 496 | 496 | 496 | 496 | 496 | 496 |
Provinces | 31 | 31 | 31 | 31 | 31 | 31 |
R2 | 0.817 | 0.772 | 0.807 | 0.811 | 0.840 | 0.842 |
Model | FE | RE | FE | FE | FE | FE |
Variables | Dependent Variable: Divorce | |||||
---|---|---|---|---|---|---|
Eastern China | Central China | Western China | ||||
(1) | (2) | (3) | (4) | (5) | (6) | |
Mobile | 0.016 *** | 0.006 * | 0.029 *** | 0.030 *** | 0.020 *** | 0.001 |
(0.001) | (0.003) | (0.003) | (0.005) | (0.003) | (0.004) | |
Constant | 0.707 *** | −6.554 *** | 0.703 *** | −3.673 | 0.973 *** | −3.289 ** |
(0.133) | (1.699) | (0.135) | (2.110) | (0.207) | (1.651) | |
F | 52.180 | 76.480 | 108.910 | 82.240 | 119.010 | 137.020 |
Hausman | 0.640 | 60.220 | 1.170 | 44.750 | 0.800 | 2.270 |
(0.724) | (0.000) | (0.557) | (0.000) | (0.670) | (0.810) | |
Control variables | NO | YES | NO | YES | NO | YES |
Observations | 176 | 176 | 128 | 128 | 192 | 192 |
Provinces | 11 | 11 | 8 | 8 | 12 | 12 |
R2 | 0.781 | 0.883 | 0.882 | 0.917 | 0.768 | 0.880 |
Model | RE | FE | RE | FE | RE | RE |
Variables | Dependent Variable: Divorce1 | |||||||
---|---|---|---|---|---|---|---|---|
Whole Nation | Eastern China | Central China | Western China | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Mobile | 0.026 *** | 0.013 *** | 0.021 *** | 0.008 * | 0.038 *** | 0.037 *** | 0.026 *** | 0.0004 |
(0.002) | (0.005) | (0.002) | (0.004) | (0.004) | (0.006) | (0.004) | (0.005) | |
Constant | 1.161 *** | −7.861 *** | 0.989 *** | −9.297 *** | 0.971 *** | −6.134 * | 1.427 *** | −5.222 ** |
(0.138) | (1.189) | (0.172) | (2.124) | (0.162) | (2.776) | (0.295) | (2.211) | |
F | 80.490 | 123.530 | 40.190 | 78.740 | 86.450 | 78.60 | 117.960 | 148.750 |
Hausman | 3.350 | 26.650 | 1.240 | 67.390 | 0.650 | 41.130 | 0.540 | 2.430 |
(0.187) | (0.000) | (0.539) | (0.000) | (0.721) | (0.000) | (0.765) | (0.787) | |
Control variables | NO | YES | NO | YES | NO | YES | NO | YES |
Observations | 496 | 496 | 176 | 176 | 128 | 128 | 192 | 192 |
Provinces | 31 | 31 | 11 | 11 | 8 | 8 | 12 | 12 |
R2 | 0.747 | 0.846 | 0.741 | 0.878 | 0.881 | 0.919 | 0.745 | 0.880 |
Model | RE | FE | RE | FE | RE | FE | RE | RE |
Variables | Dependent Variable: Divorce | ||||
---|---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | 0.9 | |
(1) | (2) | (3) | (4) | (5) | |
Mobile | 0.004 *** | 0.009 *** | 0.012 *** | 0.011 *** | 0.017 *** |
(0.001) | (0.002) | (0.002) | (0.003) | (0.006) | |
Control variables | YES | YES | YES | YES | YES |
Observations | 496 | 496 | 496 | 496 | 496 |
Provinces | 31 | 31 | 31 | 31 | 31 |
Variables | Dependent Variable: Divorce | Dependent Variable: Divorce1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
L1.Mobile | 0.010 *** | 0.012 *** | ||||||||
(0.001) | (0.002) | |||||||||
L2.Mobile | 0.009 *** | 0.011 *** | ||||||||
(0.001) | (0.002) | |||||||||
L3.Mobile | 0.007 *** | 0.009 *** | ||||||||
(0.001) | (0.002) | |||||||||
L4.Mobile | 0.008 *** | 0.009 *** | ||||||||
(0.001) | (0.002) | |||||||||
L5.Mobile | 0.009 *** | 0.010 *** | ||||||||
(0.002) | (0.002) | |||||||||
Constant | −4.923 **** | −4.660 *** | −5.275 *** | −5.216 *** | −5.269 *** | −7.411 *** | −7.069 *** | −7.920 *** | −7.939 *** | −8.046 *** |
(0.563) | (0.584) | (0.600) | (0.652) | (0.661) | (0.742) | (0.772) | (0.794) | (0.862) | (0.874) | |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Observations | 465 | 434 | 403 | 372 | 341 | 465 | 434 | 403 | 372 | 341 |
R2 | 0.839 | 0.835 | 0.833 | 0.825 | 0.811 | 0.843 | 0.839 | 0.838 | 0.830 | 0.820 |
Model | FE | FE | FE | FE | FE | FE | FE | FE | FE | FE |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cheng, M.; Wei, X.; Gong, X. Does Mobile Phone Penetration Affect Divorce Rate? Evidence from China. Sustainability 2018, 10, 3701. https://doi.org/10.3390/su10103701
Zhang J, Cheng M, Wei X, Gong X. Does Mobile Phone Penetration Affect Divorce Rate? Evidence from China. Sustainability. 2018; 10(10):3701. https://doi.org/10.3390/su10103701
Chicago/Turabian StyleZhang, Jiaping, Mingwang Cheng, Xinyu Wei, and Xiaomei Gong. 2018. "Does Mobile Phone Penetration Affect Divorce Rate? Evidence from China" Sustainability 10, no. 10: 3701. https://doi.org/10.3390/su10103701
APA StyleZhang, J., Cheng, M., Wei, X., & Gong, X. (2018). Does Mobile Phone Penetration Affect Divorce Rate? Evidence from China. Sustainability, 10(10), 3701. https://doi.org/10.3390/su10103701