Predictive Role of NLR, dNLR, PLR, NLPR, and Other Laboratory Markers in Diagnosing SIRS in Premature Newborns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Inclusion and Exclusion Criteria
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Literature Findings
4.2. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.T.; et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am. J. Obstet. Gynecol. 2016, 215, 103.e1–103.e14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, G.; Liu, J.; Liu, M. Global, Regional, and National Incidence and Mortality of Neonatal Preterm Birth, 1990–2019. JAMA Pediatr. 2022, 176, 787–796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.A.; Jen, R.; Butler, A.; Lavoie, P.M. The developing human preterm neonatal immune system: A case for more research in this area. Clin. Immunol. 2012, 145, 61–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melville, J.M.; Moss, T.J. The immune consequences of preterm birth. Front. Neurosci. 2013, 7, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofer, N.; Müller, W.; Resch, B. Definitions of SIRS and sepsis in correlation with early and late onset neonatal sepsis. J. Pediatr. Intensive Care 2012, 1, 17–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bînă, A.M.; Sturza, A.; Iancu, I.; Mocanu, A.G.; Bernad, E.; Chiriac, D.V.; Borza, C.; Craina, M.L.; Popa, Z.L.; Muntean, D.M.; et al. Placental oxidative stress and monoamine oxidase expression are increased in severe preeclampsia: A pilot study. Mol. Cell. Biochem. 2022, 477, 2851–2861. [Google Scholar] [CrossRef] [PubMed]
- Mezgebu, T.; Ossabo, G.; Zekiwos, A.; Mohammed, H.; Demisse, Z. Neonatal sepsis and its associated factors among neonates admitted to the neonatal intensive care unit in Wachemo University Comprehensive Specialized Hospital, Southern Ethiopia, 2022. Front. Pediatr. 2023, 11, 1184205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dohou, A.M.; Buda, V.O.; Anagonou, S.; Van Bambeke, F.; Van Hees, T.; Dossou, F.M.; Dalleur, O. Healthcare Professionals’ Knowledge and Beliefs on Antibiotic Prophylaxis in Cesarean Section: A Mixed-Methods Study in Benin. Antibiotics 2022, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Meliț, L.E.; Mărginean, C.O.; Georgescu, A.; Duicu, C. Complications of Sepsis in Infant. A Case Report. J. Crit. Care Med. 2016, 2, 96–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nobile, S.; Di Sipio Morgia, C.; Vento, G. Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. J. Pers. Med. 2022, 12, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosu, L.M.; Prodan-Bărbulescu, C.; Maghiari, A.L.; Bernad, E.S.; Bernad, R.L.; Iacob, R.; Stoicescu, E.R.; Borozan, F.; Ghenciu, L.A. Current Trends in Diagnosis and Treatment Approach of Diabetic Retinopathy during Pregnancy: A Narrative Review. Diagnostics 2024, 14, 369. [Google Scholar] [CrossRef] [PubMed]
- Virzob, C.R.B.; Poenaru, M.; Morar, R.; Horhat, I.D.; Balica, N.C.; Prathipati, R.; Moleriu, R.D.; Toma, A.-O.; Juganaru, I.; Bloanca, V.; et al. Efficacy of Bilateral Cochlear Implantation in Pediatric and Adult Patients with Profound Sensorineural Hearing Loss: A Retrospective Analysis in a Developing European Country. J. Clin. Med. 2023, 12, 2948. [Google Scholar] [CrossRef] [PubMed]
- Raymond, S.L.; Rincon, J.C.; Wynn, J.L.; Moldawer, L.L.; Larson, S.D. Impact of Early-Life Exposures to Infections, Antibiotics, and Vaccines on Perinatal and Long-term Health and Disease. Front. Immunol. 2017, 8, 729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toma, C.L.; Dantes, E.; Oancea, C.; Fildan, A.P. Respiratory bronchiolitis—Associated interstitial lung disease—An unexpected form of idiopathic interstitial pneumonia in a young male. Rom. J. Morphol. Embriol. 2017, 58, 261–265. [Google Scholar]
- Raymond, S.L.; Stortz, J.A.; Mira, J.C.; Larson, S.D.; Wynn, J.L.; Moldawer, L.L. Immunological Defects in Neonatal Sepsis and Potential Therapeutic Approaches. Front. Pediatr. 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wynn, J.L.; Wong, H.R. Pathophysiology of Neonatal Sepsis. Fetal Neonatal Physiol. 2017, 2, 1536–1552.e10. [Google Scholar] [CrossRef] [PubMed Central]
- Dohou, A.M.; Buda, V.O.; Yemoa, L.A.; Anagonou, S.; Van Bambeke, F.; Van Hees, T.; Dossou, F.M.; Dalleur, O. Antibiotic Usage in Patients Having Undergone Caesarean Section: A Three-Level Study in Benin. Antibiotics 2022, 11, 617. [Google Scholar] [CrossRef]
- Poggi, C.; Ciarcià, M.; Miselli, F.; Dani, C. Prognostic accuracy of Neonatal SOFA score versus SIRS criteria in preterm infants with late-onset sepsis. Eur. J. Pediatr. 2023, 182, 4731–4739. [Google Scholar] [CrossRef]
- Wulff, A.; Montag, S.; Rübsamen, N.; Dziuba, F.; Marschollek, M.; Beerbaum, P.; Karch, A.; Jack, T. Clinical evaluation of an interoperable clinical decision-support system for the detection of systemic inflammatory response syndrome in critically ill children. BMC Med. Inform. Decis. Mak. 2021, 21, 62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Chen, J.; Zhan, X.; Li, L.; An, S.; Cai, G.; Yu, N. Clinical Value of Laboratory Biomarkers for the Diagnosis and Early Identification of Culture-Positive Sepsis in Neonates. J. Inflamm. Res. 2023, 16, 5111–5124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, B.; Ma, N.; Tang, Q.; Wei, T.; Yang, M.; Fu, H.; Hu, Z.; Liang, Y.; Yang, Z.; Zhong, R. Neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) were useful markers in assessment of inflammatory response and disease activity in SLE patients. Mod. Rheumatol. 2016, 26, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Enatescu, V.R.; Kalinovic, R.; Vlad, G.; Nussbaum, L.A.; Hogea, L.; Enatescu, I.; Marinescu, I.; Ifteni, P.; Simu, M.; Marian, C. The presence of peripheral inflammatory markers in patients with major depressive disorder, the associated symptoms profiles and the antidepressant efficacy of celecoxib. Farmacia 2020, 68, 483–491. [Google Scholar] [CrossRef]
- Ghobadi, H.; Mohammadshahi, J.; Javaheri, N.; Fouladi, N.; Mirzazadeh, Y.; Aslani, M.R. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Front. Med. 2022, 9, 916453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gobjila, C.; Craina, M.L.; Toader, D.O.; Petre, I.; Andor, C.B.; Tudor, A.; Onofrei, R.R.; Tamas, L.A.; Ilie, A.C. Pro-inflammatory Cytokines (IL6, IL8 and TNF-a) in the Evaluation of Ovarian Endometriosis Cyst. Rev. Chim. 2019, 70, 2944–2947. [Google Scholar] [CrossRef]
- Mu, Y.; Wang, H. Association of neutrophil to lymphocyte ratio with preterm necrotizing enterocolitis: A retrospective case-control study. BMC Gastroenterol. 2022, 22, 248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domnicu, A.E.; Boia, E.R.; Mogoi, M.; Manea, A.M.; Marcovici, T.M.; Mărginean, O.; Boia, M. The Neutrophil-to-Lymphocyte Ratio (NLR) Can Predict Sepsis’s Presence and Severity in Malnourished Infants-A Single Center Experience. Children 2023, 10, 1616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, T.; Dong, G.; Zhang, M.; Xu, Z.; Hu, Y.; Xie, B.; Wang, Y.; Xu, B. Association of Neutrophil-Lymphocyte Ratio and the Presence of Neonatal Sepsis. J. Immunol. Res. 2020, 2020, 7650713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sumitro, K.R.; Utomo, M.T.; Widodo, A.D.W. Neutrophil-to-Lymphocyte Ratio as an Alternative Marker of Neonatal Sepsis in Developing Countries. Oman Med. J. 2021, 36, e214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xin, Y.; Shao, Y.; Mu, W.; Li, H.; Zhou, Y.; Wang, C. Accuracy of the neutrophil-to-lymphocyte ratio for the diagnosis of neonatal sepsis: A systematic review and meta-analysis. BMJ Open 2022, 12, e060391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thakur, J.; Pahuja, S.K.; Pahuja, R. Performance Comparison of Systemic Inflammatory Response Syndrome with Logistic Regression Models to Predict Sepsis in Neonates. Children 2017, 4, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rana, D.; Hazarika, H.; Agarwal, A.; Gupta, R.; Kotru, M. Validation of Hematological Markers in Early Onset Neonatal Sepsis. Cureus 2022, 14, e26446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, L.; Gong, P.; Jia, X.; Zhang, X.; Li, X.; Zhang, Y.; Zhou, H.; Kang, Y. Comparison of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for the diagnosis of neonatal sepsis: A systematic review and meta-analysis. BMC Pediatr. 2023, 23, 334. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, J.; Zhang, L.; Yu, X.; Guo, J.; Li, Z. The Utility of Peripheral Blood Leucocyte Ratios as Biomarkers in Neonatal Sepsis: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 908362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables | SIRS (n = 53) | No SIRS (n = 83) | p-Value |
---|---|---|---|
Gestational age (mean ± SD) | 30.74 ± 2.88 | 32.28 ± 2.65 | 0.002 |
Gestational age, n (%) | 0.005 | ||
Extremely preterm (<28 weeks) | 9 (16.98%) | 5 (6.02%) | |
Very preterm (28–31 weeks) | 24 (45.28%) | 24 (28.92%) | |
Moderate to late preterm (32–36 weeks) | 20 (37.74%) | 54 (65.06%) | |
Gestational weight (mean ± SD) | 1505.19 ± 580.10 | 1838.13 ± 544.84 | 0.001 |
Gestational weight, n(%) | 0.045 | ||
Extremely low (<1000 g) | 12 (22.64%) | 7 (8.43%) | |
Very low (1000–1499 g) | 15 (28.30%) | 17 (20.48%) | |
Low (1500–2499 g) | 23 (43.40%) | 53 (63.86%) | |
Normal (>2500 g) | 3 (5.66%) | 6 (7.23%) | |
Gender, n (%) | 0.327 | ||
Male | 32 (60.38%) | 43 (51.81%) | |
Female | 21 (39.62%) | 40 (48.19%) | |
APGAR (mean ± SD) | 6.34 ± 1.70 | 6.54 ± 1.83 | 0.524 |
APGAR, n (%) | 0.031 | ||
≤7 | 19 (35.85%) | 16 (19.28%) | |
>7 | 34 (64.15%) | 67 (80.72%) | |
Newborn with GBS-positive mother | 16 (30.19%) | 0 (0.00%) | <0.001 |
Culture-positive sepsis | 21 (39.62%) | - | - |
Variables (Mean ± SD) | SIRS (n = 53) | No SIRS (n = 83) | p-Value |
---|---|---|---|
pH | 7.29 ± 0.14 | 7.31 ± 0.11 | 0.355 |
pCO2 | 45.58 ± 14.88 mmHg | 44.08 ± 11.82 mmHg | 0.516 |
pO2 | 24.30 ± 16.59 mmHg | 23.13 ± 13.02 mmHg | 0.647 |
Lactate | 3.38 ± 2.30 mmol/L | 2.87 ± 2.16 mmol/L | 0.193 |
WBC | 16.46 ± 10.37 × 109/L | 12.73 ± 3.09 × 109/L | 0.003 |
Neutrophils | 8.76 ± 7.32 × 109/L | 6.56 ± 3.07 × 109/L | 0.017 |
Lymphocytes | 6.88 ± 5.51 × 109/L | 4.86 ± 2.06 × 109/L | 0.003 |
Platelets | 207.92 ± 73.32 × 109/L | 260.83 ± 70.60 × 109/L | <0.001 |
CRP | 8.76 ± 12.99 mg/L | 4.29 ± 6.01 mg/L | 0.008 |
LDH | 816.08 ± 1714.42 U/L | 577.07 ± 263.08 U/L | 0.214 |
CK | 290.45 ± 179.75 U/L | 297.87 ± 182.96 U/L | 0.817 |
AST | 58.36 ± 32.21 U/L | 62.31 ± 34.09 U/L | 0.502 |
ALT | 11.36 ± 8.01 U/L | 12.87 ± 7.85 U/L | 0.279 |
NLR | 3.01 ± 4.63 | 1.81 ± 1.54 | 0.031 |
dNLR | 2.15 ± 1.27 | 1.31 ± 0.91 | <0.001 |
PLR | 73.46 ± 47.85 | 56.16 ± 63.93 | 0.093 |
NLPR | 0.29 ± 0.30 | 0.13 ± 0.10 | <0.001 |
Variables (Mean ± SD) | SIRS (n = 53) | No SIRS (n = 83) | p-Value |
---|---|---|---|
WBC | 15.23 ± 11.33 × 109/L | 10.01 ± 3.50 × 109/L | 0.001 |
Neutrophils | 9.21 ± 8.90 × 109/L | 5.35 ± 3.03 × 109/L | 0.001 |
Lymphocytes | 4.54 ± 4.16 × 109/L | 3.40 ± 1.50 × 109/L | 0.024 |
Platelets | 236.69 ± 106.54 × 109/L | 281.40 ± 96.68 × 109/L | 0.013 |
CRP | 9.96 ± 13.60 mg/L | 6.76 ± 9.27 mg/L | 0.105 |
LDH | 822.11 ± 1170.04 U/L | 590.78 ± 228.71 U/L | 0.082 |
CK | 301.25 ± 335.09 U/L | 271.19 ± 177.30 U/L | 0.496 |
AST | 80.47 ± 190.58 U/L | 56.61 ± 29.30 U/L | 0.264 |
ALT | 18.42 ± 22.56 U/L | 15.73 ± 12.34 U/L | 0.371 |
NLR | 4.59 ± 2.61 | 2.41 ± 4.38 | 0.001 |
dNLR | 2.81 ± 1.76 | 1.37 ± 1.05 | <0.001 |
PLR | 114.33 ± 163.02 | 71.72 ± 61.14 | 0.033 |
NLPR | 0.27 ± 0.48 | 0.07 ± 0.05 | 0.001 |
Laboratory Parameter | Timeframe | Best Cutoff Value | Sensitivity | Specificity | AUC | p-Value |
---|---|---|---|---|---|---|
NLR | 24 h | 8.69 | 52.77% | 83.47% | 0.522 | 0.043 |
dNLR | 24 h | 5.61 | 63.27% | 84.15% | 0.624 | 0.001 |
PLR | 24 h | 408.75 | 51.89% | 80.22% | 0.501 | 0.103 |
NLPR | 24 h | 0.24 | 75.85% | 86.70% | 0.634 | 0.001 |
NLR | 72 h | 4.40 | 62.64% | 91.57% | 0.616 | 0.004 |
dNLR | 72 h | 2.88 | 24.53% | 82.39% | 0.621 | 0.001 |
PLR | 72 h | 158.86 | 59.43% | 78.56% | 0.594 | 0.002 |
NLPR | 72 h | 0.17 | 77.74% | 95.18% | 0.692 | <0.001 |
Factors above the Best Cutoff | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
NLR | 1.33 | 1.04–3.17 | 0.004 |
dNLR | 2.04 | 1.18–5.33 | 0.001 |
PLR | 1.19 | 0.99–4.26 | 0.051 |
NLPR | 3.56 | 2.31–7.02 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantea, M.; Iacob, D.; Bortea, C.I.; Enatescu, I.; Barbos, V.; Prodan, M.; Tudor, R.; Cozma, G.V. Predictive Role of NLR, dNLR, PLR, NLPR, and Other Laboratory Markers in Diagnosing SIRS in Premature Newborns. Clin. Pract. 2024, 14, 1065-1075. https://doi.org/10.3390/clinpract14030084
Pantea M, Iacob D, Bortea CI, Enatescu I, Barbos V, Prodan M, Tudor R, Cozma GV. Predictive Role of NLR, dNLR, PLR, NLPR, and Other Laboratory Markers in Diagnosing SIRS in Premature Newborns. Clinics and Practice. 2024; 14(3):1065-1075. https://doi.org/10.3390/clinpract14030084
Chicago/Turabian StylePantea, Manuela, Daniela Iacob, Claudia Ioana Bortea, Ileana Enatescu, Vlad Barbos, Mihaela Prodan, Raluca Tudor, and Gabriel Veniamin Cozma. 2024. "Predictive Role of NLR, dNLR, PLR, NLPR, and Other Laboratory Markers in Diagnosing SIRS in Premature Newborns" Clinics and Practice 14, no. 3: 1065-1075. https://doi.org/10.3390/clinpract14030084
APA StylePantea, M., Iacob, D., Bortea, C. I., Enatescu, I., Barbos, V., Prodan, M., Tudor, R., & Cozma, G. V. (2024). Predictive Role of NLR, dNLR, PLR, NLPR, and Other Laboratory Markers in Diagnosing SIRS in Premature Newborns. Clinics and Practice, 14(3), 1065-1075. https://doi.org/10.3390/clinpract14030084