Biomimetic Chromatography as a High-Throughput Tool for Screening Bioaccumulation and Acute Aquatic Toxicity of Pesticides
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytes
2.2. Biochromatographic Analysis
2.3. Toxicity Data
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BCF | fish bioconcentration factors |
| CHIIAM | chromatographic index of hydrophobicity of IAM |
| IAM | immobilized artificial membrane |
References
- Chen, X. The Role of Modern Agricultural Technologies in Improving Agricultural Productivity and Land Use Efficiency. Front. Plant Sci. 2025, 16, 1675657. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Busetto, M.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Balzamo, S.; Calabretta, E.; Peleggi, M.; Dellavedova, P. Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations. Pollutants 2021, 1, 207–216. [Google Scholar] [CrossRef]
- Colzani, L.; Forni, C.; Clerici, L.; Barreca, S.; Dellavedova, P. Determination of Pollutants, Antibiotics, and Drugs in Surface Water in Italy as Required by the Third EU Water Framework Directive Watch List: Method Development, Validation, and Assessment. Environ. Sci. Pollut. Res. 2024, 31, 14791–14803. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P. Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. Separations 2021, 8, 179. [Google Scholar] [CrossRef]
- Madesh, S.; Gopi, S.; Sau, A.; Rajagopal, R.; Namasivayam, S.K.R.; Arockiaraj, J. Chemical Contaminants and Environmental Stressors Induced Teratogenic Effect in Aquatic Ecosystem—A Comprehensive Review. Toxicol. Rep. 2024, 13, 101819. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Tennekes, H.A. Toxicity and Hazard of Agrochemicals; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Constantine, L.A.; Burden, N.; Davidson, T.; Dolan, D.G.; Janer, G.; Häner, A.; Lee, M.R.; Maynard, S.K.; Nfon, E.; Perkins, A.N.; et al. Evaluation of the EMA Log Kow Trigger for Fish BCF Testing Based on Data for Several Human Pharmaceuticals. Regul. Toxicol. Pharmacol. 2024, 151, 105651. [Google Scholar] [CrossRef]
- Jonsson, C.M.; de Queiroz, S.C.d.N. Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia. Animals 2023, 13, 2748. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Yang, Y.; Wang, C.; Zhang, Q. Contamination Remediation and Risk Assessment of Four Typical Long-Residual Herbicides: A Timely Review. Sci. Total Environ. 2025, 997, 180169. [Google Scholar] [CrossRef]
- Jaeschke, H.; Ramachandran, A. Are New Approach Methodologies (NAMs) the Holy Grail of Toxicology? Toxicol. Sci. 2025, 208, 1–8. [Google Scholar] [CrossRef]
- Sheng, Q.-S.; Liu, B.; Wang, X.; Hua, L.; Zhao, S.-C.; Sun, X.-Z.; Li, M.-Y.; Zhang, X.-Y.; Wang, J.-X.; Hu, P.-L. Revolutionizing Toxicological Risk Assessment: Integrative Advances in New Approach Methodologies (NAMs) and Precision Toxicology. Arch. Toxicol. 2025, 99, 4697–4707. [Google Scholar] [CrossRef]
- Shavalieva, G.; Papadokonstantakis, S.; Peters, G. Prior Knowledge for Predictive Modeling: The Case of Acute Aquatic Toxicity. J. Chem. Inf. Model. 2022, 62, 4018–4031. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, M.; Nakao, K.; Shimizu, R.; Akamatsu, M. The Usefulness of an Artificial Membrane Accumulation Index for Estimation of the Bioconcentration Factor of Organophosphorus Pesticides. Chemosphere 2009, 74, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, C.; Makarouni, D.; Tsantili-Kakoulidou, A.; Ochsenkühn-Petropoulou, M.; Tsopelas, F. Immobilized Artificial Membrane Chromatography as a Tool for the Prediction of Ecotoxicity of Pesticides. Chemosphere 2019, 224, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.L. Biomimetic Chromatography—A Novel Application of the Chromatographic Principles. Anal. Sci. Adv. 2022, 3, 146–153. [Google Scholar] [CrossRef]
- Valkó, K.L. Lipophilicity and Biomimetic Properties Measured by HPLC to Support Drug Discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef]
- Valkó, K.L.; Nunhuck, S.B.; Hill, A.P. Estimating Unbound Volume of Distribution and Tissue Binding by in Vitro HPLC-based Human Serum Albumin and Immobilised Artificial Membrane-binding Measurements. J. Pharm. Sci. 2011, 100, 849–862. [Google Scholar] [CrossRef]
- Fernández-Pumarega, A.; Amézqueta, S.; Fuguet, E.; Rosés, M. Tadpole Toxicity Prediction Using Chromatographic Systems. J. Chromatogr. A 2015, 1418, 167–176. [Google Scholar] [CrossRef]
- Tsopelas, F.; Stergiopoulos, C.; Tsakanika, L.-A.; Ochsenkühn-Petropoulou, M.; Tsantili-Kakoulidou, A. The Use of Immobilized Artificial Membrane Chromatography to Predict Bioconcentration of Pharmaceutical Compounds. Ecotoxicol. Environ. Saf. 2017, 139, 150–157. [Google Scholar] [CrossRef]
- Bermúdez-Saldaña, J.M.; Escuder-Gilabert, L.; Medina-Hernández, M.J.; Villanueva-Camañas, R.M.; Sagrado, S. Modelling Bioconcentration of Pesticides in Fish Using Biopartitioning Micellar Chromatography. J. Chromatogr. A 2005, 1063, 153–160. [Google Scholar] [CrossRef]
- Stergiopoulos, C.; Tsopelas, F.; Ochsenkühn-Petropoulou, M.; Valko, K. Predicting the Acute Aquatic Toxicity of Organic UV Filters Used in Cosmetic Formulations. ADMET DMPK 2024, 12, 781–796. [Google Scholar] [CrossRef]
- Tsopelas, F.; Stergiopoulos, C.; Tsantili-Kakoulidou, A. Immobilized Artificial Membrane Chromatography: From Medicinal Chemistry to Environmental Sciences. ADMET DMPK 2018, 6, 225–241. [Google Scholar] [CrossRef]
- Stergiopoulos, C.; Tsopelas, F.; Valko, K. Prediction of hERG Inhibition of Drug Discovery Compounds Using Biomimetic HPLC Measurements. ADMET DMPK 2021, 9, 191–207. [Google Scholar] [CrossRef]
- Russo, G.; Capuozzo, A.; Barbato, F.; Irace, C.; Santamaria, R.; Grumetto, L. Cytotoxicity of Seven Bisphenol Analogues Compared to Bisphenol A and Relationships with Membrane Affinity Data. Chemosphere 2018, 201, 432–440. [Google Scholar] [CrossRef]
- Sobańska, A.W. Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms. Membranes 2022, 12, 1130. [Google Scholar] [CrossRef]
- Stokes, W.S. Animals and the 3Rs in Toxicology Research and Testing: The Way Forward. Hum. Exp. Toxicol. 2015, 34, 1297–1303. [Google Scholar] [CrossRef]
- Ball, N.; Bars, R.; Botham, P.A.; Cuciureanu, A.; Cronin, M.T.D.; Doe, J.E.; Dudzina, T.; Gant, T.W.; Leist, M.; van Ravenzwaay, B. A Framework for Chemical Safety Assessment Incorporating New Approach Methodologies within REACH. Arch. Toxicol. 2022, 96, 743–766. [Google Scholar] [CrossRef]
- Westmoreland, C.; Bender, H.J.; Doe, J.E.; Jacobs, M.N.; Kass, G.E.N.; Madia, F.; Mahony, C.; Manou, I.; Maxwell, G.; Prieto, P.; et al. Use of New Approach Methodologies (NAMs) in Regulatory Decisions for Chemical Safety: Report from an EPAA Deep Dive Workshop. Regul. Toxicol. Pharmacol. 2022, 135, 105261. [Google Scholar] [CrossRef]
- Schmeisser, S.; Miccoli, A.; von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New Approach Methodologies in Human Regulatory Toxicology–Not If, but How and When! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef] [PubMed]

| Pesticide | LC50 Fish | EC50 Daphnia | BCF | CHIIAM |
|---|---|---|---|---|
| Imidacloprid | 83 | 85 | 0.61 | 14.2 |
| Acetamiprid | 100 | 49.8 | N.A. | 13.4 |
| Atrazine | 4.5 | 85 | 4.3 | 27.4 |
| Azinphos-methyl | 0.02 | 0.0011 | 40 | 33.2 |
| Azoxystrobin | 0.47 | 0.23 | N.A. | 31.6 |
| Bifenthrin | 0.00026 | 0.00011 | 1703 | 54.4 |
| Boscalid | 2.7 | 5.33 | 107 | 38.0 |
| Carbaryl | 2.6 | 0.0064 | 44 | 28.80 |
| Chlorpyrifos | 0.025 | 0.0001 | 1374 | 48.1 |
| Diazinon | 3.1 | 0.0010 | 500 | 39.3 |
| Dicamba | 100 | 41 | 15 | 8.2 |
| Fenitrothion | 1.3 | 0.0086 | 29 | 38.1 |
| Fenpropathrin | 0.0023 | 0.00053 | 1100 | 48.6 |
| Fludioxonil | 0.23 | 0.4 | 336 | 43.5 |
| Imazapyr | 100 | 100 | 2.54 | −12.1 |
| Permethrin | 0.0125 | 0.0006 | 300 | 54.8 |
| Propiconazole | 2.6 | 10.2 | 116 | 38.7 |
| Tebuconazole | 4.4 | 2.79 | 78 | 39.5 |
| Terbuthylazine | 2.2 | 21.2 | 34 | 34.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ciura, K. Biomimetic Chromatography as a High-Throughput Tool for Screening Bioaccumulation and Acute Aquatic Toxicity of Pesticides. J. Xenobiot. 2026, 16, 4. https://doi.org/10.3390/jox16010004
Ciura K. Biomimetic Chromatography as a High-Throughput Tool for Screening Bioaccumulation and Acute Aquatic Toxicity of Pesticides. Journal of Xenobiotics. 2026; 16(1):4. https://doi.org/10.3390/jox16010004
Chicago/Turabian StyleCiura, Krzesimir. 2026. "Biomimetic Chromatography as a High-Throughput Tool for Screening Bioaccumulation and Acute Aquatic Toxicity of Pesticides" Journal of Xenobiotics 16, no. 1: 4. https://doi.org/10.3390/jox16010004
APA StyleCiura, K. (2026). Biomimetic Chromatography as a High-Throughput Tool for Screening Bioaccumulation and Acute Aquatic Toxicity of Pesticides. Journal of Xenobiotics, 16(1), 4. https://doi.org/10.3390/jox16010004
