Irresponsible Research and Innovation? Applying Findings from Neuroscience to Analysis of Unsustainable Hype Cycles
Abstract
:1. Introduction
2. Case
3. Formal Hype Cycle
4. Discussion
4.1. Implications for Education
4.2. Implications for Research
4.3. Implications for Practice
4.4. Implications for Public Debate
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Eaton, L.K.; Kann, L.; Kinchen, S.; Ross, J.; Hawkins, J.; Harris, W.A.; Lowry, R.; McManus, T.; Chyen, D.; Shanklin, S.; et al. Youth risk behavior surveillance—United States 2005, surveillance summaries. Morb. Mortal. Wkly. Rep. (MMWR) Surveill. Summ. 2006, 55, 1–108. [Google Scholar]
- Kann, L.; McManus, T.; Harris, W.A.; Shanklin, S.A.; Flint, K.H.; Hawkins, J.; Queen, B.; Lowry, R.; Olsen, E.; O’Malley, E. Youth Risk Behavior Surveillance—United States 2015. MMWR Surveill. Summ. 2016, 65, 1–174. [Google Scholar] [PubMed]
- Casey, B.J.; Getz, S.; Galvan, A. The adolescent brain. Dev. Rev. 2008, 28, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef] [Green Version]
- Chein, J.; Albert, D.; O’Brien, L.; Uckert, K.; Steinberg, L. Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Dev. Sci. 2011, 14, F1–F10. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Nelson, E.E.; Jazbec, S.; McClure, E.B.; Monk, C.S.; Leibenluft, E.; Blair, J.; Pine, D.S. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage 2005, 25, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Kuhnen, C.M.; Knutson, B. The neural basis of financial risk taking. Neuron 2005, 47, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.C.; Simmons, A.N.; Lane, S.D.; Paulus, M.P. Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport 2004, 15, 2123–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montague, P.R.; Berns, G.S. Neural economics and the biological substrates of valuation. Neuron 2002, 36, 265–284. [Google Scholar] [CrossRef]
- Reyna, V.; Farley, F. Risk and rationality in adolescent decision making: Implications for theory, practice, and public policy. Psychol. Sci. Public Interest 2006, 7, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Asato, M.R.; Terwilliger, R.; Woo, J.; Luna, B. White matter development in adolescence: A DTI study. Cereb. Cortex 2010, 20, 2122–2131. [Google Scholar] [CrossRef] [PubMed]
- Giedd, J.N. The teen brain: Insights from neuroimaging. J. Adolesc. Health 2008, 42, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Shors, T.J.; Anderson, L.M.; Curlik, D.M., II; Nokia, S.M. Use it or lose it: How neurogenesis keeps the brain fit for learning. Behav. Brain Res. 2012, 14, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.E.; Jarcho, J.M.; Guyer, A.E. Social re-orientation and brain development: An expanded and updated view. Dev. Cogn. Neurosci. 2016, 17, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afiff, S.A. Engineering the Jatropha Hype in Indonesia. Sustainability 2014, 6, 1686–1704. [Google Scholar] [CrossRef] [Green Version]
- Bakker, S.; Budde, B. Technological hype and disappointment: Lessons from the hydrogen and fuel cell case. Technol. Anal. Strateg. Manag. 2012, 24, 549–563. [Google Scholar] [CrossRef]
- Brown, N. Hope against hype: Accountability in biopasts, presents and futures. Sci. Technol. Stud. 2003, 16, 3–21. [Google Scholar]
- Coltman, T.; Devinney, T.M.; Latukefu, A.; Migley, D.F. E-business: Revolution, evolution, or hype? Calif. Manag. Rev. 2001, 44, 57–89. [Google Scholar] [CrossRef]
- Dohler, M.; Meddour, D.-E.; Senouci, S.-M.; Saadani, A. Cooperation in 4G—Hype or ripe? IEEE Technol. Soc. Mag. 2008, 27, 13–17. [Google Scholar] [CrossRef]
- Finocchiaro, C.W. Personal factory or catalyst for piracy? The hype, hysteria, and hard realities of consumer 3-D printing. Cardozo Arts Entertain. Law J. 2013, 31, 473–569. [Google Scholar]
- Ruef, A.; Markard, J. What happens after a hype? How changing expectations affected innovation activities in the case of stationary fuel cells. Technol. Anal. Strat. Manag. 2010, 22, 317–338. [Google Scholar] [CrossRef]
- Seidensticker, B. Future Hype: The Myths of Technology Change; Berrett-Koehler: San Francisco, CA, USA, 2006. [Google Scholar]
- Den Boer, D.; Rip, A.; Speller, S. Scripting possible futures of nanotechnologies: A methodology that enhances reflexivity. Technol. Soc. 2009, 31, 295–304. [Google Scholar] [CrossRef]
- Huang, L.; Guo, Y.; Porter, A.L.; Youtie, J.; Robinson, D.K.R. Visualising potential innovation pathways in a workshop setting: The case of nanoenabled biosensors. Technol. Anal. Strat. Manag. 2012, 24, 527–542. [Google Scholar] [CrossRef]
- Jacob, W.F.; Kwak, Y.H. In search of innovative techniques to evaluate pharmaceutical R&D projects. Technovation 2003, 23, 291–296. [Google Scholar]
- Jacobs, C.D.; Steyaert, C.; Überbacher, F. Anticipating intended users: Prospective sensemaking in technology development. Technol. Anal. Strat. Manag. 2013, 25, 1027–1043. [Google Scholar] [CrossRef]
- Koehler, A.R.; Som, C. Risk preventative innovation strategies for emerging technologies in the case of nano-textiles and smart textiles. Technovation 2014, 34, 420–430. [Google Scholar] [CrossRef]
- Pel, B. Intersections in system innovation: A nested-case methodology to study co-evolving innovation journeys. Technol. Anal. Strat. Manag. 2014, 26, 307–320. [Google Scholar] [CrossRef]
- Holley, P. Bill Gates on dangers of artificial intelligence: ‘I don’t understand why some people are not concerned’. The Washington Post, 29 January 2015. [Google Scholar]
- Olson, D.L.; Birge, J.R.; Linton, J. Introduction to risk and uncertainty management in technological innovation. Technovation 2014, 34, 395–398. [Google Scholar] [CrossRef]
- Ceicyte, J.; Petraite, M. Networked Responsibility Approach for Responsible Innovation: Perspective of the Firm. Sustainability 2018, 10, 1720. [Google Scholar] [CrossRef]
- Ligardo-Herrera, I.; Gómez-Navarro, T.; Inigo, E.A.; Blok, V. Addressing Climate Change in Responsible Research and Innovation: Recommendations for Its Operationalization. Sustainability 2018, 10, 2012. [Google Scholar] [CrossRef]
- McMillan, R. AI Has Arrived, and That Really Worries the World’s Brightest Minds. Wired, 16 January 2015. [Google Scholar]
- Sparkes, M. Top scientists call for caution over artificial intelligence. The Telegraph, 13 January 2015. [Google Scholar]
- Russell, S.; Dewey, D.; Tegmark, M. Research Priorities for Robust and Beneficial Artificial Intelligence. AI Mag. 2015, 36, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Future of Life Institute (FLI) 2017b. Asilomar AI Principles. 2017. Available online: https://futureoflife.org/ai-principles/ (accessed on 19 July 2017).
- Ayer, A.J. Language, Truth, and Logic; Victor Gollancz Ltd.: London, UK, 1936. [Google Scholar]
- Mackie, J.L. Ethics: Inventing Right and Wrong; Pelican Books: London, UK, 1977. [Google Scholar]
- Asch, S.E. Effects of group pressure on the modification and distortion of judgments. In Groups, Leadership and Men; Guetzkow, H., Pittsburgh, P.A., Eds.; Carnegie Press: Lancaster, UK, 1951; pp. 177–190. [Google Scholar]
- Asch, S.E. Social Psychology; Prentice Hall Englewood: Cliffs, NJ, USA, 1952. [Google Scholar]
- Berns, G.; Chappelow, J.; Zink, C.F.; Pagnoni, G.; Martin-Skurski, M.E.; Richards, J. Neurobiological correlates of social conformity and independence during mental rotation. Biol. Psychiatry 2005, 58, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Janis, I.L. Groupthink: Psychological Studies of Policy Decisions and Fiascoes; Houghton Mifflin: Boston, MA, USA, 1982. [Google Scholar]
- Gisler, M.; Sornette, D.; Woodard, R. Innovation as a social bubble: The example of the Human Genome Project. Res. Policy 2011, 40, 1412–1425. [Google Scholar] [CrossRef]
- Hossenfelder, S. Science needs reason to be trusted. Nat. Phys. 2017, 13, 316–317. [Google Scholar] [CrossRef]
- Hodas, N.O.; Lerman, K. The simple rules of social contagion. Sci. Rep. 2014, 4, 4343. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.D.I.; Guillory, J.E.; Hancock, J.T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Nat. Acad. Sci. USA 2014, 111, 8788–8790. [Google Scholar] [CrossRef] [PubMed]
- Kimble, J.J. Rosie’s secret identity, or, how to debunk a Woozle by walking backward through the forest of visual rhetoric. Rhetor. Public Aff. 2016, 19, 245–274. [Google Scholar] [CrossRef]
- Deutsch, M.; Gerard, H.B. A study of normative and informational social influences upon individual judgment. J. Abnorm. Soc. Psychol. 1955, 51, 629–636. [Google Scholar] [CrossRef]
- Cole, D. Rational argument and prestige-suggestion as factors influencing judgement. Sociometry 1954, 17, 350–354. [Google Scholar] [CrossRef]
- Nadeau, R.; Cloutier, E.; Guay, J.-H. New Evidence about the Existence of a Bandwagon Effect in the Opinion Formation Process. Int. Polit. Sci. Rev. 1993, 14, 203–213. [Google Scholar] [CrossRef]
- Bartholomew, J. The awful rise of virtue signaling. The Spectator, 18 April 2015. [Google Scholar]
- Przybylski, A.K.; Murayama, K.; de Haan, C.R.; Gladwell, V. Motivational, emotional, and behavioral correlates of fear of missing out. Comp. Hum. Behav. 2013, 29, 1841–1848. [Google Scholar] [CrossRef]
- Hargraves, J. Mind Hacking: How to Change Your Mind for Good in 21 Days; Simon and Schuster Inc.: New York, NY, USA, 2016. [Google Scholar]
- Stilgoe, J.; Maynard, A. It’s time for some messy, democratic discussions about the future of AI. The Guardian, 1 February 2017. [Google Scholar]
- Amador, G.J.; Hu, D.L. Sticky Solution Provides Grip for the First Robotic Pollinator. Chem 2017, 2, 162–164. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Williams, M.; Waters, C.; Barnosky, A.; Palmesino, J.; Rönnskog, A.-S.; Edgeworth, M.; Neal, C.; Cearreta, A.; Ellis, E.; et al. Scale and diversity of the physical technosphere: A geological perspective. Anthropoc. Rev. 2017, 4, 9–22. [Google Scholar] [CrossRef]
- Future of Life Institute (FLI) 2017b. Beneficial AI 2017. Available online: https://futureoflife.org/bai-2017/ (accessed on 20 July 2017).
- Dijkstra, J.K.; Cillessen, A.H.N.; Lindenberg, S.; Veenstra, R. Basking in Reflected Glory and Its Limits: Why Adolescents Hang Out with Popular Peers. J. Res. Adolesc. 2011, 20, 942–958. [Google Scholar] [CrossRef]
- Lu, L.; Shen, C.; Williams, D. Friending your way up the ladder: Connecting massive multiplayer online game behaviors with offline leadership. Comp. Hum. Behav. 2014, 35, 54–60. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Peter, J.; Schouten, A.P. Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. CyberPsychol. Behav. 2006, 9, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, Y.; Li, X.; Zhou, Z. Perceived school climate and adolescent Internet addiction: The mediating role of deviant peer affiliation and the moderating role of effortful control. Comp. Hum. Behav. 2016, 60, 54–61. [Google Scholar] [CrossRef]
- Bevan, J.L.; Pfyl, J.; Barclay, B. Negative emotional and cognitive responses to being unfriended on Facebook: An exploratory study. Comput. Hum. Behav. 2012, 28, 1458–1464. [Google Scholar] [CrossRef]
- Bryer, R.A. Accounting for the “railway mania” of 1845—A great railway swindle? Account. Organ. Soc. 1991, 16, 439–486. [Google Scholar] [CrossRef]
- Hansen, P.G.; Hendricks, V.F.; Rendsvig, R.K. Infostorms. Metaphilosophy 2013, 44, 301–326. [Google Scholar] [CrossRef]
- Johnson, C. Readiness of the Road Network for Connected and Autonomous Vehicles; RAC Foundation: London, UK, 2017. [Google Scholar]
- Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T. Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6533–6545. [Google Scholar] [CrossRef]
- Edwards, C. Every road tells a story: Communication smart roads. Eng. Technol. 2017, 12, 64–67. [Google Scholar] [CrossRef]
- Jeschke, S.; Brecher, C.; Meisen, T.; Özdemir, D.; Eschert, T. Industrial Internet of Things and cyber manufacturing systems. In Industrial Internet of Things; Jeschke, S., Brecher, C., Song, H., Rawat, D., Eds.; Springer Series in Wireless Technology; Springer: Cham, Switzerland, 2017; pp. 3–19. [Google Scholar]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Zheng, P.; Sang, Z.; Zhong, R.Y.; Liu, Y.; Liu, C.; Mubarok, K.; Xu, X. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 2018, 13, 137–150. [Google Scholar] [CrossRef]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries; Boston Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Grill-Spector, K.; Henson, R.; Martin, A. Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn. Sci. 2005, 10, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Doidge, N. The Brain that Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science; Penguin: New York, NY, USA, 2007. [Google Scholar]
- Garrido, M.I.; Kilner, J.M.; Kiebel, S.J.; Stephan, K.E.; Baldeweg, T.; Friston, K.J. Repetition suppression and plasticity in the human brain. NeuroImage 2009, 48, 269–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotts, S.J.; Chow, C.C.; Martin, A. Repetition priming and repetition suppression: A case for enhanced efficiency through neural synchronization. Cogn. Neurosci. 2012, 3, 227–259. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.L. Neural reuse: A fundamental organizational principle of the brain. Behav. Brain Sci. 2010, 33, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, S.; Salvador, C.E. Culture embrained: Going beyond the nature-nurture dichotomy. Perspect. Psychol. Sci. 2017, 12, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Janis, I.L. Groupthink. Psychol. Today 1971, 5, 43–46. [Google Scholar]
- Stempfle, J. Overcoming organizational fixation: Creating and sustaining an innovation culture. J. Creat. Behav. 2011, 45, 116–129. [Google Scholar] [CrossRef]
- Brewer, M.B. The psychology of prejudice: Ingroup love and outgroup hate? J. Soc. Issues 1999, 55, 429–444. [Google Scholar] [CrossRef]
- Hewstone, M.; Rubin, M.; Willis, H. Intergroup bias. Annu. Rev. Psychol. 2006, 53, 575–604. [Google Scholar] [CrossRef] [PubMed]
- Jepperson, R. Institutions, institutional effects and institutionalism. In The New Institutionalism in Organizational Analysis; Powell, W.W., Paul, J.D., Eds.; University of Chicago Press: Chicago, IL, USA, 1991; pp. 143–163. [Google Scholar]
- Zucker, L.M. The role of institutionalization in cultural persistence. Am. Sociol. Rev. 1977, 42, 726–743. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Africa (ECA). Transformational Industrial Policy for Africa; Economic Commission for Africa: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Lyon, T.P.; Montgomery, A.W. The means and end of greenwash. Organ. Environ. 2015, 28, 223–249. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Africa (ECA). Greening Africa’s Industrialization; Economic Commission for Africa: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Ciccarelli, S.; White, J. Psychology, 4th ed.; Pearson Education, Inc.: London, UK, 2014; p. 62. [Google Scholar]
- Edwards, A. The Social Desirability Variable in Personality Assessment and Research; The Dryden Press: New York, NY, USA, 1957. [Google Scholar]
- Watson, D. Correcting for Acquiescent Response Bias in the Absence of a Balanced Scale: An Application to Class Consciousness. Sociol. Methods Res. 1992, 21, 52–88. [Google Scholar] [CrossRef]
- Fenn, J.; Raskino, M. Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time; Harvard Business School Press: Boston, MA, USA, 2008. [Google Scholar]
- Campani, M.; Vaglio, R. A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves. Scientometrics 2015, 103, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Steinert, M.; Leifer, L. Scrutinizing Gartner’s hype cycle approach. In Proceedings of the PICMET’10, Technology Management for Global Economic Growth, Phuket, Thailand, 18–22 July 2010; pp. 1–13. [Google Scholar]
- Colyvas, J. From divergent meanings to common practices: The early institutionalization of technology transfer at Stanford University. Res. Policy 2007, 36, 456–476. [Google Scholar] [CrossRef]
- Friedland, R.; Alford, R.R. Bringing Society Back in: Symbols, Practices, and Institutional Contradictions. In The New Institutionalism in Organizational Analysis; Powell, W.W., Paul, J.D., Eds.; University of Chicago Press: Chicago, IL, USA, 1991; pp. 232–266. [Google Scholar]
- Thornton, P.H.; Ocasio, W.; Lounsbury, M. The Institutional Logics Perspective: A New Approach to Culture, Structure and Process; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Beyer, M.A. ‘Big Data’ and extreme information processing and management. In Gartner Hype Cycle for Web and User Interaction Technologies; Phifer, G., Ed.; Gartner, Inc.: Stamford, CT, USA, 2011; pp. 23–25. [Google Scholar]
- Foley, J. Managing information—Infoglut—New tools can help tame an ocean of data. Information Week, 30 October 1995; 30–33. [Google Scholar]
- Lawrence, T.B.; Suddaby, R. Institutions and Institutional work. In Handbook of Organization Studies, 2nd ed.; Clegg, S., Hardy, C., Lawrence, T., Eds.; Sage: London, UK, 2006; pp. 215–254. [Google Scholar]
- Carson, T.L. Frankfurt and Cohen on bullshit, bullshiting, deception, lying, and concern with the truth of what one says. Pragmat. Cogn. 2016, 23, 53–67. [Google Scholar] [CrossRef]
- Frankfurt, H.G. On Bullshit. Raritan 1986, 6, 81–100. [Google Scholar]
- Gavrilets, S.; Vose, A. The dynamics of Machiavellian intelligence. Proc. Natl. Acad. Sci. USA 2006, 103, 16823–16828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijhuis, M. How to Call, B.S. On big data: A practical guide. The New Yorker, 3 June 2017. [Google Scholar]
- Shepperd, J.A.; Carroll, P.; Grace, J.; Terry, M. Exploring the causes of comparative optimism. Psychol. Belg. 2002, 42, 65–98. [Google Scholar]
- Abrams, D.; Rutland, A.; Cameron, L. The development of subjective group dynamics: Children’s judgments of normative and deviant in-group and out-group individuals. Child Dev. 2003, 74, 1840–1856. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, J.H.; Masten, C.L.; Borofsky, L.A.; Dapretto, M.; Fuligni, A.J.; Lieberman, M.D. Neural correlates of direct and reflected self-appraisals in adolescents and adults: When social perspective-taking informs self-perception. Child Dev. 2009, 80, 1016–1038. [Google Scholar] [CrossRef] [PubMed]
- Van Bavel, J.J.; Packer, D.J.; Cunningham, W.A. The neural substrates of in-group bias a functional magnetic resonance imaging investigation. Psychol. Sci. 2008, 19, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Hinduja, S.; Patchin, J.W. Bullying, cyberbullying, and suicide. Arch. Suicide Res. 2010, 14, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Mishna, F.; Cook, C.; Gadalla, T.; Daciuk, J.; Solomon, S. Cyber bullying behaviors among middle and high school students. Am. J. Orthopsychiatr. 2010, 80, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Zukerman, W.; Purcell, A. Brain’s synaptic pruning continues into your 20s. New Scientist, 17 August 2011. [Google Scholar]
- Ioannidis, J.P. Why most published research findings are false. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniadis, Z.; Tufano, F. The research reproducibility crisis and economics of science. Econ. J. 2017, 127, F200–F208. [Google Scholar] [CrossRef]
- Shun-Shin, M.J.; Francis, D.P. Why even more clinical research studies may be false: Effect of asymmetrical handling of clinically unexpected values. PLoS ONE 2013, 8, e65323. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, R.C.; Hathaway, A.; Cunningham, J.A.; Vettese, L.C.; Wyatt, S.; Taylor, L. Does stage-of-change predict dropout in a culturally diverse sample of adolescents admitted to inpatient substance-abuse treatment? A test of the Transtheoretical Model. Addict. Behav. 2005, 30, 1834–1847. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.; Contento, I.R.; Prochaska, J.O. Computer-mediated intervention tailored on transtheoretical model stages and processes of change increases fruit and vegetable consumption among urban African-American adolescents. Am. J. Health Promot. 2008, 22, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.; Reed, D.; Weaver, L.; Westneat, S.; Rayens, M.K. The transtheoretical model of change in adolescents: Implications for injury prevention. J. Saf. Res. 2003, 34, 281–288. [Google Scholar] [CrossRef]
- Nigg, C.R. Explaining adolescent exercise behavior change: A longitudinal application of the transtheoretical model. Ann. Behav. Med. 2001, 23, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; DiClemente, C.C. The Transtheorectical Approach: Crossing Traditional Boundaries of Therapy; Dow-Jones-Irwin: Homewood, IL, USA, 1984. [Google Scholar]
- Robinson, L.M.; Vail, S.R. An integrative review of adolescent smoking cessation using the transtheoretical model of change. J. Pediatr. Health Care 2012, 26, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Benthin, A.; Slovic, P.; Severson, H. A psychometric study of adolescent risk perception. J. Adolesc. 1993, 16, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Eigsti, I.M.; Zayas, V.; Mischel, W.; Shoda, Y.; Ayduk, O.; Dadlani, M.B.; Davidson, M.C.; Aber, J.L.; Casey, B.J. Predicting cognitive control from preschool to late adolescence and young adulthood. Psychol. Sci. 2006, 17, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Sercombe, H. Risk, adaptation and the functional teenage brain. Brain Cogn. 2014, 89, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva, J.; Gibson, L.; Steinberg, L.; Piquero, A.; Fagan, J. Predictors and Consequences of Gang Membership: Comparing Gang Members, Gang Leaders, and Non–Gang-Affiliated Adjudicated Youth. J. Res. Adolesc. 2014, 24, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Franzese, R.J.; Covey, H.C.; Menard, S. Youth Gangs; Charles C Thomas Publisher: Springfield, IL, USA, 2016. [Google Scholar]
- Babiak, P.; Hare, R.D. Snakes In Suits: When Psychopaths Go To Work; Regan Books: New York, NY, USA, 2006. [Google Scholar]
- Lewitt, M. Investing in a kakistocracy. Forbes, 13 October 2016. [Google Scholar]
- Putt, A. Putt’s Law and the Successful Technocrat: How to Win in the Information Age; Wiley-IEEE Press: Hoboken, NJ, USA, 2006. [Google Scholar]
- Spinney, L. Snakes in Suits. New Sci. 2004, 183, 40–43. [Google Scholar]
- Sorge, A.; van Witteloostuijn, A. The (non) sense of organizational change: An essai about universal management hypes, sick consultancy metaphors, and healthy organization theories. Organ. Stud. 2004, 25, 1205–1231. [Google Scholar] [CrossRef]
- Sorge, A.; van Witteloostuijn, A. The (non) sense of organizational change continued: A rejoinder to Armbrüster and Glückler. Organ. Stud. 2007, 28, 1887–1892. [Google Scholar] [CrossRef]
- Furtner, M.R.; Maran, T.; Rauthmann, J.F. Dark leadership: The role of leaders’ dark triad personality traits. In Leader Development Deconstructed; Springer: Cham, Switzerland, 2017; pp. 75–99. [Google Scholar]
- Chen, R.S.; Sun, C.M.; Helms, M.M.; Jih, W.J. Role negotiation and interaction: An exploratory case study of the impact of management consultants on ERP system implementation in SMEs in Taiwan. Inf. Syst. Manag. 2008, 25, 159–173. [Google Scholar] [CrossRef]
- Howlett, M.; Migone, A. The permanence of temporary services: The reliance of Canadian federal departments on policy and management consultants. Can. Public Admin. 2013, 56, 369–390. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 2012, 13, 336–349. [Google Scholar] [CrossRef] [PubMed]
- McKie, R. Genetically modified crops are the key to human survival, says UK’s chief scientist. The Observer, 23 January 2011. [Google Scholar]
- Mather, R. The threats from genetically modified foods. Mother Earth News, April/May 2012. [Google Scholar]
- Marshall, M. Hidden Green Benefits of Genetically Modified Crops. New Scientist, 10 October 2012. Available online: https://www.newscientist.com/article/mg21628864-200-hidden-green-benefits-of-genetically-modified-crops/ (accessed on 9 May 2018).
- Abbott, R.; Bogenschneider, B. Should Robots Pay Taxes? Tax Policy in the Age of Automation. Harv. Law Policy Rev. 2018, 12. Available online: https://ssrn.com/abstract=2932483 (accessed on 9 May 2018). [CrossRef]
- Bostrom, N. Ethical issues in advanced artificial intelligence. In Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial Intelligence; Smit, I., Lasker, G.E., Eds.; International Institute for Advanced Studies in Systems Research and Cybernetics: Windsor, ON, Canada, 2003; Volume 2, pp. 12–17. [Google Scholar]
- Ariely, D. Predictably Irrational: The Hidden Forces that Shape our Decisions; HarperCollins: New York, NY, USA, 2008. [Google Scholar]
Hype Cycle Phase | Institutional Logic | Irresponsible Behavior |
---|---|---|
Technology trigger | Proof-of-concept tests of new technologies should be accompanied by hype stories | Acceptance of ridiculously overblown vague claims as being normal |
Peak of inflated expectations | Inflated expectations are normal, inevitable, and not negative | Normative conformity and informational conformity, joining bandwagons, reality distortion fields, and outgroup derogation, while making light of risks |
Trough of disillusionment | Troughs of disillusionment are normal, inevitable, and not negative | |
Slope of enlightenment | Understanding the potential of new technology must be proceeded by inflated expectations and troughs of disillusionment | Acceptance of inflated expectations and troughs of disillusionment as being normal, inevitable and not negative despite many previous of examples of fear of missing out (FoMO) and desire for virtue signaling not leading to successful outcomes |
Plateau of productivity | Productive technology implementations much be preceded by inflated expectations and troughs of disillusionment |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, S. Irresponsible Research and Innovation? Applying Findings from Neuroscience to Analysis of Unsustainable Hype Cycles. Sustainability 2018, 10, 3472. https://doi.org/10.3390/su10103472
Fox S. Irresponsible Research and Innovation? Applying Findings from Neuroscience to Analysis of Unsustainable Hype Cycles. Sustainability. 2018; 10(10):3472. https://doi.org/10.3390/su10103472
Chicago/Turabian StyleFox, Stephen. 2018. "Irresponsible Research and Innovation? Applying Findings from Neuroscience to Analysis of Unsustainable Hype Cycles" Sustainability 10, no. 10: 3472. https://doi.org/10.3390/su10103472
APA StyleFox, S. (2018). Irresponsible Research and Innovation? Applying Findings from Neuroscience to Analysis of Unsustainable Hype Cycles. Sustainability, 10(10), 3472. https://doi.org/10.3390/su10103472