e-Purchase Intention of Taiwanese Consumers: Sustainable Mediation of Perceived Usefulness and Perceived Ease of Use
Abstract
:1. Introduction
2. Conceptual Background and Hypotheses
2.1. Online Purchase Intention (INT)
2.2. Perceived Usefulness (PU)
2.3. Perceived Ease of Use (PEOU)
2.4. Conscientiousness (CON)
2.5. Openness to Experience (OPE)
2.6. Development of Hypotheses
2.7. Theoretical Framework and Hypotheses
3. Research Methodology
3.1. Sample Selection
3.2. Research Model
3.3. Data Analysis Procedure
4. Result and Findings
4.1. Demographic Characteristic
4.2. Test of Reliability and Validity
4.3. Confirmatory Factor Analysis (CFA)
4.4. Composite Reliability, Convergent and Discriminant Validity
4.5. Test of Hypotheses
5. Discussion, Conclusions and Managerial Implications
5.1. Discussion and Conclusions
5.2. Managerial Applications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rodríguez Bolívar, M.P. Policy makers’ perceptions on the transformational effect of Web 2.0 technologies on public services delivery. Electron. Commer. Res. 2017, 17, 227–254. [Google Scholar] [CrossRef]
- Wind, J.; Mahajan, V. Digital Marketing: The Challenge of Digital Marketing; John Wiley & Son: New York, NY, USA, 2001. [Google Scholar]
- Cummins, S.; Peltier, J.W.; Schibrowsky, J.A.; Nill, A. Consumer behavior in the online context. J. Res. Interact. Mark. 2014, 8, 169–202. [Google Scholar] [CrossRef]
- Choi, Y.; Jin, J. Is the Web Marketing Mix Sustainable in China? The Mediation Effect of Dynamic Trust. Sustainability 2015, 7, 13610–13630. [Google Scholar] [CrossRef]
- Internet World Stats. Internet Usage in Asia. Available online: http://www.internetworldstats.com/stats3.htm (accessed on 25 July 2017).
- International Telecommunication Union Statistics. Available online: http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 25 July 2017).
- Teresa, A.S.; Bonnie, D.B.; Yingjiao, X. Predicting purchase intention of a controversial luxury apparel product. J. Fash. Mark. Manag. Int. J. 2006, 10, 405–419. [Google Scholar] [CrossRef]
- Barkhi, R.; Wallace, L. The impact of personality type on purchasing decisions in virtual stores. Inf. Technol. Manag. 2007, 8, 313–330. [Google Scholar] [CrossRef]
- Brown, M.; Pope, N.; Voges, K. Buying or browsing? An exploration of shopping orientations and online purchase intention. Eur. J. Mark. 2003, 37, 1666–1684. [Google Scholar] [CrossRef]
- Korgaonkar, P.; Silverblatt, R.; Becerra, E. Hispanics and Patronage Preferences for Shopping from the Internet. J. Comput. Med. Commun. 2004, 9, 31–44. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.; Ahn, J. Risk-Focused E-Commerce Adoption Model: A Cross-Country Study. J. Glob. Inf. Manag. 2014, 7, 6–30. [Google Scholar] [CrossRef]
- Stafford, T.F.; Turan, A.; Raisinghani, M.S. International and Cross-Cultural Influences on Online Shopping Behavior. J. Glob. Inf. Manag. 2004, 7, 70–87. [Google Scholar] [CrossRef]
- Huang, M.H. Modeling Virtual Exploratory and Shopping Dynamics: An Environmental Psychology Approach. Inf. Manag. 2003, 41, 39–47. [Google Scholar] [CrossRef]
- Xia, L. Affect as Information: The Role of Affect in Consumer Online Behaviors. Adv. Consum. Res. 2002, 29, 93–100. [Google Scholar]
- Bhatnagar, A.; Ghose, S. A Latent Class Segmentation Analysis of E-Shoppers. J. Bus. Res. 2004, 57, 758–767. [Google Scholar] [CrossRef]
- Featherman, M.S.; Pavlou, P.A. Predicting E-Services Adoption: A Perceived Risk Facets Perspective. Int. J. Hum. Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef]
- Garbarino, E.; Strahilevitz, M. Gender Differences in the Perceived Risk of Buying Online and the Effects of Receiving a Site Recommendation. J. Bus. Res. 2004, 57, 768–775. [Google Scholar] [CrossRef]
- Huang, W.Y.; Schrank, H.; Dubinsky, A.J. Effect of Brand Name on Consumers’ Risk Perceptions of Online Shopping. J. Consum. Behav. 2004, 4, 40–50. [Google Scholar] [CrossRef]
- Novak, T.P.; Hoffman, D.L.; Yung, Y.F. Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Mark. Sci. 2000, 19, 22–42. [Google Scholar] [CrossRef]
- Wolfinbarger, M.; Gilly, M. Shopping Online for Freedom, Control and Fun. Calif. Manag. Rev. 2001, 43, 34–56. [Google Scholar] [CrossRef]
- Schiffman, L.G.; Kanuk, L.L. Consumer Behavior; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Zhou, T.; Lu, Y. The Effects of Personality Traits on User Acceptance of Mobile Commerce. Int. J. Hum. Comput. Interact. 2011, 27, 545–561. [Google Scholar] [CrossRef]
- Mount, M.K.; Barrick, M.R.; Scullen, S.M.; Rounds, J. Higher-Order Dimensions of the Big Five Personality Traits and the Big Six Vocational Interest Types. Pers. Psychol. 2005, 58, 447–478. [Google Scholar] [CrossRef]
- Myung, J.K.; Choi, Y.H.; Kim, J.D. Effects of CEOs’ Negative Traits on Corporate Social Responsibility. Sustainability 2017, 9, 543. [Google Scholar] [CrossRef]
- Chin, J.; Lin, S.C. A Behavioral Model of Managerial Perspectives Regarding Technology Acceptance in Building Energy Management Systems. Sustainability 2016, 8, 641. [Google Scholar] [CrossRef]
- Wei, X.; Jung, S. Understanding Chinese Consumers’ Intention to Purchase Sustainable Fashion Products: The Moderating Role of Face-Saving Orientation. Sustainability 2017, 9, 1570. [Google Scholar] [CrossRef]
- Greenberg, J.; Baron, R.A. Behavior in Organizations, 9th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Huang, J.H.; Yang, Y.C. The relationship between personality traits and online shopping motivations. Soc. Behav. Personal. 2010, 38, 673–680. [Google Scholar] [CrossRef]
- Pervin, L.A. The Science of Personality; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Hampson, S.E.; Goldberg, L.R. A first large-cohort study of personality-trait stability over the 40 years between elementary school and midlife. J. Personal. Soc. Psychol. 2006, 91, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.T., Jr.; McCrae, R.R. Domains and Facets: Hierarchical Personality Assessment Using the Revised NEO Personality Inventory. J. Personal. Assess. 1995, 64, 21–50. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Wong, W.K. The determinants of customer interactions with internet-enabled e-banking service. J. Oper. Res. Soc. 2008, 59, 1201–1210. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hsu, I.C.; Lin, C.C. Website attributes that increase consumer purchase intention: A conjoint analysis. J. Bus. Res. 2010, 63, 1007–1014. [Google Scholar] [CrossRef]
- Liao, Z.; Shi, X.; Wong, W.K. Consumer Perceptions of the Smartcard in Retailing: An Empirical Study. J. Int. Consum. Mark. 2012, 24, 252–262. [Google Scholar] [CrossRef]
- Liao, Z.; Shi, X.; Wong, W.K. Key determinants of sustainable smartcard payment. J. Retail. Consum. Serv. 2014, 21, 306–313. [Google Scholar] [CrossRef]
- Moslehpour, M.; Wong, W.K.; Aulia, C.K.; Pham, V.K. Repurchase intention of Korean beauty products among Taiwanese consumers. Asia Pac. J. Mark. Logist. 2017, 29, 569–588. [Google Scholar] [CrossRef]
- Moslehpour, M.; Wong, W.K.; Lin, Y.H.; Nguyen, T.L.H. Top purchase intention priorities of Vietnamese low cost carrier passengers: Expectations and satisfaction. Eurasian Bus. Rev. 2017, 1–19. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Pagani, M.; Goldsmith, R.E.; Hofacker, C.F. Extraversion as a stimulus for usergenerated content. J. Res. Interact. Mark. 2013, 7, 242–256. [Google Scholar] [CrossRef]
- Mohamed, N.; Hussein, R.; Zamzuri, N.H.A.; Haghshenas, H. Insights into individual’s online shopping continuance intention. Ind. Manag. Data Syst. 2014, 114, 1453–1476. [Google Scholar] [CrossRef]
- Son, J.; Sadachar, A.; Manchiraju, S.; Fiore, A.M.; Niehm, L.S. Consumer adoption of online collaborative customer co-design. J. Res. Interact. Mark. 2012, 6, 180–197. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 318–340. [Google Scholar] [CrossRef]
- Burton-Jones, A.; Hubona, G.S. Individual differences and usage behaviour: Revisiting a technology acceptance model assumption. Date Base Adv. Inf. Syst. 2005, 36, 58–77. [Google Scholar] [CrossRef]
- Szajna, B. Empirical Evaluation of the Revised Technology Acceptance Model. Manag. Sci. 1996, 42, 85–92. [Google Scholar] [CrossRef]
- Bruner, G.C.; Kumar, A. Explaining consumer acceptance of handheld Internet devices. J. Bus. Res. 2005, 58, 553–558. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Migliore, L.A. Relation between big five personality traits and Hofstede's cultural dimensions: Samples from the USA and India. Cross Cult. Manag. Int. J. 2011, 18, 38–54. [Google Scholar] [CrossRef]
- Banerjee, S. Influence of consumer personality, brand personality, and corporate personality on brand preference: An empirical investigation of interaction effect. Asia Pac. J. Mark. Logist. 2016, 28, 198–216. [Google Scholar] [CrossRef]
- Correa, T.; Hinsley, A.W.; de Zúñiga, H.G. Who interacts on the web?: The intersection of users’ personality and social media use. Comput. Hum. Behav. 2010, 26, 247–253. [Google Scholar] [CrossRef]
- Jadin, T.; Gnambs, T.; Batinic, B. Personality traits and knowledge sharing in online communities. Comput. Hum. Behav. 2013, 29, 210–216. [Google Scholar] [CrossRef]
- Tsao, W.C. Big Five personality traits as predictors of internet usage categories. Int. J. Manag. 2013, 30, 374–386. [Google Scholar]
- McElroy, J.C.; Hendrickson, A.R.; Townsend, A.M.; DeMarie, S.M. Dispositional factors in Internet use: Personality versus cognitive style. MIS Q. 2007, 31, 809–820. [Google Scholar] [CrossRef]
- Tuten, T.L.; Bosnjak, M. Understanding differences in web usage: The role of need for cognition and the Five Factor Model of personality. Soc. Behav. Personal. 2001, 29, 391–398. [Google Scholar] [CrossRef]
- Devaraj, S.; Easley, R.F.; Crant, J.M. How Does Personality Matter? Relating the Five-Factor Model to Technology Acceptance and Use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Punnoose, A.C. Determinants of Intention to Use e-Learning Based on the Technology Acceptance Model. J. Inf. Technol. Educ. Res. 2012, 11, 301–337. [Google Scholar]
- Svendsen, G.B.; Johnsen, J.A.K.; Almas-Sørensen, L.; Vittersø, J. Personality and technology acceptance: The influence of personality factors on the core constructs of the Technology Acceptance Model. Behav. Inf. Technol. 2013, 32, 323–334. [Google Scholar] [CrossRef]
- Shambare, R. Factors influencing the adoption of cell phone banking by South African students. Afr. J. Bus. Manag. 2013, 7, 30–38. [Google Scholar]
- Rosen, P.A.; Kluemper, D.H. The Impact of the Big Five Personality Traits on the Acceptance of Social Networking Website. In Proceedings of the Fourteenth Americas Conference on Information Systems (AMCIS), Toronto, ON, Canada, 14–17 August 2008; Volume 274. [Google Scholar]
- Kim, H.; Song, J. The quality of word-of-mouth in the online shopping mall. J. Res. Interact. Mark. 2010, 4, 376–390. [Google Scholar] [CrossRef]
- Yoon, H.S.; Barker Steege, L.M. Development of a quantitative model of the impact of customers' personality and perceptions on Internet banking use. J. Comput. Hum. Behav. 2013, 29, 1113–1141. [Google Scholar] [CrossRef]
- Aldás-Manzano, J.; Ruiz-Mafé, C.; Sanz-Blas, S. Exploring individual personality factors as drivers of M-shopping acceptance. Ind. Manag. Data Syst. 2009, 109, 739–757. [Google Scholar] [CrossRef]
- Özbeka, V.; Alnıaçık, Ü.; Kocc, F.; Akkılıç, E.; Kaş, E. The Impact of Personality on Technology Acceptance: A Study on Smart Phone Users. Procedia Soc. Behav. Sci. 2014, 150, 541–551. [Google Scholar] [CrossRef]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and utilitarian motivations for online retail shopping behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Marjan, M.; Mohammad, R.E.; Ali, S.B. Influencing VSN users’ purchase intentions: The roles of flow, trust and eWOM. J. Res. Interact. Mark. 2014, 8, 102–123. [Google Scholar] [CrossRef]
- Thorbjørnsen, H.; Pedersen, P.E.; Nysveen, H. This is who I am: Identity expressiveness and the theory of planned behavior. Psychol. Mark. 2007, 24, 763–785. [Google Scholar] [CrossRef] [Green Version]
- Bosnjak, M.; Galesic, M.; Tuten, T. Personality determinants of online shopping: Explaining online purchase intentions using a hierarchical approach. J. Bus. Res. 2007, 60, 597–605. [Google Scholar] [CrossRef]
- Mowen, J.C. The 3M Model of Motivation and Personality; Kluwer Academic Press: Norwell, MA, USA, 2000. [Google Scholar]
- Islam, J.U.; Rahman, Z.; Hollebeek, L.D. Personality factors as predictors of online consumer engagement: An empirical investigation. Mark. Intell. Plan. 2017, 35, 510–528. [Google Scholar] [CrossRef]
- Ramayah, T.; Lo, M.C. Impact of shared beliefs on “perceived usefulness” and “ease of use” in the implementation of an enterprise resource planning system. Manag. Res. News 2007, 30, 420–431. [Google Scholar] [CrossRef]
- Hayhoe, C.R.; Leach, L.J.; Turner, P.R.; Bruin, M.J.; Lawrence, F.C. Differences in Spending Habits and Credit Use of College Students. J. Consum. Aff. 2000, 34, 113–133. [Google Scholar] [CrossRef]
- National Statistics Republic of China. Available online: https://eng.stat.gov.tw (accessed on 15 November 2017).
- Blumenthal, S. Estimating population size with truncated sampling. Commun. Stat. Theory Methods 1977, 6, 297–308. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Vogt, W.P.; Johnson, R.B. The SAGE Dictionary of Statistics and Methodology a Nontechnical Guide for the Social Sciences, 5th ed.; Sage Publication: London, UK, 2015. [Google Scholar]
- Coakes, S.J.; Steed, L.; Ong, C. SPSS 16.0 for Windows: Analysis without Anguish; John Wiley and Sons: Milton, QLD, Australia, 2009. [Google Scholar]
- Chen, J.K.C.; Batchuluun, A.; Batnasan, J. Services innovation impact to customer satisfaction and customer value enhancement in airport. Technol. Soc. 2015, 43, 219–230. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonnet, D.G. Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Tong, X. A cross-national investigation of an extended technology acceptance model in the online shopping context. Int. J. Retail Distrib. Manag. 2010, 38, 742–759. [Google Scholar] [CrossRef]
- Arnold, M.J.; Reynolds, K.E. Hedonic shopping motivation. J. Retail. 2003, 79, 77–95. [Google Scholar] [CrossRef]
- Wong, W.K.; Chow, S.C.; Hon, T.Y.; Woo, K.Y. Empirical Study on Conservative and Representative Heuristics of Hong Kong Small Investors Adopting Momentum and Contrarian Trading Strategies. Int. J. Rev. Manag. 2018. forthcoming. [Google Scholar]
Variables | Items * | M | SD | Factor Loadings | Cronbach’s Alpha | |
---|---|---|---|---|---|---|
Model | CFA | |||||
CON | CON1 | 3.728 | 0.778 | 0.695 | 0.694 | 0.781 |
CON2 | 3.661 | 0.741 | 0.786 | 0.788 | ||
CON3 | 3.655 | 0.819 | 0.731 | 0.734 | ||
PU | PU1 | 3.769 | 0.936 | 0.772 | 0.773 | 0.823 |
PU2 | 3.687 | 0.902 | 0.732 | 0.740 | ||
PU3 | 3.873 | 0.875 | 0.84 | 0.831 | ||
PEOU | PEOU1 | 3.718 | 0.866 | 0.898 | 0.899 | 0.906 |
PEOU2 | 3.750 | 0.849 | 0.917 | 0.915 | ||
PEOU3 | 3.766 | 0.794 | 0.809 | 0.811 | ||
OPE | OPE1 | 3.392 | 0.879 | 0.787 | 0.787 | 0.885 |
OPE2 | 3.475 | 0.818 | 0.857 | 0.858 | ||
OPE3 | 3.415 | 0.833 | 0.940 | 0.939 | ||
OPE4 | 3.076 | 0.960 | 0.689 | 0.689 | ||
INT | INT1 | 3.994 | 0.866 | 0.547 | 0.551 | 0.640 |
INT2 | 3.915 | 0.924 | 0.853 | 0.856 | ||
Instrument Total | KMO p-value | 0.796 0.000 | 0.815 |
CR | AVE | MSV | Max R | Max r | PEOU | CON | OPE | PU | INT | |
---|---|---|---|---|---|---|---|---|---|---|
PEOU | 0.908 | 0.768 | 0.444 | 0.919 | 0.666 | 0.876 | ||||
CON | 0.783 | 0.547 | 0.099 | 0.938 | 0.315 | 0.315 | 0.740 | |||
OPE | 0.893 | 0.678 | 0.068 | 0.965 | 0.260 | 0.070 | 0.260 | 0.823 | ||
PU | 0.825 | 0.612 | 0.088 | 0.970 | 0.296 | 0.251 | 0.280 | 0.164 | 0.782 | |
INT | 0.701 | 0.518 | 0.444 | 0.973 | 0.666 | 0.666 | 0.211 | 0.038 | 0.296 | 0.720 |
Hypothesis | Description | Estimate | Results |
---|---|---|---|
H1 | CON→PU | 0.41 *** | Supported |
H2 | CON→PEOU | 0.39 *** | Supported |
H3 | CON→OPE | 0.32 *** | Supported |
H4 | PU→INT | 0.17 * | Supported |
H5 | PEOU→INT | 0.79 *** | Supported |
H6 | OPE→INT | −0.03 | Rejected |
H7 | CON→INT (with mediation of PU, PEOU, INT) | 0.01 | Rejected |
Indirect (ab) | Direct (c′) | Total (c) | Mediation | ||
---|---|---|---|---|---|
H8 | CON→(PU, PEOU, OPE)→INT | 0.31 *** | 0.01 (NS) | 0.32 *** | Supported |
H8a | CON→PU→INT | 0.09 ** | 0.2 (NS) | 0.29 ** | Supported |
H8b | CON→PEOU→INT | 0.30 *** | 0.01 (NS) | 0.31 * | Supported |
H8c | CON→OPE→INT | 0.01 (NS) | 0.27 ** | 0.28 ** | Rejected |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moslehpour, M.; Pham, V.K.; Wong, W.-K.; Bilgiçli, İ. e-Purchase Intention of Taiwanese Consumers: Sustainable Mediation of Perceived Usefulness and Perceived Ease of Use. Sustainability 2018, 10, 234. https://doi.org/10.3390/su10010234
Moslehpour M, Pham VK, Wong W-K, Bilgiçli İ. e-Purchase Intention of Taiwanese Consumers: Sustainable Mediation of Perceived Usefulness and Perceived Ease of Use. Sustainability. 2018; 10(1):234. https://doi.org/10.3390/su10010234
Chicago/Turabian StyleMoslehpour, Massoud, Van Kien Pham, Wing-Keung Wong, and İsmail Bilgiçli. 2018. "e-Purchase Intention of Taiwanese Consumers: Sustainable Mediation of Perceived Usefulness and Perceived Ease of Use" Sustainability 10, no. 1: 234. https://doi.org/10.3390/su10010234
APA StyleMoslehpour, M., Pham, V. K., Wong, W.-K., & Bilgiçli, İ. (2018). e-Purchase Intention of Taiwanese Consumers: Sustainable Mediation of Perceived Usefulness and Perceived Ease of Use. Sustainability, 10(1), 234. https://doi.org/10.3390/su10010234