COVID-19 Patient with Severe Comorbidity in Multimodal Acute Care Setting with Non-Invasive Medical Ventilation: A Clinical Outcome Report
Abstract
:1. Introduction
1.1. Background Information and Taxonomy
1.2. Burden of Disease
2. Aims
3. Methods
4. Case
4.1. Diagnoses Backed up by Medical Specialists
4.2. Treatment, Clinical Course, and Results
4.3. Parameters on Discharge
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, M. Outbreak of COVID-19: An emerging global pandemic threat. Biomed. Pharmacother. 2020, 129, 110499. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; Fawzy, M.; Elaswad, A.; Sobieh, A.; Kenney, S.P.; Shehata, A.A. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J. Clin. Med. 2020, 9, 1225. [Google Scholar] [CrossRef] [PubMed]
- Kluge, S.; Janssens, U.; Welte, T.; Weber-Carstens, S.; Marx, G.; Karagiannidis, C. German recommendations for critically ill patients with COVID-19. Med. Klin. Intensiv. Notfallmedizin 2020, 115, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollon, J.; Paganini, M.; Nava, C.R.; De Vita, N.; Vaschetto, R.; Ragazzoni, L.; Della Corte, F.; Barone-Adesi, F. Predicted Effects of Stopping COVID-19 Lockdown on Italian Hospital Demand. Disaster Med. Public Heal. Prep. 2020, 14, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Kleinpell, R.; Ferraro, D.M.; Maves, R.C.; Gill, S.L.K.; Branson, R.; Greenberg, S.; Doersam, J.K.; Raman, R.; Kaplan, L.J. Coronavirus Disease 2019 Pandemic Measures: Reports from a National Survey of 9,120 ICU Clinicians. Crit. Care Med. 2020, 48, e846–e855. [Google Scholar] [CrossRef] [PubMed]
- Palladino, R.; Bollon, J.; Ragazzoni, L.; Barone-Adesi, F. Excess Deaths and Hospital Admissions for COVID-19 Due to a Late Implementation of the Lockdown in Italy. Int. J. Environ. Res. Public Heal. 2020, 17, 5644. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.; Sheikh, A.; Sheikh, Z.; Dhami, S.; Sridhar, D. What’s the way out? Potential exit strategies from the COVID-19 lockdown. J. Glob. Health 2020, 10, 010370. [Google Scholar] [CrossRef] [PubMed]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19; published online ahead of print, 25 June 2020. SN Compr. Clin. Med. 2020, 2, 1–8. [Google Scholar]
- Graham, R.L.; Baric, R.S. Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission. J. Virol. 2009, 84, 3134–3146. [Google Scholar] [CrossRef] [Green Version]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses; Humana Press: New York, NY, USA, 2015; pp. 1–23. [Google Scholar]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Genet. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Kiros, M.; Andualem, H.; Kiros, T.; Hailemichael, W.; Getu, S.; Geteneh, A.; Alemu, D.; Abegaz, W.E. COVID-19 pandemic: Current knowledge about the role of pets and other animals in disease transmission. Virol. J. 2020, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol. 2020, 92, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Alm, E.; Broberg, E.K.; Connor, T. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Eurosurveillance 2020, 25, 2001410. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. Jama 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Wang, M.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Hu, Y.; et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: A Retrospective Case Series Study. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Anyfanti, P.; Gavriilaki, M.; Lazaridis, A.; Douma, S.; Gkaliagkousi, E. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr. Hypertens. Rep. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); World Health Organization (WHO), 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed on 31 December 2020).
- Mak, I.W.C.; Chu, C.M.; Pan, P.C.; Yiu, M.G.C.; Chan, V.L. Long-term psychiatric morbidities among SARS survivors. Gen. Hosp. Psychiatry 2009, 31, 318–326. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.-W.; Tong, M.; Hui, D.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Gardner, P.J.; Moallef, P. Psychological impact on SARS survivors: Critical review of the English language literature. Can. Psychol. Can. 2015, 56, 123–135. [Google Scholar] [CrossRef]
- McDowell, I. Measuring Health: A Guide to Rating Scales and Questionnaires, 3rd ed.; Oxford University Press: New York, NY, USA, 2006; pp. 382–387. [Google Scholar]
- Haase, I.; Schwarz, A.; Burger, A.; Kladny, B. Der Funktionsfragebogen Hannover (FFbH) und die Subskala „körperliche Funktionsfähigkeit” aus dem SF-36 im Vergleich. Die Rehabil. 2001, 40, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Mostert, C.; Hentschker, C.; Voshaar, T.; Malzahn, J.; Schillinger, G.; Klauber, J.; Janssens, U.; Marx, G.; Weber-Carstens, S.; et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: An observational study. Lancet Respir. Med. 2020, 8, 853–862. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Liang, W.H.; He, J.X.; Zhong, N.S. Cardiovascular comorbidity and its impact on patients with COVID-19. Eur. Respir. J. 2020, 55, 2001227. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Choi, K.W.; Nin Chau, T.; Tsang, O.; Tso, E.; Chiu, M.C.; Tong, W.L.; Lee, P.O.; Ng, T.K.; Ng, W.F.; Lee, K.C.; et al. Outcomes and Prognostic Factors in 267 Patients with Severe Acute Respiratory Syndrome in Hong Kong. Ann. Intern. Med. 2003, 139, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Tan, J. Letter to the Editor: Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism 2020, 107, 154216. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.K.; Feng, Y.; Yuan, M.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, H.; Wang, L.; Xu, X.P.; et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet. Med. 2006, 23, 623–628. [Google Scholar] [CrossRef]
- Muller, L.M.A.J.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.M.; Rutten, G.E.H.M. Increased Risk of Common Infections in Patients with Type 1 and Type 2 Diabetes Mellitus. Clin. Infect. Dis. 2005, 41, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, K.; Morris, J.; Bridson, T.; Govan, B.; Rush, C.; Ketheesan, N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015, 144, 171–185. [Google Scholar] [CrossRef]
- Gupta, R.; Ghosh, A.; Singh, A.K.; Misra, A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 211–212. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; Macknight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. Can. Med. Assoc. J. 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The effect of frailty on survival in patients with COVID-19 (COPE): A multicentre, European, observational cohort study. Lancet Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef]
- Tehrani, S.; Killander, A.; Åstrand, P.; Jakobsson, J.; Gille-Johnson, P. Risk factors for death in adult COVID-19 patients: Frailty predicts fatal outcome in older patients. Int. J. Infect. Dis. 2021, 102, 415–421. [Google Scholar] [CrossRef]
- Romeyke, T.; Noehammer, E.; Stummer, H. Ensuring Quality in Interdisciplinary Inpatient Chronic Care. SAGE Open 2020, 10. [Google Scholar] [CrossRef] [Green Version]
Federal State | Total Number of Cases | Cases/100,000 Pop | 7-Day Incidence Per 100,000 Pop | Number of Deaths | Number of Deaths/100,000 Pop |
---|---|---|---|---|---|
Baden-Wuerttemberg | 273,993 | 2144 | 133 | 4789 | 43.1 |
Bavaria | 324,937 | 2476 | 163 | 6716 | 51.2 |
Berlin | 96,788 | 2638 | 126 | 1247 | 34.0 |
Brandenburg | 41,241 | 1635 | 177 | 937 | 37.2 |
Bremen | 13,559 | 1990 | 80 | 194 | 28.5 |
Hamburg | 36,417 | 1971 | 100 | 632 | 34.2 |
Hesse | 136,577 | 2172 | 132 | 2845 | 45.2 |
Mecklenburg-Western Pomerania | 11,997 | 746 | 89 | 171 | 10.6 |
Lower Saxony | 106,789 | 1336 | 80 | 1967 | 24.6 |
North Rhine-Westphalia | 393,185 | 2191 | 127 | 6552 | 36.5 |
Rhineland-Palatinate | 71,993 | 1759 | 110 | 1428 | 34.9 |
Saarland | 19,879 | 2014 | 113 | 432 | 43.8 |
Saxony | 132,356 | 3250 | 327 | 3139 | 77.1 |
Saxony-Anhalt | 29,200 | 1330 | 153 | 602 | 27.4 |
Schleswig-Holstein | 24,792 | 854 | 77 | 425 | 14.6 |
Thuringia | 42,034 | 1970 | 246 | 995 | 45.6 |
Total | 1,719,737 | 2068 | 140 | 33,071 | 39.8 |
Number of Patients | |
---|---|
Currently in ICU | 5639 |
- thereof with invasive ventilation | 3112 |
Discharged from ICU | 50,457 |
- thereof deaths | 13,103 |
Indicator | Value | Further Information/Associations with Multiple Comorbidities |
---|---|---|
Neutrophil, Tsd/µL | 7.20 | Norm: 1.9–6.1 Infections with bacteria, viruses, fungi or parasites can increase the value. |
Basophil, Tsd/µL | 0.16 | Norm: ≤0.08. Diseases with higher concentrations of lipides in the blood (Diabetes mellitus, Nephropathien, Myxedema) can be associated with higher levels of basophiles. |
Creatine, mg/dL | 2.35 | Norm: ≤1.30 (for individuals over 60). In cases where the norm is surpassed, the reasons are either acute kidney failure, chronic kidney disease or desiccosis (lack of water, dehydration). |
Lymphocyte absolute Tsd/µL | 1.05 | |
C-reactive protein (CPR), mg/L | 23.05 | Norm: ≤5. Elevated CRP levels are associated with bacterial and viralinfections, rheumatic diseases, coronary diseases, heart attacks, etc. |
Triglyceride, mg/dL | 215 | Norm: <150. Elevated values indicate metabolism disorders. Patients with diabetes, kidney diseases or overweight often have higher levels. |
Urea, mg/dL | 72 | Norm:10–50. Higher values in the blood serum indicate a reduced kidney function. |
Uric acid, mg/dL | 7.8 | Norm: ≤7. Higher levels indicate chronic kidney diseases, diabetes, lipid metabolism disorders. |
Lactate dehydrogenase, U/L | 294 | Norm: ≤250. Higher values indicate coronary heart diseases, myocarditis, pericarditis, cardiac arrhythmias, skeletal muscle diseases. |
TSH basal µIU/mL | 0.78 | |
Albumin % | 46.5% | Norm: 54.7–66.0. Indicates liver diseases, acute inflammations, lack of protein. |
Alpha-1-Globulin % | 5.6% | |
Alpha-2-Globulin % | 14.6% | Norm: 6.8–13.7. The values are usually higher for patients with nephrotic syndrome. |
Beta-Globulin % | 12.7% | |
Gamma globulin % | 20.6% | Norm: 10.6–19.8. Gamma-Globulin contains the major part of immunoglobulins (antibodies). A higher level indicates either a late stage of acute inflammation or subacute/chronic inflammations. |
Bilirubin mg/dL | 0.57 | |
Myelocytes % | 2.7% | Myelocytes are precursors of white blood cells and capable of cell division. There are no reference values as myelocytes usually only occur in bone marrow and not in the blood, or only in very small quantities. In cases where they do occur in the blood, they are either covered in the manual differential blood count or referred to with a comment. In the peripheral blood, they can indicate certain diseases like leukemia or severe inflammation. |
Chronic Kidney Disease Epidemiology Collaboration mL/min | 24 | Norm: ≥60; lower levels indicate renal failure (degree IV); values between 15–29 indicate a severe functional kidney damage. |
Treatment by specially instructed medical personnel, in collaboration with the hospital hygienist and/or the nurse/nurse for hospital hygiene (hygienist) under the supervision of the hospital hygienist taking into account current treatment and care standards |
Conducting special investigations to determine the settlement or infection with a non-multidrug-resistant pathogen requiring isolation |
Implementation of strict isolation (individual or cohort isolation) with your own sanitary area or bed chair (avoidance of cross infections). Isolation is maintained in accordance with the current guidelines of the Robert Koch Institute (RKI) |
Change of bed linen, clothing, and utensils for personal care (washcloths, etc.) according to the current guidelines of the Robert Koch Institute (RKI), if necessary daily |
Protective measures when entering and leaving the room (room-related protective gown, gloves, if necessary, mouth–nose protection, infiltration, evacuation, etc.) |
Special hand disinfection measures before and after patient contact when dealing with spore-forming bacteria (alcoholic disinfection and hand washing) |
Daily disinfection of areas close to the patient according to the current guidelines of the Robert Koch Institute (RKI), possibly several times and/or using special area disinfectants |
At least daily floor disinfection and one-time final disinfection, if necessary, using special surface disinfectants |
Patient and family talks (possibly also talks with caregivers) about dealing with pathogens that are not multi-resistant and require isolation |
Specific measures for the treatment or eradication of the pathogen according to the current recommendations of the RKI |
Perform the following actions if necessary: |
Use of pathogen-specific chemotherapy drugs/antibiotics |
Implementation of the diagnostic and therapeutic measures under special spatial–organizational conditions (e.g., in the patient room instead of in the functional area; if in functional areas, then with subsequent final disinfection) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeyke, T.; Noehammer, E.; Stummer, H. COVID-19 Patient with Severe Comorbidity in Multimodal Acute Care Setting with Non-Invasive Medical Ventilation: A Clinical Outcome Report. Clin. Pract. 2021, 11, 81-91. https://doi.org/10.3390/clinpract11010013
Romeyke T, Noehammer E, Stummer H. COVID-19 Patient with Severe Comorbidity in Multimodal Acute Care Setting with Non-Invasive Medical Ventilation: A Clinical Outcome Report. Clinics and Practice. 2021; 11(1):81-91. https://doi.org/10.3390/clinpract11010013
Chicago/Turabian StyleRomeyke, Tobias, Elisabeth Noehammer, and Harald Stummer. 2021. "COVID-19 Patient with Severe Comorbidity in Multimodal Acute Care Setting with Non-Invasive Medical Ventilation: A Clinical Outcome Report" Clinics and Practice 11, no. 1: 81-91. https://doi.org/10.3390/clinpract11010013
APA StyleRomeyke, T., Noehammer, E., & Stummer, H. (2021). COVID-19 Patient with Severe Comorbidity in Multimodal Acute Care Setting with Non-Invasive Medical Ventilation: A Clinical Outcome Report. Clinics and Practice, 11(1), 81-91. https://doi.org/10.3390/clinpract11010013