Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Analysis of Age and Gender
3.3. Analysis of Acute Phase Reactants and Enzymes
3.4. Analysis by Co-Morbidities
3.4.1. Analysis of Diabetes with/without Hypertension as Co-morbidity
3.4.2. Subgroup Analysis by Disease Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurutas, E. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J. Tackle the free radicals damage in COVID-19. Nitric Oxide 2020, 102, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.; Tran, K.; Reddy, S.; Malik, A. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, E.; Ivanova, E.; Grechko, A.; Wu, W.; Starodubova, A.; Orekhov, A. Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases 2021, 9, 17. [Google Scholar] [CrossRef]
- Cecchini, R.; Cecchini, A. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 2020, 143, 110102. [Google Scholar] [CrossRef]
- Gjyshi, O.; Bottero, V.; Veettil, M.; Dutta, S.; Singh, V.; Chikoti, L.; Chandran, B. Kaposi’s Sarcoma-Associated Herpesvirus Induces Nrf2 during De Novo Infection of Endothelial Cells to Create a Microenvironment Conducive to Infection. PLoS Pathog. 2014, 10, e1004460. [Google Scholar] [CrossRef]
- Fraternale, A.; Zara, C.; De Angelis, M.; Nencioni, L.; Palamara, A.; Retini, M.; Di Mambro, T.; Magnani, M.; Crinelli, R. Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int. J. Mol. Sci. 2021, 22, 3603. [Google Scholar] [CrossRef]
- Hosakote, Y.; Jantzi, P.; Esham, D.; Spratt, H.; Kurosky, A.; Casola, A.; Garofalo, R. Viral-mediated Inhibition of Antioxidant Enzymes Contributes to the Pathogenesis of Severe Respiratory Syncytial Virus Bronchiolitis. Am. J. Respir. Crit. Care Med. 2011, 183, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Landis, G.; Tower, J. Corrigendum to “Superoxide dismutase evolution and life span regulation”. Mech. Ageing Dev. 2005, 126, 907–908. [Google Scholar] [CrossRef]
- Noor, R.; Mittal, S.; Iqbal, J. Superoxide dismutase—Applications and relevance to human diseases. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2002, 8, 210–215. [Google Scholar]
- WHO. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. Available online: https://apps.who.int/iris/handle/10665/332196 (accessed on 13 January 2022).
- Guan, W.; Liang, W.; He, J.; Zhong, N. Cardiovascular comorbidity and its impact on patients with COVID-19. Eur. Respir. J. 2020, 55, 2001227. Available online: https://erj.ersjournals.com/content/early/2020/04/20/13993003.01227-2020 (accessed on 30 May 2020). [CrossRef] [PubMed]
- Iaccarino, G.; Grassi, G.; Borghi, C.; Ferri, C.; Salvetti, M.; Volpe, M. Age and Multimorbidity Predict Death among COVID-19 Patients. Hypertension 2020, 76, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Pecho-Silva, S.; Barboza, J.J.; Navarro-Solsol, A.C.; Rodriguez-Morales, A.J.; Bonilla-Aldana, K.; Panduro-Correa, V. SARS-CoV-2 Mutations and Variants: What do we know so far? Microbes Infect. Chemother. 2021, 1, e1256. [Google Scholar] [CrossRef]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef] [PubMed]
- Carubbi, F.; Salvati, L.; Alunno, A.; Maggi, F.; Borghi, E.; Mariani, R.; Mai, F.; Paoloni, M.; Ferri, C.; Desideri, G.; et al. Ferritin Is Associated with the Severity of Lung Involvement but Not with Worse Prognosis in Patients with COVID-19: Data from Two Italian Covid-19 Units. Sci. Rep. 2021, 11, 4863. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. SSRN Electron. J. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Ciccullo, A.; Borghetti, A.; Zileri Dal Verme, L.; Tosoni, A.; Lombardi, F.; Garcovich, M.; Biscetti, F.; Montalto, M.; Cauda, R.; Di Giambenedetto, S. Neutrophil-To-Lymphocyte Ratio and Clinical Outcome in COVID-19: A Report from the Italian Front Line. Int. J. Antimicrob. Agents 2020, 56, 106017. [Google Scholar] [CrossRef]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor Outcomes in Patients with Zinc Deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Weßels, I.; Rolles, B.; John Slusarenko, A.; Rink, L. Zinc Deficiency as a Possible Risk Factor for Increased Susceptibility and Severe Progression of COVID-19. Br. J. Nutr. 2021, 127, 214–232. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of Antioxidants and Increased Oxidative Stress in COVID-19 Patients: A Cross-Sectional Comparative Study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021, 9, 205031212199124. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-Dimer as a Biomarker for Disease Severity and Mortality inCOVID-19 Patients: A Case Control Study. J. Intensiv. Care 2020, 8, 49. [Google Scholar] [CrossRef]
- Kappert, K.; Jahić, A.; Tauber, R. Assessment of Serum Ferritin as a Biomarker in COVID-19: Bystander or Participant? Insights by Comparison with Other Infectious and Non-Infectious Diseases. Biomarkers 2020, 25, 616–625. [Google Scholar] [CrossRef]
- Grau, E.; Tenías, J.M.; Soto, M.J.; Gutierrez, M.R.; Lecumberri, R.; Pérez, J.L.; Tiberio, G. D-Dimer Levels Correlate with Mortality in Patients with Acute Pulmonary Embolism: Findings from the RIETE Registry. Crit. Care Med. 2007, 35, 1937–1941. [Google Scholar] [CrossRef]
- Kumar, P.; Osahon, O.; Vides, D.B.; Hanania, N.; Minard, C.G.; Sekhar, R.V. Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants 2022, 11, 50. [Google Scholar] [CrossRef]
- Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) Activity in Patients with Diabetes Mellitus Type 2 Infected with Epstein-Barr Virus. PLoS ONE 2020, 15, e0230374. [Google Scholar] [CrossRef]
<60 Years | ≥60 Years | p Value (p< 0.05) * | Females | Males | Females | Males | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median (Range) N = 58 | Median (Range) N = 29 | Median (Range) N = 37 | Median (Range) N = 50 | Median (Range) | Median (Range) | ||||||
<60 Years N = 23 | ≥60 Years N = 14 | p < 0.05 * | < 60 Years N = 35 | ≥60 Years N = 15 | p < 0.05 * | ||||||
Age (15–85) | 40.5 (15–59) | 67 (60–85) | <0.0001 (yes) | 37 (15–85) | 49 (20–84) | 57 (15–59) | 65.5 (60–85) | <0.0001 * | 41 (20–58) | 67 (60–84) | <0.0001 * |
NLR | 4.48 (0.613–57.23) | 2.34 (1.08–24.28) | 0.1295 (ns) | 3.65 (1.18–57.23) | 4.11(0.613–32.92) | 4.29 (1.18–57.23) | 2.22 (1.16–9.58) | 0.0583 | 4.97 (0.613–32.93) | 2.46 (1.08–24.28) | 0.1806 |
CRP (mg/L) | 24.9 (3.5–284.8) | 46.1 (1.86–347.6) | 0.0063 (yes) | 30.7 (1.86–284.8) | 31.3 (2.9–347.6) | 25.5 (5–284.8) | 77.8 (5–235.9) | 0.0460 (yes) | 23.3 (5–177) | 37.1 (2.9–347.6) | 0.3094 |
ESR (mm/1st hr) | 50 (7–120) | 46 (2–120) | 0.5531 (ns) | 48 (2–120) | 48 (12–120) | 47 (7–120) | 49.5 (2–120) | 0.2529 | 52 (13–120) | 39 (20–120) | 0.7283 |
Ferritin (ng/mL) | 261 (7.9–2470) | 201 (40.8–2881) | 0.7547 (ns) | 223 (16.8–943 | 223 (7.9–2881) | 261 (16.8–840) | 201 (61.9–943) | 0.0179 (yes) | 277 (7.9–2470) | 201 (40.8–2881) | 0.9478 |
GSTp1 (ng/mL) | 7.915 (0.913–10) | 7.891 (2.666–10) | 0.9964 (ns) | 7.9 (0.913–10) | 7.891 (1.985–10) | 7.915 (0.913–10) | 7.891 (2.666–10) | 0.9625 | 7.93 (1.985–10) | 7.249 (4.258–10) | 0.9915 |
SOD3 (ng/mL) | 2.875 (0.064–8.23) | 0.999 (0.154–7.451) | 0.0113 (yes) | 2.54 (0.064–8.23) | 2.561 (0.081–8) | 2.875 (0.064–8.23) | 0.999 (0.324–7.451) | 0.2941 | 2.75 (0.081–8) | 1.25 (0.154–5.214) | 0.0235 (yes) * |
Iron (µg/dl) | 46 (13–445) | 47 (13–117) | 0.4684 (ns) | 47 (13–445) | 47 (13–219) | 46 (24–445) | 45 (13–117) | 0.8879 | 47 (13–219) | 47 (15–104) | 0.3093 |
Zinc (µg/mL) | 266 (229–324.1) | 263 (225 –454) | 0.6656 (ns) | 265.1 (225–400) | 260 (229–454) | 266 (241–324.1) | 267.9 (251–400) | 0.7780 | 266 (229–312) | 273.8 (231–454) | 0.3970 |
D-dimer (ng/mL) | 279.5 (158–3755) | 220 (137–938) | 0.2475 (ns) | 259 (161–1153) | 261 (137–3755) | 279.5 (195–1153) | 222 (161–938) | 0.6926 | 282 (158–3755) | 218 (137–509) | 0.4003 |
Cut Off Value * | ≥60 Years | <60 Years | |||||||
---|---|---|---|---|---|---|---|---|---|
Above | Below | Above | Below | ||||||
Female | Male | Female | Male | Female | Male | Female | Male | ||
GSTp1 (ng/mL) | 6.129 ng/mL | 11 | 11 | 3 | 4 | 21 | 25 | 2 | 10 |
SOD3 (ng/mL) | 4.2 ng/mL | 4 | 2 | 12 | 11 | 6 | 10 | 17 | 25 |
Iron (µg/dL) | 35.5 µg/mL | 11 | 13 | 3 | 2 | 14 | 24 | 9 | 11 |
Ferritin (ng/mL) | 204 ng/mL | 7 | 7 | 7 | 8 | 10 | 23 | 13 | 12 |
D-dimer (ng/mL) | 285 ng/mL | 5 | 4 | 9 | 11 | 14 | 13 | 9 | 22 |
CRP (mg/L) | 8.7 mg/mL | 12 | 19 | 2 | 4 | 17 | 26 | 5 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.S.; Hanumanram, G.; Suthakaran, P.K.; Mohanan, J.; Nair, L.D.V.; Rajendran, K. Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity. Clin. Pract. 2022, 12, 168-176. https://doi.org/10.3390/clinpract12020021
Kumar DS, Hanumanram G, Suthakaran PK, Mohanan J, Nair LDV, Rajendran K. Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity. Clinics and Practice. 2022; 12(2):168-176. https://doi.org/10.3390/clinpract12020021
Chicago/Turabian StyleKumar, Devika Sanil, Gowtham Hanumanram, Prasanna Karthik Suthakaran, Jagadeesan Mohanan, Lal Devayani Vasudevan Nair, and Kannan Rajendran. 2022. "Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity" Clinics and Practice 12, no. 2: 168-176. https://doi.org/10.3390/clinpract12020021
APA StyleKumar, D. S., Hanumanram, G., Suthakaran, P. K., Mohanan, J., Nair, L. D. V., & Rajendran, K. (2022). Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity. Clinics and Practice, 12(2), 168-176. https://doi.org/10.3390/clinpract12020021