Elephant Crop Damage: Subsistence Farmers’ Social Vulnerability, Livelihood Sustainability and Elephant Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Gathering Protocols
2.3. Analyses
3. Results
3.1. Exposure and Sensitivity
3.2. Local Enablers of Social Vulnerability
3.3. Local Inhibitors of Social Vulnerability
3.4. Variable Selection and Model Building
3.5. Local Attitudes, Adaptive Capacities and Responses
4. Discussion
Implications of Social Vulnerability for Elephant Conservation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Questionnaire Guide Used in the Interviews with Subsistence Farmers in Lupande GMA, Eastern Zambia
- (1)
- Name
- (2)
- Age
- (3)
- Sex:
- (a)
- Male
- (b)
- Female
- (4)
- Marital status
- (5)
- Size of household
- (6)
- Level of education attained
- (7)
- Length of residence
- (8)
- Farm size(s)
- (9)
- No. of livestock
- (10)
- Length of residence
- (11)
- Have you experienced crop damage by elephants?
- (a)
- Yes
- (b)
- No
- (12)
- If yes to Question 11, do you perceive the threat of crop damage by elephants to be increasing, decreasing or same?
- (a)
- Increasing
- (b)
- Decreasing
- (c)
- Same
- (13)
- Explain your answer to Question 12?
- (14)
- How many times have you experienced crop damage in the last five years?
- (15)
- What methods do you employ to protect your crop?
- (16)
- How effective are the methods you use for crop protection?
- (17)
- What crops do elephants eat?
- (18)
- What is the average percentage (%) loss in maize to elephants when they raid your field or storage in a year?
- (19)
- What specific elements are responsible for perpetuating social vulnerability in your area?
- (20)
- Please rate the following between 0 and 5 (0 representing absence and 5 high) in respect to crop damage:
- (a)
- Management effectiveness of crop damage mitigation infrastructure.
- (b)
- Level of local investments in crop damage mitigations.
- (c)
- Adequacy of financial capital for crop damage mitigations.
- (d)
- Level of financial capital for crop damage mitigations.
- (e)
- Affordability of crop damage mitigations infrastructure.
- (f)
- Adequacy of crop damage mitigations infrastructure.
- (g)
- Existence of crop damage mitigations infrastructure.
- (h)
- Contribution to local socioeconomics and culture.
- (i)
- Habitat management.
- (j)
- Environmental awareness.
- (k)
- Level of education.
- (l)
- Ability to prevent diseases and respond to natural disasters.
- (m)
- Level of skills in crop damage mitigations.
- (n)
- Commitment.
- (o)
- Trust.
- (p)
- Social networks.
- (q)
- Cooperation.
- (21)
- What do you consider are the social inhibitors of social vulnerability in your area?
- (22)
- Explain your answer in Question 21?
- (23)
- Using the 0 to 5 (0 representing absence and 5 high) rate association between crop damage and the following social vulnerability parameters in your area:
- (a)
- Traditional ecological knowledge.
- (b)
- Social coherence.
- (c)
- Skills development.
- (d)
- Diversification of crops.
- (e)
- Access to innovations.
- (f)
- External financial remittances to local farmers.
- (24)
- What do you consider as the most important factor influencing your actions in respect to crop damage?
- (25)
- How do you react to the identified factor in Question 24?
- (26)
- What are the coping and mediating strategies you employ against elephant crop damage impacts?
References
- Gutiérrez, R.J.; Wood, K.A.; Redpath, S.M.; Young, J.C. Conservation Conflicts: Future Research Challenges; Springer: Gland, Switzerland, 2016; pp. 267–282. [Google Scholar] [CrossRef]
- Peterson, M.N.; Peterson, M.J.; Peterson, T.R.; Leong, K. Why transforming biodiversity conservation conflict is essential and how to begin. Pacific Conserv. Biol. 2013, 19, 94–103. [Google Scholar] [CrossRef]
- Githiru, M.; Mutwiwa, U.; Kasaine, S.; Schulte, B. A spanner in the works: Human-elephant conflict complicates the energy-food-water nexus in drylands of Africa. Front. Environ. Sci. 2017, 5, 69. [Google Scholar] [CrossRef]
- Okello, M.M.; Njumbi, S.J.; Kiringe, J.W.; Isiiche, J. Habitat use and preference by the African elephant outside of the protected area, and management implications in the Amboseli landscape, Kenya. Int. J. Biodivers. Conserv. 2015, 7, 211–236. [Google Scholar] [CrossRef]
- Lewis, D.; Bell, S.D.; Fay, J.; Bothi, K.L.; Gatere, L.; Kabila, M.; Mukamba, M.; Matokwani, E.; Mushimbalume, M.; Moraru, C.I.; et al. Community Markets for Conservation (COMACO) links biodiversity conservation with sustainable improvements in livelihoods and food production. Proc. Natl. Acad. Sci. USA 2011, 108, 13957–13962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redpath, S.M.; Young, J.; Evely, A.; Adams, W.M.; Sutherland, W.J.; Whitehouse, A.; Amar, A.; Lambert, R.A.; Linell, J.D.C.; Watt, A.; et al. Understanding and managing conservation conflicts. Trends Ecol. Evol. 2013, 28, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lichtenfeld, L.L.; Trout, C.; Kisimir, E.L. Evidence-based conservation: Predator-proof bomas protect livestock and lions. Biodivers. Conserv. 2014, 24, 483–491. [Google Scholar] [CrossRef]
- Baynham-Herd, Z.; Redpath, S.; Bunnefeld, N.; Molony, T.; Keane, A. Conservation conflicts: Behavioural threats, frames, and intervention recommendations. Biol. Conserv. 2018, 222, 180–188. [Google Scholar] [CrossRef]
- Draheim, M.M.; Madden, F.; McCarthy, J.B.; Parsons, E.C.M. Human-Wildlife Conflict: Complexity in the Marine Environment; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Amwata, D.A.; Mganga, K.Z. The African elephant and food security in Africa: Experiences from Baringo District, Kenya. Pachyderm 2014, 55, 23–29. [Google Scholar]
- Hoare, R. Lessons from 20 years of human-elephant conflict mitigation in Africa. Dimens. Wildl. 2015, 20, 289–295. [Google Scholar] [CrossRef]
- Redpath, S.M.; Gutiérrez, R.J.; Wood, K.A.; Young, J.C. (Eds.) Conflicts in Conservation: Navigating towards Solutions; Cambridge University Press: Cambridge, UK, 2015; pp. 4–8. [Google Scholar]
- Gross, E.M.; Lahkar, B.P.; Subedi, N.; Nyirenda, V.R.; Lichtenfeld, L.L.; Jakoby, O. Seasonality, crop type and crop phenology influence crop damage by wildlife herbivores in Africa and Asia. Biodivers. Conserv. 2018. [Google Scholar] [CrossRef]
- Pozo, R.A.; Coulson, T.; McCulloch, G.; Stronza, A.L.; Songhurst, A.C. Determining baselines for human-elephant conflict: A matter of time. PLoS ONE 2017, 12, e0178840. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, V.R.; Myburgh, W.J.; Reilly, B.K. Predicting environmental factors influencing crop raiding by African elephants (Loxodonta africana) in the Luangwa Valley, eastern Zambia. Afr. J. Environ. Sci. Technol. 2012, 6, 391–400. [Google Scholar] [CrossRef]
- Goswami, V.R.; Medhi, K.; Nichols, J.D.; Oli, M.K. Mechanistic understanding of human-wildlife conflict through a novel application of dynamic occupancy models. Conserv. Biol. 2015, 29, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Songhurst, A.; McCulloch, G.; Coulson, T. Finding pathways to human-elephant coexistence: A risky business. Oryx 2015, 50, 713–720. [Google Scholar] [CrossRef]
- Bond, J. Making sense of human-elephant conflict in Laikipia county, Kenya. Soc. Natur. Resour. 2015, 28, 312–327. [Google Scholar] [CrossRef]
- Mamboleo, A.A.; Doscher, C.; Paterson, A. Are elephants the most disastrous agricultural pests or the agents of ecological restorations? J. Biodivers. Endanger. Species 2017, 5, 185. [Google Scholar]
- Cook, R.M.; Henley, M.D.; Parrini, F. Elephant movement patterns in relation to human inhabitants in and around the Great Limpopo Transfrontier Park. Koedoe 2015, 57, 1–7. [Google Scholar] [CrossRef]
- Hill, C.M. Perspectives of conflict at the wildlife-agriculture boundary: 10 years on. Hum. Dimens. Wildl. 2015, 20, 296–301. [Google Scholar] [CrossRef]
- Mayberry, A.L.; Hovorka, A.J.; Evans, K.E. Well-being impacts of human-elephant conflict in Khumaga, Botswana: Exploring visible and hidden dimensions. Conserv. Soc. 2017, 15, 280–291. [Google Scholar]
- van de Water, A.; Matteson, K. Human-elephant conflict in western Thailand: Socio-economic drivers and potential mitigation strategies. PLoS ONE 2018, 13, e0194736. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Yadav, D.K.; Jhariya, M.K. Socio-economic status of human-elephant conflict: Its assessment and solutions. J. Appl. Nat. Sci. 2016, 8, 2104–2110. [Google Scholar]
- von Rueden, C.; Gavrilets, S.; Glowacki, L. Solving the puzzle of collective action through inter-individual differences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Selier, S.-A.J.; Slotow, R.; Di Minin, E. The influence of socioeconomic factors on the densities of high-value cross-border species, the African elephant. Peer. J. 2016, 4, 2581. [Google Scholar] [CrossRef] [PubMed]
- Owen-Smith, N.; Chafota, J. Selective feeding by megaherbivore, the African elephant (Loxodonta africana). J. Mammal. 2012, 93, 698–705. [Google Scholar] [CrossRef]
- Garstang, M.; Davis, R.E.; Leggett, K.; Frauenfeld, O.W.; Greco, S.; Zipser, E.; Peterson, M. Response of African elephants (Loxodonta africana) to seasonal changes in rainfall. PLoS ONE 2014, 9, e108736. [Google Scholar] [CrossRef] [PubMed]
- Watson, F.; Becker, M.S.; McRobb, R.; Kanyembo, B. Spatial patterns of wire-snare poaching: Implications for community conservation in buffer zones around National Parks. Biol. Conserv. 2013, 168, 1–9. [Google Scholar] [CrossRef]
- Kahler, J.S.; Gore, M.L. Local perceptions of risk associated with poaching of wildlife implicated in human-wildlife conflicts in Namibia. Biol. Conserv. 2014, 189, 49–58. [Google Scholar] [CrossRef]
- Kalaba, F.K.; Quinn, C.H.; Dougill, J.A. The role of forest provisioning ecosystem services in coping with household stresses and shocks in miombo woodlands, Zambia. Ecosyst. Serv. 2013, 5, 143–148. [Google Scholar] [CrossRef]
- Handberg, Ø.N. No sense of ownership in weak participation: A forest conservation experiement in Tanzania. Environ. Dev. Econ. 2018, 23, 434–451. [Google Scholar] [CrossRef]
- Woodhouse, E.; Homewood, K.M.; Beauchamp, E.; Clements, T.; McCabe, J.T.; Wilkie, D.; Milner-Gulland, E.J. Guiding principles for evaluating the impacts of conservation interventions on human well-being. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20150103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenmayer, D. Halting natural resource depletion: Engaging with economic and political power. Econ. LabourRelat. Rev. 2017, 28, 41–56. [Google Scholar] [CrossRef]
- Van Assche, K.; Beunen, R.; Duineveld, M. The will to knowledge: Natural management and power/knowledge dynamics. J. Environ. Policy Plan. 2017, 19, 245–250. [Google Scholar] [CrossRef]
- Sumberg, J.; Yeboah, T.; Flynn, J.; Anyidoho, N.A. Young people’s perspectives on farming in Ghana: A Q study. Food Secur. 2017, 9, 151–161. [Google Scholar] [CrossRef]
- Eizenberg, E.; Jabareen, Y. Social sustainability: A new conceptual framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef]
- Lienert, J.; Burger, P. Merging capabilities and livelihoods: Analyzing the use of biological resources to improve well-being. Ecol. Soc. 2015, 20, 20. [Google Scholar] [CrossRef]
- Cropanzano, R.; Anthony, E.L.; Daniels, S.R.; Hall, A.V. Social exchange theory: A critical review with theoretical remedies. Acad. Manag. Ann. 2016, 11, 479–516. [Google Scholar] [CrossRef]
- Morse, S.; McNamara, N. Sustainable Livelihood Approach: A Critique of Theory and Practice; Springer: New York, NY, USA, 2013; pp. 1–183. [Google Scholar]
- Mmbaga, N.E.; Munishi, L.K.; Treydte, A.C. Balancing African elephant conservation with human well-being in Rombo area, Tanzania. Adv. Ecol. 2017, 9. [Google Scholar] [CrossRef]
- Musyoki, C. Crop defense and coping strategies: Wildlife raids in Mahiga B village in Nyeri District. Afr. Study Monogr. 2014, 35, 19–40. [Google Scholar]
- Baskaran, N.; Kannan, G.; Anbarasan, U.; Thapa, A.; Sukumar, R. A landscape-level assessment of Asian elephant habitat, its population and elephant-human conflict in the Anamalai hill ranges of southern western Ghats, India. Mammal. Biol. 2013, 78, 470–481. [Google Scholar] [CrossRef]
- Barua, M.; Bhagwat, S.A.; Jadhav, S. The hidden dimensions of human-wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 2013, 157, 309–316. [Google Scholar] [CrossRef]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.M.T.; Song, A.M.; Po, J.Y.T.; Berthet, E.; Brammer, J.R.; Brunet, N.D.; Jayaprakash, L.G.; Lowitt, K.N.; Rastogi, A.; Reed, G.; et al. A framework for analyzing institutional gaps in natural resource governance. Int. J. Commons 2017, 11, 823–853. [Google Scholar] [CrossRef] [Green Version]
- King, L.E.; Lala, F.; Nzumu, H.; Mwambingu, E.; Douglas-Hamilton, I. Beehive fences as a multidimensional conflict-mitigation tool for farmers coexisting with elephants. Conserv. Biol. 2017, 31, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Mosimane, A.W.; McCool, S.; Brown, P.; Ingrebretson, J. Using mental models in the analysis of human-wildlife conflict from the perspective of a social-ecological system in Namibia. Oryx 2014, 48, 64–70. [Google Scholar] [CrossRef]
- Nyirenda, V.R.; Kaoma, C.; Nyirongo, S.; Lwali, C.A.; Chomba, C. Social exchange and structuralist-constructivism approaches for enhanced ecotourism and food security in wildlife-agrarian mosaic landscape: Insighits from eastern Zambia. Int. J. Tour. Policy 2017, 7, 93–109. [Google Scholar] [CrossRef]
- Anderson, N.E.; Mubanga, J.; Machila, N.; Atkinson, P.M.; Dzingarai, V.; Welburn, S.C. Sleeping sickness and its relationship with development and biodiversity conservation in the Luangwa Valley, Zambia. Parasit. Vectors 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Obata, K.; Yamazaki, K. Some plants of South Luangwa National Park, Zambia. Bull. Ibaraki Nat. Mus. 2014, 17, 59–65. [Google Scholar]
- DNPW (Department of National Parks and Wildlife). The 2016 Aerial Survey in Zambia: Population Estimates of African Elephants (LOXODONTA Africana) in Zambia; Zambia’s Department of National Parks and Wildlife: Chilanga, Zambia, 2016.
- CSO (Central Statistical Office). Zambia 2010 Census of Population and Housing: Population Summary Report; Central Statistical Office: Lusaka, Zambia, 2012; p. 19.
- Nyirenda, V.R.; Kaoma, C.; Nyirongo, S. Farmer-wildlife conflicts in rural areas of eastern Zambia. Biodivers. Ecol. 2018, 6, 153–156. [Google Scholar] [CrossRef]
- Yin, R.K. Quantitative Research from Start to Finish, 2nd ed.; The Guilford Press: New York, NY, USA, 2016; Chapter 3. [Google Scholar]
- Walliman, N. Research Methods: The Basic; Routledge: New York, NY, USA, 2011; p. 100. [Google Scholar]
- Guest, G.; MacQueen, K.M.; Namey, E.E. Applied Thematic Analysis; Sage Publications: Thousand Oaks, CA, USA, 2012; Chapter 3–10. [Google Scholar]
- Pero-Cebollero, M.; Guardia-Olmos, J. The adequacy of different robust statistical tests in comparing two independent groups. Psicologica 2013, 34, 407–424. [Google Scholar]
- Vedeld, P.; Jumane, A.; Wapalila, G.; Songorwa, A. Protected areas, poverty and conflicts: A livelihood case study of Mikumi National Park, Tanzania. Forest Policy Econ. 2012, 21, 20–31. [Google Scholar] [CrossRef]
- Sujakhu, N.M.; Ranjitkar, S.; Niraula, R.R.; Salim, M.A.; Nizami, A.; Schmidt-Vogt, D.; Xu, J. Determinants of livelihood vulnerability in farming communities in two sites in the Asian highlands. J. Water Int. 2018, 43, 165–182. [Google Scholar] [CrossRef]
- Logan, M. Biostatistical Design and Analysis Using R: A Practical Guide; Wiley-Blackwell: Oxford, UK, 2010; Chapters 9 & 17. [Google Scholar]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. J. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC model selection and multimodel inference in behavoural ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Zuur, A.F.; Leno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- Imdadullah, M.; Aslam, M.; Altaf, S. Mctest: An R package for detection of collinearity among regressors. R. J. 2016, 8, 2073–4859. [Google Scholar]
- Symonds, M.R.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Chakraborty, K.; Mondal, J. Perceptions and patterns of human-elephant conflict at Barjora block of Bankura district in West Bengal, India: Insights for mitigation and management. Environ. Dev. Sustainability 2013, 15, 547. [Google Scholar] [CrossRef]
- Gunaryadi, D.; Sugiyo, S.; Hedges, S. Community-based human-elephant conflict mitigation: The value of an evidence-based approach in promoting the uptake of effective methods. PLoS ONE 2017, 12, e0173742. [Google Scholar] [CrossRef] [PubMed]
- Whyte, K.P. On the role of traditional ecological knowledge as a collaborative concept: A philosophical study. Ecol. Processes. 2013, 2, 7. [Google Scholar] [CrossRef]
- Uprety, Y.; Asselin, H.; Bergeron, Y.; Doyon, F.; Boucher, J.F. Contribution of traditonal knowledge to ecological restoration: Practices and applications. Ecoscience 2012, 19, 225–237. [Google Scholar] [CrossRef]
- Gross, E.M.; McRobb, R.; Gross, J. Cultivating alternative crops reduces crop losses due to African elephants. J. Pest Sci. 2015, 89, 497–506. [Google Scholar] [CrossRef]
- Lima, E.A.C.F.; Ranieri, V.E.L. Land use planning around protected areas: Case studies in four parks in the Atlantic forest region of southeastern Brazil. Land Use Policy 2018, 71, 453–458. [Google Scholar] [CrossRef]
- Backmore, A.; Trouwborst, A. Who owns and is responsible for the elephant in the room? Management plans for free-roaming elephant in South Africa. Bothalia 2018, 48. [Google Scholar]
- Chang’a, A.; Souza de, N.; Muya, J.; Keyyu, J.; Mwakatobe, A.; Malugu, L.; Ndossi, H.P.; Konuche, J.; Omondi, R.; Mpinge, A.; et al. Scaling-up the use of chili fences for reducing human-elephant conflict across landscapes in Tanzania. Trop. Conserv. Sci. 2016, 9, 921–930. [Google Scholar]
- Milne, A.E.; Bell, J.R.; Hutchison, W.D.; van den Bosch, F.; Mitchell, P.D.; Crowder, D.; Parnell, S.; Whitemore, A.P. The effect of farmers’ decisions on pest control with Bt crops: A billion dollar game of strategy. PLoS Comput. Biol. 2015, 11, e1004483. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, J.; Li, J.; Zeng, Z.; Sun, J.; Zhou, Q.B.; Zhang, Y. Study on livelihood assets-based spatial differentiation of the income of natural tourism communities. Sustainability 2018, 10, 353. [Google Scholar] [CrossRef]
- Dolinska, A.; d’Aquino, P. Farmers as agents in innovation systems: Empowering farmers for innovation through communities of practice. Agric. Syst. 2016, 142, 122–130. [Google Scholar] [CrossRef]
- Andrade, G.S.M.; Rhodes, J.R. Protected areas and local communities: An inevitable partnership toward successful conservation strategies? Ecol. Soc. 2012, 17, 14. [Google Scholar] [CrossRef]
- Shaw, A.; Kristjanson, P. A catalyst toward sustainability? Exploring social learning and social differentiation approaches with the agricultural poor. Sustainability 2014, 6, 2685–2717. [Google Scholar] [CrossRef]
- Gavin, M.C.; McCarter, J.; Berkes, F.; Mead, A.T.P.; Sterling, E.J.; Tang, R.; Turner, N.J. Effectivebiodiversity conservation requires dynamic, pluralistic, partnership-based approaches. Sustainability 2018, 10, 1846. [Google Scholar] [CrossRef]
- Chan, C.; Sipes, B.; Lee, T.S. Enabling Agri-Entrepreneurship and Innovation: Empirical Evidence and Solutions for Conflict Regions and Transitioning Economies; CABI: Wallingford, UK, 2017. [Google Scholar]
- Lewis, A.L.; Baird, T.D.; Sorice, M.G. Mobile phone use and human-wildlife conflict in Northern Tanzania. Environ. Manag. 2016, 58, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving conflicts between agriculture and the natural environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Kapucu, N. Examining the impacts of disaster resettlement from a livelihood perspective: A case study of Qinling mountains, China. Disasters 2018, 42, 251–274. [Google Scholar] [CrossRef] [PubMed]
- UNDP (United Nations Development Programme). Zambia Human Development Report: Industrialisation and Human Development-Poverty Reduction through Wealth and Employment Creation; UNDP: Lusaka, Zambia, 2016. [Google Scholar]
- Wittemyer, G.; Northrup, J.M.; Blanc, J.; Douglas-Hamilton, I.; Omondi, P. Illegal killing for ivory drives global decline in African elephants. Proc. Natl. Acad. Sci. USA 2014, 111, 13117–13121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, R.; Fisher, B.; Manica, A.; Balmfold, A. Estimating economic losses to tourism in Africa from the illegal killing of elephants. Nat. Commun. 2016, 7, 13379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittemyer, G.; Daballen, D.; Douglas-Hamilton, I. Comparative demography of an at-risk African elephant population. PLoS ONE 2013, 8, e53726. [Google Scholar] [CrossRef] [PubMed]
- Kaeslin, E.; Redmond, I.; Dudley, N. Wildlife in a Changing Climate; FAO Forestry Paper 167; FAO: Rome, Italy, 2012. [Google Scholar]
- Lawther, P.M. Towards a natural disaster intervention and recovery framework. Disasters 2016, 40, 494–517. [Google Scholar] [CrossRef] [PubMed]
- Morton, H.; Winter, E.; Grote, U. Assessing natural resource management through intergrated environmental and social-economic accounting: The case of a Namibian conservancy. J. Environ. Dev. 2016, 25, 396–425. [Google Scholar] [CrossRef]
- Green, E.; Norberg, M. Traditional landholding certificates in Zambia: Preventing or reinforcing commodification and inequality? J. South. Afr. Stud. 2018, 1, 1–16. [Google Scholar] [CrossRef]
- Simatele, D.; Simatele, M. Migration as an adaptive strategy to climate variability:a study of the Tonga-speaking people of Southern Zambia. Disasters 2015, 39, 762–781. [Google Scholar] [CrossRef] [PubMed]
- van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. 2016, 113, 14964–14969. [Google Scholar] [CrossRef] [PubMed]
- Langat, D.K.; Maranga, E.K.; Aboud, A.A.; Cheboiwo, J.K. Role of forest resources to local livelihoods: The case of east Mau forest ecosystem, Kenya. Int. J. Forest. Res. 2016, 1–10. [Google Scholar] [CrossRef]
- Pittiglio, C.; Skidmore, A.K.; van Gils, H.A.M.J.; McCall, M.K.; Prins, H.H.T. Smallholder farms as stepping stone corridors for crop-raiding elephant in northern Tanzania: Integration of Bayesian Expert System and Network Simulator. Ambio 2014, 43, 149–161. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Belant, J.L. Provisioning of game meat to rural communities as a benefit of sport hunting in Zambia. PLoS ONE 2015, 10, e0117237. [Google Scholar] [CrossRef] [PubMed]
- Dalal-Clayton, B.; Child, B. Lessons from Luangwa: The Story of the Luangwa Integrated Resource Development Project, Zambia; Wildlife and Development Series, 13; International Institute for Environment and Development: London, UK, 2003; p. 168. [Google Scholar]
- Hoffmeier-Karimi, R.R.; Schulte, B.A. Assessing perceived and documented crop damage in a Tanzanian village impacted by human-elephant conflict (HEC). Pachyderm 2015, 56, 51–60. [Google Scholar]
- Kross, S.M.; Ingram, K.P.; Long, R.F.; Niles, M.T. Farmer perceptions and behaviors related to wildlife and on-farm conservation actions. Conserv. Lett. 2018, 11, e12364. [Google Scholar] [CrossRef]
- Mumby, H.S.; Plotnik, J.M. Taking the elephants’ perspective: Remembering elephant behavior, cognition and ecology in human-elephant conflict mitigation. Front. Ecol. Evol. 2018, 6, 122. [Google Scholar] [CrossRef]
Social Vulnerability Factors (Covariates) | Link to Crop Damage | Literature | Focus Group Discussions | Examples of Literature Sources |
---|---|---|---|---|
Social coherence (X1) | Elephant crop damage is less likely in the communities that socially collaborate. | X | X | [11,69] |
Skills development (X2) | Elephant crop damage is more likely in unskilled communities. | X | X | [54] |
Access to innovations (X3) | Elephant crop damage is more likely in less innovative community that relies on traditional methods. | X | X | [47,70] |
Traditional ecological knowledge (X4) | Elephant crop damage can be avoided by learning from each other how to coexist with elephants. | X | X | [71,72] |
Crop diversification (X5) | Food aversion by elephants through avoidance of certain crops can reduce the probability of crop damage. | X | X | [13,73] |
Variable | Variable Components | Frequency | Percentages (%) |
---|---|---|---|
Gender | Male | 177 | 63 |
(male- or female headed households) | Female | 104 | 37 |
Marital status | Single | 15 | 5.3 |
Married | 246 | 87.5 | |
Widow | 10 | 3.6 | |
Widower | 7 | 2.5 | |
Others | 3 | 1.1 | |
Household size | 5 and below | 67 | 23.8 |
6–10 | 214 | 76.2 | |
Education | Primary school | 183 | 65.1 |
Secondary school | 98 | 34.9 | |
Length of residence (years) | 5 and below | 19 | 6.8 |
6–10 | 67 | 23.8 | |
11–15 | 85 | 30.2 | |
16–20 | 39 | 13.9 | |
21 and over | 71 | 25.3 | |
Farm size (m2) | <4800 | 69 | 24.6 |
4800–8600 | 159 | 56.6 | |
>8600 | 53 | 18.9 | |
Number of livestock | 5 and below | 181 | 64.4 |
6–10 | 53 | 18.9 | |
11–20 | 39 | 13.9 | |
21 and above | 8 | 2.8 |
Model | Model Notation | AIC | ΔAIC | AIC Weight | Model Likelihood | Evidence Ratio |
---|---|---|---|---|---|---|
Social coherence (X1) | β0 + β1X1 | 261.92 | 0.00 | 0.24 | 0.97 | 1.00 |
Skills development (X2) | β0 + β2X2 | 264.35 | 1.33 | 0.15 | 0.71 | 1.94 |
Access to innovations (X3) | β0 + β3X3 | 266.07 | 2.18 | 0.11 | 0.68 | 2.97 |
Traditional ecological knowledge (X4) | β0 + β4X4 | 267.48 | 2.39 | 0.06 | 0.40 | 3.30 |
Crop diversification (X5) | β0 + β5X5 | 270.24 | 2.52 | 0.06 | 0.28 | 3.53 |
X1 + X2 | β0 + β1X1 + β2X2 | 270.96 | 3.09 | 0.05 | 0.24 | 4.69 |
X1 + (X3 | β0 + β1X1 + β3X3 | 273.43 | 3.34 | 0.05 | 0.21 | 5.31 |
X1 + X4 | β0 + β1X1 + β4X4 | 274.01 | 3.88 | 0.04 | 0.16 | 6.96 |
X1 + X5 | β0 + β1X1 + β5X5 | 274.72 | 4.23 | 0.04 | 0.15 | 8.29 |
X2 + X3 | β0 + β2X2 + β3X3 | 274.95 | 4.25 | 0.03 | 0.15 | 8.37 |
X2 + X4 | β0 + β2X2 + β4X4 | 275.77 | 5.10 | 0.02 | 0.11 | 12.81 |
X2 + X5 | β0 + β2X2 + β5X5 | 276.48 | 5.63 | 0.02 | 0.08 | 16.69 |
X3 + X4 | β0 + β3X3 + β4X4 | 276.80 | 6.14 | 0.02 | 0.08 | 21.54 |
X3 + X5 | β0 + β3X3 + β5X5 | 277.36 | 6.26 | 0.02 | 0.06 | 22.87 |
X4 + X5 | β0 + β4X4 + β5X5 | 277.95 | 6.45 | 0.01 | 0.05 | 25.15 |
X1 + X2 + X3 | β0 + β1X1 + β2X2 + β3X3 | 278.41 | 6.61 | 0.01 | 0.05 | 27.25 |
X1 + X2 + X4 | β0 + β1X1 + β2X2 + β4X4 | 278.67 | 7.37 | 0.01 | 0.03 | 39.85 |
X1 + X2 + X5 | β0 + β1X1 + β2X2 + β5X5 | 279.83 | 8.05 | 0.01 | 0.03 | 55.98 |
X1 × X2 | β0 + β1X1 + β2X2 + β1,2(X1× X2) | 279.91 | 8.38 | 0.01 | 0.02 | 66.02 |
X1 × X3 | β0 + β1X1 + β3X3 + β1,3(X1 × X3) | 282.01 | 8.56 | 0.01 | 0.02 | 72.24 |
X1 × X4 | β0 + β1X1 + β4X4 + β1,4(X1 × X4) | 282.46 | 8.79 | 0.01 | 0.02 | 81.04 |
X1 × X5 | β0 + β1X1 + β5X5 + β1,5(X1 × X5) | 282.63 | 8.99 | 0.01 | 0.02 | 89.57 |
X2 × X3 | β0 + β2X2 + β3X3 + β2,3(X2 × X3) | 282.74 | 9.03 | 0.00 | 0.01 | 91.38 |
X2 × X4 | β0 + β2X2 + β4X4 + β2,4(X2 × X4) | 282.99 | 9.19 | 0.00 | 0.01 | 98.99 |
X2 × X5 | β0 + β2X2 + β5X5 + β2,5(X2 × X5) | 283.25 | 9.47 | 0.00 | 0.01 | 113.86 |
X3 × X4 | β0 + β3X3 + β4X4 + β3,4(X3 × X4) | 283.43 | 9.69 | 0.00 | 0.01 | 127.10 |
X3 × X5 | β0 + β3X3 + β5X5 + β3,5(X3 × X5) | 283.51 | 9.74 | 0.00 | 0.01 | 130.32 |
X4 × X5 | β0 + β4X4 + β5X5 + β4,5(X4 × X5) | 283.84 | 9.92 | 0.00 | 0.01 | 142.59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyirenda, V.R.; Nkhata, B.A.; Tembo, O.; Siamundele, S. Elephant Crop Damage: Subsistence Farmers’ Social Vulnerability, Livelihood Sustainability and Elephant Conservation. Sustainability 2018, 10, 3572. https://doi.org/10.3390/su10103572
Nyirenda VR, Nkhata BA, Tembo O, Siamundele S. Elephant Crop Damage: Subsistence Farmers’ Social Vulnerability, Livelihood Sustainability and Elephant Conservation. Sustainability. 2018; 10(10):3572. https://doi.org/10.3390/su10103572
Chicago/Turabian StyleNyirenda, Vincent R., Bimo A. Nkhata, Oscar Tembo, and Susan Siamundele. 2018. "Elephant Crop Damage: Subsistence Farmers’ Social Vulnerability, Livelihood Sustainability and Elephant Conservation" Sustainability 10, no. 10: 3572. https://doi.org/10.3390/su10103572