Methylphenidate and Its Impact on Redox Balance and Behavior
Abstract
1. Introduction
2. Metabolism Influence
3. Methylphenidate and Oxidative Stress
4. Use Outside Clinical Indication
5. Methylphenidate and Adverse Reaction in Relation to Oxidative Stress
6. Methylphenidate and Mitochondrial Homeostasis
7. Nutritional and Gut–Brain Axis Influences on Redox Balance
8. Forensic Toxicology and Detection in Abuse Contexts
Matrices | Method | Linearity/Sensitivity | References |
---|---|---|---|
Hair | LC-MS/MS | Linearity: 1–100 pg/mg LOD: 0.5 pg/mg for MPH, 1 pg/mg for RA LOQ: 1 pg/mg for both analytes | [155] |
Hair | LC-MS | Linearity: 0.15–50 ng/mg LOD: 0.05 ng/mg LOQ: 0.15 ng/mg | [156] |
Hair | LC-HRMS | Linearity: 1–40 pg/mg LOD: 0.3 pg/mg LOQ: 1 pg/ng | [157] |
Blood Plasma Oral fluid | LC-MS/MS | Linearity: 0.2–30 ng/mL for MPH, 10–1500 ng/mL for RA in blood and plasma, and 1–500 ng/mL for MPH and 0.25–125 ng/mL for RA in oral fluid LOQ: 0.2 ng/mL for MPH and 5 ng/mL for RA in blood, 0.1 ng/mL for MPH and 2.5 ng/mL for RA in plasma and 0.1 ng/mL for MPH and 1 ng/mL for RA in oral fluid | [153] |
Blood | LC-MS | Linearity: 200–25,000 pg/mL LOQ: 200 pg/ml | [158] |
Blood | LC-MS/MS | Linearity: 0.2–500 ng/g LOQ: 0.5 ng/g | [154] |
Urine | LC-MS/MS | Linearity: 5–5000 μg/L LOD: 5 μg/L LOQ: 100 μg/L | [159] |
Oral fluid | LC-MS/MS | Linearity: 0.5–50 ng/mL LOQ: 0.5 ng/ | [160] |
9. Risks of Binge/Crash
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention deficit hyperactivity disorder |
DA | Dopamine |
NA | Norepinephrine |
5-HT | Serotonin |
DAT | Dopamine transporter |
NET | Norepinephrine transporter |
VMAT2 | Vesicular monoamine transporter 2 |
CES1 | carboxylesterase 1 |
ROS | Reactive oxygen species |
IR | Immediate release |
iNOS | Inducible nitric oxide synthase |
ER | Extended release |
8-OHdG | 8-hydroxy-2’-deoxyguanosine |
MDA | Malondialdehyde |
TBARS | Thiobarbituric acid reactive substances |
SOD | Superoxide dismutase |
CAT | Catalase |
GPx | Glutathione peroxidase |
MAO-B | Monoamine oxidase type B |
NMDA | N-methyl-D-aspartate |
AGEs | Advanced glycation end products |
RAGE | Receptors of advanced glycation end products |
MDMA | Methylenedioxymethamphetamine |
CK | Creatine-kinase |
GSH/GSSG | Reduced glutathione/oxidized glutathione ratio |
NF-kB | Nuclear factor kappa B |
NRF1 | Nuclear respiratory factor 1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
BUN | Blood urea nitrogen |
NOX2 | NADPH oxidase 2 |
PI3K | Phosphoinositide 3-kinase |
AKT | Protein kinase B |
DRP1 | Dynamin-related protein1 |
MFN2 | Mitofusin 2 |
PINK1 | PTEN-induced kinase 1 |
References
- Acosta, D.L.; Fair, C.N.; Gonzalez, C.M.; Iglesias, M.; Maldonado, N.; Schenkman, N.; Valle, S.M.; Velez, J.L.; Mejia, L. Nonmedical use of d-Amphetamines and Methylphenidate in Medical Students. Puerto Rico Health Sci. J. 2019, 38, 185–188. [Google Scholar] [PubMed]
- Shellenberg, T.P.; Stoops, W.W.; Lile, J.A.; Rush, C.R. An update on the clinical pharmacology of methylphenidate: Therapeutic efficacy, abuse potential and future considerations. Expert Rev. Clin. Pharmacol. 2020, 13, 825–833. [Google Scholar] [CrossRef] [PubMed]
- PEP19-5068 Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Available online: https://www.samhsa.gov/data/ (accessed on 26 August 2025).
- Rothman, R.B.; Baumann, M.H. Therapeutic Potential of Monoamine Transporter Substrates. Curr. Top. Med. Chem. 2006, 6, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Childress, A.C.; Komolova, M.; Sallee, F.R. An update on the pharmacokinetic considerations in the treatment of ADHD with long-acting methylphenidate and amphetamine formulations. Expert Opin. Drug Metab. Toxicol. 2019, 15, 937–974. [Google Scholar] [CrossRef] [PubMed]
- Sitte, H.H.; Freissmuth, M. Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 2015, 36, 41–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Vari, C.E. Psychoactive Drugs—From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants 2021, 10, 381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meririnne, E.; Kankaanpää, A.; Seppälä, T. Rewarding Properties of Methylphenidate: Sensitization by Prior Exposure to the Drug and Effects of Dopamine D1- and D2-Receptor Antagonists. J. Pharmacol. Exp. Ther. 2001, 298, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Arnsten, A.F.; Dudley, A.G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav. Brain Funct. 2005, 1, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stage, C.; Dalhoff, K.; Rasmussen, H.B.; Guski, L.S.; Thomsen, R.; Bjerre, D.; Ferrero-Miliani, L.; Madsen, M.B.; Jürgens, G. The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios. Basic Clin. Pharmacol. Toxicol. 2019, 125, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Her, L.; Zhu, H.-J. Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators. Drug Metab. Dispos. 2020, 48, 230–244, Erratum in Drug Metab. Dispos. 2020, 48, 1246. https://doi.org/10.1124/dmd.119.089680err. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, J.; Shi, J.; Thompson, B.R.; Smith, D.E.; Zhang, T.; Zhu, H.-J. Physiologically-Based Pharmacokinetic Modeling to Predict Methylphenidate Exposure Affected by Interplay Among Carboxylesterase 1 Pharmacogenetics, Drug-Drug Interactions, and Sex. J. Pharm. Sci. 2022, 111, 2606–2613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffin, W.C., III; Novak, A.J.; Middaugh, L.D.; Patrick, K.S. The interactive effects of methylphenidate and ethanol on ethanol consumption and locomotor activity in mice. Pharmacol. Biochem. Behav. 2010, 95, 267–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, D.Y.; Kim, C.; Shin, Y.; Park, R.W. Combined Methylphenidate and Selective Serotonin Reuptake Inhibitors in Adults with Attention-Deficit/Hyperactivity Disorder. JAMA Netw. Open 2024, 7, e2438398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.K. Alcohol Interaction with Cocaine, Methamphetamine, Opioids, Nicotine, Cannabis, and γ-Hydroxybutyric Acid. Biomedicines 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morton, W.A.; Stock, G.G. Methylphenidate Abuse and Psychiatric Side Effects. Prim. Care Companion J. Clin. Psychiatry 2000, 2, 159–164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Storebø, O.J.; Storm, M.R.O.; Ribeiro, J.P.; Skoog, M.; Groth, C.; Callesen, H.E.; Schaug, J.P.; Rasmussen, P.D.; Huus, C.-M.L.; Zwi, M.; et al. Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst. Rev. 2023, 3, CD009885. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, S.; Gramuglia, P.D.; Mosca, A.; Cavallotto, C.; Miuli, A.; Corkery, J.M.; Guirguis, A.; Schifano, F.; Martinotti, G. Methylphenidate abuse and misuse in patients affected with a psychiatric disorder and a substance use disorder: A systematic review. Front. Psychiatry 2024, 15, 1508732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Findling, R.L.; Dinh, S. Transdermal Therapy for Attention-Deficit Hyperactivity Disorder with the Methylphenidate Patch (MTS). CNS Drugs 2014, 28, 217–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coetzee, M.; Kaminer, Y.; Morales, A. Megadose Intranasal Methylphenidate (Ritalin) Abuse in Adult Attention Deficit Hyperactivity Disorder. Subst. Abus. 2002, 23, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Stoops, W. Reinforcing, subject-rated, and physiological effects of intranasal methylphenidate in humans: A dose–response analysis. Drug Alcohol Depend. 2003, 71, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Childress, A.; Stark, J.G.; McMahen, R.; Engelking, D.; Sikes, C. A Comparison of the Pharmacokinetics of Methylphenidate Extended-Release Orally Disintegrating Tablets with a Reference Extended-Release Formulation of Methylphenidate in Healthy Adults. Clin. Pharmacol. Drug Dev. 2017, 7, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Miklos, A.P.; Rusz, C.-M.; Bătrînu, M.-G.; Vari, C.E. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants 2022, 11, 572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Wickens, A.P. Ageing and the free radical theory. Respir. Physiol. 2001, 128, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Graille, M.; Wild, P.; Sauvain, J.-J.; Hemmendinger, M.; Canu, I.G.; Hopf, N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jîtcă, G.; Gáll, Z.; Jîtcă, C.-M.; Buț, M.-G.; Májai, E. Drug Repurposing of Metformin for the Treatment of Haloperidol-Related Behavior Disorders and Oxidative Stress: A Preliminary Study. Pharmaceutics 2024, 16, 403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hecker, M.; Wagner, A.H. Role of protein carbonylation in diabetes. J. Inherit. Metab. Dis. 2017, 41, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Gonos, E.S.; Kapetanou, M.; Sereikaite, J.; Bartosz, G.; Naparło, K.; Grzesik, M.; Sadowska-Bartosz, I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging 2018, 10, 868–901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foschiera, L.N.; Schmitz, F.; Wyse, A.T. Evidence of methylphenidate effect on mitochondria, redox homeostasis, and inflammatory aspects: Insights from animal studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 116, 110518. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.O.; Aguiar, M.R.; Aguiar, C.S.; Scaini, G.; Sachet, M.U.; Bernhardt, N.M.; Rezin, G.T.; Valvassori, S.S.; Quevedo, J.; Streck, E.L. Effect of Acute and Chronic Administration of Methylphenidate on Mitochondrial Respiratory Chain in the Brain of Young Rats. Neurochem. Res. 2010, 35, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.O.; Scaini, G.; Santos, P.M.; Sachet, M.U.; Bernhardt, N.M.; Rezin, G.T.; Valvassori, S.S.; Schuck, P.F.; Quevedo, J.; Streck, E.L. Inhibition of Mitochondrial Respiratory Chain in the Brain of Adult Rats After Acute and Chronic Administration of Methylphenidate. Neurochem. Res. 2009, 35, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Gomes, K.M.; Petronilho, F.C.; Mantovani, M.; Garbelotto, T.; Boeck, C.R.; Dal-Pizzol, F.; Quevedo, J. Antioxidant Enzyme Activities Following Acute or Chronic Methylphenidate Treatment in Young Rats. Neurochem. Res. 2007, 33, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- American Association of Neurological Surgeons (AANS); American Society of Neuroradiology (ASNR); Cardiovascular and Interventional Radiology Society of Europe (CIRSE); Canadian Interventional Radiology Association (CIRA); Congress of Neurological Surgeons (CNS); European Society of Minimally Invasive Neurological Therapy (ESMINT); European Society of Neuroradiology (ESNR); European Stroke Organization (ESO); Society for Cardiovascular Angiography and Interventions (SCAI); Society of Interventional Radiology (SIR); et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef] [PubMed]
- Comim, C.M.; Gomes, K.M.; Réus, G.Z.; Petronilho, F.; Ferreira, G.K.; Streck, E.L.; Dal-Pizzol, F.; Quevedo, J. Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder. Acta Neuropsychiatr. 2013, 26, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Motaghinejad, M.; Motevalian, M.; Shabab, B.; Fatima, S. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J. Neural Transm. 2016, 124, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 2000, 62, 649–671. [Google Scholar] [CrossRef] [PubMed]
- Fukami, G.; Hashimoto, K.; Koike, K.; Okamura, N.; Shimizu, E.; Iyo, M. Effect of antioxidant N-acetyl-l-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res. 2004, 1016, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.-B.; Mangeol, A.; Revel, M.-O.; Burgun, C.; Aunis, D.; Zwiller, J. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 2005, 48, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Delcambre, S.; Nonnenmacher, Y.; Hiller, K. Dopamine Metabolism and Reactive Oxygen Species Production. In Mitochondrial Mechanisms of Degeneration and Repair in Parkinson’s Disease; Buhlman, L., Ed.; Springer: Cham, Germany, 2016. [Google Scholar] [CrossRef]
- Thanos, P.K.; Robison, L.S.; Steier, J.; Hwang, Y.F.; Cooper, T.; Swanson, J.M.; Komatsu, D.E.; Hadjiargyrou, M.; Volkow, N.D. A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior. Pharmacol. Biochem. Behav. 2015, 131, 143–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, N.; Weedon, J.; Dow-Edwards, D.L. Oral methylphenidate improves spatial learning and memory in pre- and periadolescent rats. Behav. Neurosci. 2007, 121, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Chuhan, Y.S.; Taukulis, H.K. Impairment of single-trial memory formation by oral methylphenidate in the rat. Neurobiol. Learn. Mem. 2006, 85, 125–131. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc-Duchin, D.; Taukulis, H.K. Chronic oral methylphenidate administration to periadolescent rats yields prolonged impairment of memory for objects. Neurobiol. Learn. Mem. 2007, 88, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Bethancourt, J.A.; Camarena, Z.Z.; Britton, G.B. Exposure to oral methylphenidate from adolescence through young adulthood produces transient effects on hippocampal-sensitive memory in rats. Behav. Brain Res. 2009, 202, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Isaza, L.; Zárate-Guerrero, S.; Corredor, K.; Gómez-Fonseca, Á.; Escobar-Cornejo, G.; Cardenas, F.P. Role of environmental enrichment on social interaction, anxiety, locomotion, and memory in Wistar rats under chronic methylphenidate intake. Front. Behav. Neurosci. 2023, 17, 1251144, Erratum in Front. Behav. Neurosci. 2024, 18, 1431914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coelho-Santos, V.; Cardoso, F.L.; Leitão, R.A.; Fontes-Ribeiro, C.A.; Silva, A.P. Impact of developmental exposure to methylphenidate on rat brain’s immune privilege and behavior: Control versus ADHD model. Brain Behav. Immun. 2018, 68, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Raoofi, A.; Aliaghaei, A.; Abdollahifar, M.-A.; Boroujeni, M.E.; Javadinia, S.S.; Atabati, H.; Abouhamzeh, B. Long-term administration of high-dose methylphenidate-induced cerebellar morphology and function damage in adult rats. J. Chem. Neuroanat. 2020, 103, 101712. [Google Scholar] [CrossRef] [PubMed]
- Gaytan, O.; Ghelani, D.; Martin, S.; Swann, A.; Dafny, N. Dose response characteristics of methylphenidate on different indices of rats' locomotor activity at the beginning of the dark cycle. Brain Res. 1996, 727, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Horsley, R.; Cassaday, H.J. Methylphenidate can reduce selectivity in associative learning in an aversive trace conditioning task. J. Psychopharmacol. 2007, 21, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Scherer, E.B.; da Cunha, M.J.; Matté, C.; Schmitz, F.; Netto, C.A.; Wyse, A.T. Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol. Learn. Mem. 2010, 94, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Heyser, C.J.; Pelletier, M.; Ferris, J.S. The Effects of Methylphenidate on Novel Object Exploration in Weanling and Periadolescent Rats. Ann. N. Y. Acad. Sci. 2004, 1021, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Gomes, K.M.; Comim, C.M.; Valvassori, S.S.; Réus, G.Z.; Inácio, C.G.; Martins, M.R.; Souza, R.P.; Quevedo, J. Diurnal differences in memory and learning in young and adult rats treated with methylphenidate. J. Neural Transm. 2010, 117, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Wiley, M.D.; Poveromo, L.B.; Antapasis, J.; Herrera, C.M.; Guzmán, C.A.B. κ-Opioid System Regulates the Long-Lasting Behavioral Adaptations Induced by Early-Life Exposure to Methylphenidate. Neuropsychopharmacology 2008, 34, 1339–1350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlezon, W.A.; Mague, S.D.; Andersen, S.L. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol. Psychiatry 2003, 54, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.B.; Segan, A.T.; Sejour, J.; Mancebo, S.E. Early exposure to methylphenidate increases fear responses in an aversive context in adult rats. Dev. Psychobiol. 2007, 49, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, C.A.; Barrot, M.; Berton, O.; Wallace-Black, D.; Nestler, E.J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol. Psychiatry 2003, 54, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Motaghinejad, M.; Motevalian, M.; Ebrahimzadeh, A.; Larijani, S.F.; Khajehamedi, Z. Reduction of methylphenidate induced anxiety, depression and cognition impairment by various doses of venlafaxine in rat. Int. J. Prev. Med. 2015, 6, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitz, F.; Silveira, J.S.; Venturin, G.T.; Greggio, S.; Schu, G.; Zimmer, E.R.; Da Costa, J.C.; Wyse, A.T.S. Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox. Res. 2021, 39, 1830–1845. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Amber, S.; Zahid, S. Rosmarinus officinalis and Methylphenidate Exposure Improves Cognition and Depression and Regulates Anxiety-Like Behavior in AlCl3-Induced Mouse Model of Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 943163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mioranzza, S.; Costa, M.S.; Botton, P.H.S.; Ardais, A.P.; Matte, V.L.; Espinosa, J.; Souza, D.O.; Porciúncula, L.O. Blockade of adenosine A1 receptors prevents methylphenidate-induced impairment of object recognition task in adult mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zeise, M.L.; Espinoza, S.; González, A.; Cerda, F.S.; Nacarate, J.; Yáñez, C.G.; Morales, B. Methylphenidate improves cue navigation in the Morris water maze in rats. NeuroReport 2007, 18, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- McCabe, S.E.; Knight, J.R.; Teter, C.J.; Wechsler, H. Non-medical use of prescription stimulants among US college students: Prevalence and correlates from a national survey. Addiction 2004, 100, 96–106, Erratum in Addiction 2005, 100, 573. [Google Scholar] [CrossRef] [PubMed]
- Garnier-Dykstra, L.M.; Caldeira, K.M.; Vincent, K.B.; O’gRady, K.E.; Arria, A.M. Nonmedical Use of Prescription Stimulants During College: Four-Year Trends in Exposure Opportunity, Use, Motives, and Sources. J. Am. Coll. Health 2012, 60, 226–234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lucke, J.; Jensen, C.; Dunn, M.; Chan, G.; Forlini, C.; Kaye, S.; Partridge, B.; Farrell, M.; Racine, E.; Hall, W. Non-medical prescription stimulant use to improve academic performance among Australian university students: Prevalence and correlates of use. BMC Public Health 2018, 18, 1270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, R.; Chang, C.C.; Koto, M.; Geldenhuys, A.; Nichol, R.; Joubert, G. Non-medical use of methylphenidate among medical students of the University of the Free State. S. Afr. J. Psychiatry 2017, 23, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teter, C.J.; McCabe, S.E.; LaGrange, K.; A Cranford, J.; Boyd, C.J. Illicit Use of Specific Prescription Stimulants Among College Students: Prevalence, Motives, and Routes of Administration. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2006, 26, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ilieva, I.P.; Hook, C.J.; Farah, M.J. Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis. J. Cogn. Neurosci. 2015, 27, 1069–1089. [Google Scholar] [CrossRef] [PubMed]
- Massaad, C.A.; Klann, E. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxid. Redox Signal. 2011, 14, 2013–2054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davies, D.A.; Adlimoghaddam, A.; Albensi, B.C. Role of Nrf2 in Synaptic Plasticity and Memory in Alzheimer’s Disease. Cells 2021, 10, 1884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins, M.R.; Reinke, A.; Petronilho, F.C.; Gomes, K.M.; Dal-Pizzol, F.; Quevedo, J. Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res. 2006, 1078, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Azarova, I.; Polonikov, A.; Klyosova, E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 4738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corona, J.C. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 1039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sibony, R.W.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, A.C.; Kauer-Sant'ANna, M.; Frey, B.N.; Bond, D.J.; Kapczinski, F.; Young, L.T.; Yatham, L.N. Oxidative stress markers in bipolar disorder: A meta-analysis. J. Affect. Disord. 2008, 111, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Gubert, C.; Stertz, L.; Pfaffenseller, B.; Panizzutti, B.S.; Rezin, G.T.; Massuda, R.; Streck, E.L.; Gama, C.S.; Kapczinski, F.; Kunz, M. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J. Psychiatr. Res. 2013, 47, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Rowland, T.; Perry, B.I.; Upthegrove, R.; Barnes, N.; Chatterjee, J.; Gallacher, D.; Marwaha, S. Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: Systematic review and meta-analyses. Br. J. Psychiatry 2018, 213, 514–525. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Pu, C.; Zhang, Y.; Sun, Y.; Liao, Y.; Kang, Z.; Feng, X.; Yue, W. Oxidative Stress and Psychiatric Disorders: Evidence from the Bidirectional Mendelian Randomization Study. Antioxidants 2022, 11, 1386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sundar, V.; Ramasamy, T.; Doke, M.; Samikkannu, T. Psychostimulants influence oxidative stress and redox signatures: The role of DNA methylation. Redox Rep. 2022, 27, 53–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, C.D.; Kuhn, C.M.; Risher, M.L. The effects of peri-adolescent alcohol use on the developing hippocampus. Int. Rev. Neurobiol. 2021, 160, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.A.; Manzano, L.; Keist, M.W.; Ponomareva, O.; Roberts, A.J.; Roberto, M.; Mayfield, R.D. Cell-type brain-region specific changes in prefrontal cortex of a mouse model of alcohol dependence. Neurobiol. Dis. 2023, 190, 106361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nippert, K.E.; Rowland, C.P.; Vazey, E.M.; Moorman, D.E. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024, 260, 110114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGregor, I.S.; Gurtman, C.G.; Morley, K.C.; Clemens, K.J.; Blokland, A.; Li, K.M.; Cornish, J.L.; Hunt, G.E. Increased anxiety and “depressive” symptoms months after MDMA (“ecstasy”) in rats: Drug-induced hyperthermia does not predict long-term outcomes. Psychopharmacology 2003, 168, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-H.; Tu, J.-L.; Li, X.-H.; Hua, Q.; Liu, W.-Z.; Liu, Y.; Pan, B.-X.; Hu, P.; Zhang, W.-H. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav. Immun. 2021, 91, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflamm. 2022, 19, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caruso, G.; Di Pietro, L.; Caraci, F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023, 13, 505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, A.; Zhang, J. Neuroinflammation, memory, and depression: New approaches to hippocampal neurogenesis. J. Neuroinflamm. 2023, 20, 283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, N.; Bao, Y.; Zhao, H.; Kang, X.; Tai, X.; Shen, Y. Methylphenidate causes cytotoxicity on photoreceptor cells via autophagy. Hum. Exp. Toxicol. 2020, 40, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Desideri, E.; Filomeni, G.; Ciriolo, M.R. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 2012, 8, 1769–1781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linnekin, D.; Mou, S.; Deberry, C.S.; Weiler, S.R.; Keller, J.R.; Ruscetti, F.W.; Longo, D.L. Stem Cell Factor, the JAK-STAT Pathway and Signal Transduction. Leuk. Lymphoma 1997, 27, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Sanches, E.S.; Boia, R.; Leitão, R.A.; Madeira, M.H.; Fontes-Ribeiro, C.A.; Ambrósio, A.F.; Fernandes, R.; Silva, A.P. Attention-Deficit/Hyperactivity Disorder Animal Model Presents Retinal Alterations and Methylphenidate Has a Differential Effect in ADHD versus Control Conditions. Antioxidants 2023, 12, 937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of Inflammation, Oxidative Stress, and Vascular Dysfunction in Hypertension. BioMed Res. Int. 2014, 2014, 406960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohowetz, L.J.; Kraus, J.G.; Koulen, P. Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int. J. Mol. Sci. 2018, 19, 3362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Navarra, R.L.; Clark, B.D.; Zitnik, G.A.; Waterhouse, B.D. Methylphenidate and atomoxetine enhance sensory-evoked neuronal activity in the visual thalamus of male rats. Exp. Clin. Psychopharmacol. 2013, 21, 363–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Navarra, R.L.; Clark, B.D.; Gargiulo, A.T.; Waterhouse, B.D. Methylphenidate Enhances Early-Stage Sensory Processing and Rodent Performance of a Visual Signal Detection Task. Neuropsychopharmacology 2016, 42, 1326–1337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spencer, T.J.; Adler, L.A.; McGough, J.J.; Muniz, R.; Jiang, H.; Pestreich, L.; Adult ADHD Research Group. Efficacy and Safety of Dexmethylphenidate Extended-Release Capsules in Adults with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2007, 61, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.M.; Carvalho, F.; Bastos, M.L.; Carvalho, R.A.; Carvalho, M.; Remiao, F. Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases. Curr. Med. Chem. 2011, 18, 2272–2314. [Google Scholar] [CrossRef] [PubMed]
- Take, G.; Bahcelioglu, M.; Oktem, H.; Tunc, E.; Gözil, R.; Erdogan, D.; Calguner, E.; Helvacıoglu, F.; Giray, S.G.; Elmas, C. Dose-Dependent Immunohistochemical and Ultrastructural Changes After Oral Methylphenidate Administration in Rat Heart Tissue. Anat. Histol. Embryol. 2008, 37, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Rösler, M.; Kooij, J.J.S.; Ginsberg, Y.; Ramos-Quiroga, J.A.; Heger, S.; Berwaerts, J.; Dejonckheere, J.; van der Vorst, E.; Schäuble, B. Efficacy and safety of prolonged-release OROS methylphenidate in adults with attention deficit/hyperactivity disorder: A 13-week, randomized, double-blind, placebo-controlled, fixed-dose study. World J. Biol. Psychiatry 2011, 14, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bieś, R.; Fojcik, J.; Warchala, A.; Trędzbor, B.; Krysta, K.; Piekarska-Bugiel, K.; Krzystanek, M. The Risk of Methylphenidate Pharmacotherapy for Adults with ADHD. Pharmaceuticals 2023, 16, 1292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dadfarmay, S.; Dixon, J. A Case of Acute Cardiomyopathy and Pericarditis Associated with Methylphenidate. Cardiovasc. Toxicol. 2009, 9, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Xiao, L.; Remondino, A.; Sawyer, D.B.; Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J. Cell. Physiol. 2001, 189, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Loureiro-Vieira, S.; Costa, V.M.; Duarte, J.A.; Duarte-Araújo, M.; Gonçalves-Monteiro, S.; de Lourdes, B.M.; Carvalho, F.; Capela, J.P. Methylphenidate clinically oral doses improved brain and heart glutathione redox status and evoked renal and cardiac tissue injury in rats. Biomed. Pharmacother. 2018, 100, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Feng, W.; Zhang, D. Association of ADHD medications with the risk of cardiovascular diseases: A meta-analysis. Eur. Child Adolesc. Psychiatry 2018, 28, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Argibay, M.; Bürkner, P.-C.; Lichtenstein, P.; Zhang, L.; D’oNofrio, B.M.; Andell, P.; Chang, Z.; Cortese, S.; Larsson, H. Methylphenidate and Short-Term Cardiovascular Risk. JAMA Netw. Open 2024, 7, e241349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, H.Y.; Díaz, C.; Collantes, E.; Medrano, N.; Borobia, A.M.; Jara, P.; Ramírez, E. Liver Transplant in a Patient under Methylphenidate Therapy: A Case Report and Review of the Literature. Case Rep. Pediatr. 2015, 2015, 437298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roberts, S.M.; Harbison, R.D.; Roth, L.; James, R.C. Methyphenidate-induced hepatotoxicity in mice and its potentiation by β-adrenergic agonist drugs. Life Sci. 1994, 55, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Ikram, R. Methylphenidate-induced hepatotoxicity in rats and its reduction by buspirone. Pak. J. Pharm. Sci. 2018, 31, 741–745. [Google Scholar] [PubMed]
- Sharma, S.; Dutt, M.; Dharavath, R.N.; Kaur, T.; Kaur, N.; Chopra, K. Co-abuse of alprazolam augments the hepato-renal toxic effects of methylphenidate. Indian J. Pharmacol. 2020, 52, 216–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raoofi, A.; Delbari, A.; Mahdian, D.; Mojadadi, M.-S.; Amini, A.; Javadinia, S.S.; Dadashizadeh, G.; Ahrabi, B.; Ebrahimi, V.; Khaneghah, A.M. Toxicology of long-term and high-dose administration of methylphenidate on the kidney tissue—A histopathology and molecular study. Toxicol. Mech. Methods 2020, 30, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Salviano, L.H.M.S.; Linhares, M.I.; de Lima, K.A.; de Souza, A.G.; Lima, D.B.; Jorge, A.R.C.; da Costa, M.F.B.; Filho, A.J.M.C.; Martins, A.M.C.; Monteiro, H.S.A.; et al. Study of the safety of methylphenidate: Focus on nephrotoxicity aspects. Life Sci. 2015, 141, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Yeter, B.; Suleyman, Z.; Bulut, S.; Cicek, B.; Coban, T.A.; Demir, O.; Suleyman, H. Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Drug Chem. Toxicol. 2025, 15, 1078. [Google Scholar] [CrossRef] [PubMed]
- Seeley, S.; D’sOuza, M.; Stoops, T.; Rorabaugh, B. Short Term Methylphenidate Treatment Does Not Increase Myocardial Injury in the Ischemic Rat Heart. Physiol. Res. 2020, 69, 803–812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wakamatsu, A.; Nomura, S.; Tate, Y.; Shimizu, S.; Harada, Y. Effects of methylphenidate hydrochloride on the cardiovascular system in vivo and in vitro: A safety pharmacology study. J. Pharmacol. Toxicol. Methods 2009, 59, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, S.; Pond, B.B.; Pani, A.K.; Qu, C.; Jiao, Y.; Smeyne, R.J. Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice. PLoS ONE 2012, 7, e33693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, S.P.; Wang, D.-Y.; Min, M.-Y.; Fu, Y.-S. Long-term challenge of methylphenidate changes the neuronal population and membrane property of dopaminergic neuron in rats. Neurochem. Int. 2019, 122, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Robison, L.S.; Ananth, M.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J. Neural Transm. 2017, 124, 655–667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hammerness, P.; Petty, C.; Faraone, S.V.; Biederman, J. Do Stimulants Reduce the Risk for Alcohol and Substance Use in Youth With ADHD? A Secondary Analysis of a Prospective, 24-Month Open-Label Study of Osmotic-Release Methylphenidate. J. Atten. Disord. 2016, 21, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K.L.; Eng, T.; Lee, S.S. Stimulant Medication and Substance Use Outcomes: A meta-analysis. JAMA Psychiatry 2013, 70, 740–749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carneiro, P.; Ferreira, M.; Costa, V.M.; Carvalho, F.; Capela, J.P. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr. Res. Toxicol. 2024, 6, 100165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fagundes, A.O.; Rezin, G.T.; Zanette, F.; Grandi, E.; Assis, L.C.; Dal-Pizzol, F.; Quevedo, J.; Streck, E.L. Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int. J. Dev. Neurosci. 2006, 25, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Rieder, A.S.; Júnior, O.V.R.; Prauchner, G.R.K.; Wyse, A.T. Effects of methylphenidate on mitochondrial dynamics and bioenergetics in the prefrontal cortex of juvenile rats are sex-dependent. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 134, 111057. [Google Scholar] [CrossRef] [PubMed]
- Sanches, E.S.; Leitão, R.A.; Baptista, F.I.; Mota, S.I.; Caldeira, M.V.; Oliveira, P.J.; Ambrósio, A.F.; Fernandes, R.; Silva, A.P. Methylphenidate triggers retinal oxidative stress and mitochondrial dysfunction under physiological conditions but has beneficial effects in inflammatory settings. Neuropharmacology 2025, 279, 110623. [Google Scholar] [CrossRef] [PubMed]
- Sepehri, G.; Shirazpour, S.P.C.; Rostamzadeh, F.; Jafari, H.B.; Iranpour, M.M. Methylphenidate and high intensity interval training alone and in combination ameliorate the tramadol- induced cardiac side effects in male rats: The role of oxidative stress and mitochondria function. J. Cardiovasc. Pharmacol. 2025, 86, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.; Lagopoulos, J.; Villani, A. Gut–Brain Inflammatory Pathways in Attention-Deficit/Hyperactivity Disorder: The Role and Therapeutic Potential of Diet. Metabolites 2025, 15, 335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirvani-Rad, S.; Ejtahed, H.-S.; Marvasti, F.E.; Taghavi, M.; Sharifi, F.; Arzaghi, S.M.; Larijani, B. The Role of Gut Microbiota-Brain Axis in Pathophysiology of ADHD: A Systematic Review. J. Atten. Disord. 2022, 26, 1698–1710. [Google Scholar] [CrossRef] [PubMed]
- Gkougka, D.; Mitropoulos, K.; Tzanakaki, G.; Panagouli, E.; Psaltopoulou, T.; Thomaidis, L.; Tsolia, M.; Sergentanis, T.N.; Tsitsika, A. Gut microbiome and attention deficit/hyperactivity disorder: A systematic review. Pediatr. Res. 2022, 92, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Dam, S.A.; Mostert, J.C.; Szopinska-Tokov, J.W.; Bloemendaal, M.; Amato, M.; Arias-Vasquez, A. The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol. Clin. N. Am. 2019, 48, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; A Ederveen, T.H.; Naaijen, J.; Zwiers, M.P.; Boekhorst, J.; Timmerman, H.M.; Smeekens, S.P.; Netea, M.G.; Buitelaar, J.K.; Franke, B.; et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 2017, 12, e0183509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taş, E.; Ülgen, K.O. Understanding the ADHD-Gut Axis by Metabolic Network Analysis. Metabolites 2023, 13, 592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Visternicu, M.; Rarinca, V.; Burlui, V.; Halitchi, G.; Ciobică, A.; Singeap, A.-M.; Dobrin, R.; Mavroudis, I.; Trifan, A. Investigating the Impact of Nutrition and Oxidative Stress on Attention Deficit Hyperactivity Disorder. Nutrients 2024, 16, 3113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lange, K.W.; Lange, K.M.; Nakamura, Y.; Reissmann, A. Nutrition in the Management of ADHD: A Review of Recent Research. Curr. Nutr. Rep. 2023, 12, 383–394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Checa-Ros, A.; Jeréz-Calero, A.; Molina-Carballo, A.; Campoy, C.; Muñoz-Hoyos, A. Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021, 13, 249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elce, A.; Amato, F.; Zarrilli, F.; Calignano, A.; Troncone, R.; Castaldo, G.; Canani, R. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells. Benef. Microbes 2017, 8, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.D.; Myint, A.-M.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: An exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav. Brain Funct. 2010, 6, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333, 1109–1112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schleupner, H.V.; Carmichael, M.J. Attention-Deficit/Hyperactivity Disorder and the Gut Microbiota–Gut–Brain Axis: Closing Research Gaps through Female Inclusion in Study Design. Women 2022, 2, 231–253. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Z.; Li, G.; Li, G.; Liang, J. Two-sample Mendelian randomization analysis investigates causal associations between gut microbiota and attention deficit hyperactivity disorder. Front. Microbiol. 2023, 14, 1144851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Li, Z.; Fan, Y. Neurodevelopmental disorders and gut-brain interactions: Exploring the therapeutic potential of pycnogenol through microbial-metabolic-neural networks. Front. Cell. Infect. Microbiol. 2025, 15, 1601888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dvořáková, M.; Sivoňová, M.; Trebatická, J.; Škodáček, I.; Waczuliková, I.; Muchová, J.; Ďuračková, Z. The effect of polyphenolic extract from pine bark, Pycnogenol® on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redox Rep. 2006, 11, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková, M.; Ježová, D.; Blažíček, P.; Trebatická, J.; Škodáček, I.; Šuba, J.; Waczulíková, I.; Rohdewald, P.; Ďuračková, Z. Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): Modulation by a polyphenolic extract from pine bark (Pycnogenol®). Nutr. Neurosci. 2007, 10, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Q.; Zang, Y.; Zhao, Y.; Liu, N.; Wang, Y.; Xu, X.; Liu, L.; Mei, Q. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats. Int. J. Biol. Macromol. 2017, 99, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Astbury, S.; Le Roy, C.; Spector, T.D.; Valdes, A.M. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes 2020, 13, 1863133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Yang, C.; Meng, Y.; Dang, Y.; Yang, L.; Farouk, M.H. Ketogenic diet ameliorates attention deficit hyperactivity disorder in rats via regulating gut microbiota. PLoS ONE 2023, 18, e0289133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Josefsson, M.; Rydberg, I. Determination of methylphenidate and ritalinic acid in blood, plasma and oral fluid from adolescents and adults using protein precipitation and liquid chromatography tandem mass spectrometry—A method applied on clinical and forensic investigations. J. Pharm. Biomed. Anal. 2011, 55, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.; Rasmussen, H.B.; Linnet, K. The INDICES Consortium Enantioselective Determination of Methylphenidate and Ritalinic Acid in Whole Blood from Forensic Cases Using Automated Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2012, 36, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, J.; Shin, I.; Kang, S.; Choi, H.; Yang, W. Simultaneous determination of methylphenidate and ritalinic acid in hair using LC–MS/MS. Forensic Sci. Int. 2018, 294, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Marchei, E.; Muñoz, J.; García-Algar, Ó.; Pellegrini, M.; Vall, O.; Zuccaro, P.; Pichini, S. Development and validation of a liquid chromatography–mass spectrometry assay for hair analysis of methylphenidate. Forensic Sci. Int. 2008, 176, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Moeller, B.C.; Flores, L.; Clifford, A.; Alarcio, G.; Mosburg, M.; Arthur, R.M. Detection of Methylphenidate in Equine Hair Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2021, 26, 5798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandhi, A.; Beekman, C.; Parker, R.; Fang, L.; Babiskin, A.; Matta, M.K. Novel and Rapid LC–MS/MS Method for Quantitative Analysis of Methylphenidate in Dried Blood Spots. Bioanalysis 2018, 10, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Paterson, S.M.; Moore, G.A.; Florkowski, C.M.; George, P.M. Determination of methylphenidate and its metabolite ritalinic acid in urine by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 881–882, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Chinaglia, K.d.O.; Arantes, A.C.F.; da Cunha, K.F.; de Campos, E.G.; Kahl, J.M.M.; Rodrigues, L.C.; Costa, J.L. Development of analytical method for the determination of methylphenidate, the analog ethylphenidate and their metabolite ritalinic acid in oral fluid samples by micro-QuEChERS and liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1205, 123330. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Sawbridge, D.; George, V.; Teng, L.; Bailey, A.; Kitchen, I.; Li, J.-M. Chronic Cocaine-Induced Cardiac Oxidative Stress and Mitogen-Activated Protein Kinase Activation: The Role of Nox2 Oxidase. J. Pharmacol. Exp. Ther. 2009, 328, 99–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Motaghinejad, M.; Motevalian, M.; Shabab, B. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci. Lett. 2016, 619, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.-J.; Jeong, J.H.; Hwang, Y.; Sharma, N.; Dang, D.-K.; Nguyen, B.-T.; Nah, S.-Y.; Jang, C.-G.; Bing, G.; Nabeshima, T.; et al. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson’s disease. Arch. Pharmacal Res. 2021, 44, 668–688. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, S.; Cano-Cebrián, M.; Rius-Pérez, S.; Pérez, S.; Guerri, C.; Granero, L.; Zornoza, T.; Polache, A. Different brain oxidative and neuroinflammation status in rats during prolonged abstinence depending on their ethanol relapse-like drinking behavior: Effects of ethanol reintroduction. Drug Alcohol Depend. 2022, 232, 109284. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, C.; Acuña, T.; Quintanilla, M.E.; Pérez-Reytor, D.; Morales, P.; Karahanian, E. Fenofibrate Decreases Ethanol-Induced Neuroinflammation and Oxidative Stress and Reduces Alcohol Relapse in Rats by a PPAR-α-Dependent Mechanism. Antioxidants 2023, 12, 1758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juliano, V.A.L.; Albernaz-Mariano, K.A.; Covre, L.H.H.; Jucá, P.M.; Pereira, R.M.; Shigeo-De-Almeida, A.; Sampaio, L.L.; Duque, E.d.A.; Munhoz, C.D. Neurobiological intersections of stress and substance use disorders. Front. Neurosci. 2025, 19, 1548372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooper, W.O.; Habel, L.A.; Sox, C.M.; Chan, K.A.; Arbogast, P.G.; Cheetham, T.C.; Murray, K.T.; Quinn, V.P.; Stein, C.M.; Callahan, S.T.; et al. ADHD Drugs and Serious Cardiovascular Events in Children and Young Adults. N. Engl. J. Med. 2011, 365, 1896–1904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Yao, H.; Li, L.; Du Rietz, E.; Andell, P.; Garcia-Argibay, M.; D’oNofrio, B.M.; Cortese, S.; Larsson, H.; Chang, Z. Risk of Cardiovascular Diseases Associated with Medications Used in Attention-Deficit/Hyperactivity Disorder: A Systematic Re-view and Meta-analysis. JAMA Netw. Open 2022, 5, e2243597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Man, K.K.C.; Coghill, D.; Chan, E.W.; Lau, W.C.Y.; Hollis, C.; Liddle, E.; Banaschewski, T.; McCarthy, S.; Neubert, A.; Sayal, K.; et al. Association of Risk of Suicide Attempts with Methylphenidate Treatment. JAMA Psychiatry 2017, 74, 1048–1055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Zhu, N.; Sjölander, A.; Nourredine, M.; Li, L.; Garcia-Argibay, M.; Kuja-Halkola, R.; Brikell, I.; Lichtenstein, P.; D’ONofrio, B.M.; et al. ADHD drug treatment and risk of suicidal behaviours, substance misuse, accidental injuries, transport accidents, and criminality: Emulation of target trials. BMJ 2025, 390, e083658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, Z.; Lichtenstein, P.; Halldner, L.; D'ONofrio, B.; Serlachius, E.; Fazel, S.; Långström, N.; Larsson, H. Stimulant ADHD medication and risk for substance abuse. J. Child Psychol. Psychiatry 2013, 55, 878–885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weyns, A.-S.; Ahannach, S.; Van Rillaer, T.; De Bruyne, T.; Lebeer, S.; Hermans, N. Enhancing pediatric attention-deficit hyperactivity disorder treatment: Exploring the gut microbiota effects of French maritime pine bark extract and methylphenidate intervention. Front. Nutr. 2024, 11, 1422253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boonchooduang, N.; Louthrenoo, O.; Likhitweerawong, N.; Kunasol, C.; Thonusin, C.; Sriwichaiin, S.; Nawara, W.; Chattipakorn, N.; Chattipakorn, S.C. Impact of psychostimulants on microbiota and short-chain fatty acids alterations in children with attention-deficit/hyperactivity disorder. Sci. Rep. 2025, 15, 3034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aresti-Sanz, J.; Maho, W.; Rodrigues Pereira, R.; Permentier, H.; El Aidy, S. pH-dependent spontaneous hydrolysis rather than gut bacterial metabolism reduces levels of the ADHD treatment, Methylphenidate. bioRxiv 2020. [Google Scholar] [CrossRef]
Purpose of Use | Dose | Frequency | Route of Administration | References |
---|---|---|---|---|
Therapeutic for children/adults | 0.2–0.7 mg/kg 20–30 mg/kg | 2–3/day IR 1/day ER | Oral | [16,17,18] |
Therapeutic | 10, 15, 20, 30 mg | 1/9 h | Transdermal patch | [19] |
Abuse | 700 mg | Occasionally (for 3 days) | Intranasal | [20] |
Abuse | 10, 20, 30 mg | Repeated | Intranasal | [21] |
Abuse | 40–1000 mg | Repeated | Intravenous | [22] |
Route of Administration | Dose | Duration | Behavioral Assay | Effects | References |
---|---|---|---|---|---|
Drinking water | 20, 30, 60 mg/kg/day Dual doses: 4/10, 20/30, 30/60 mg/kg/day | 11 weeks | Open Field, Anxiety, Locomotor activity | Increase anxiolytic behavior, decreased exploratory behavior | [43] |
Oral | 3 mg/kg | 18 days | Radial Arm Maze | Improved spatial learning and memory | [44] |
Oral | 10 mg/kg | Acute | Object Recognition | Impaired memory | [45] |
Oral | 2, 3, 5 mg/kg | 11/21 days | Open Field, Object Recognition | Impaired recognition memory for rats treated with 3 or 5 mg/kg for 21 days | [46] |
Oral | 2, 5 mg/kg | Twice daily for 7 weeks | Open Field Novel Object Recognition Contextual fear | Does not produce cognitive impairments | [47] |
Oral | 2 mg/kg | 13 days | Elevated Plus Maze, Social interaction, Open Field, Object in place recognition | The environment modifies methylphenidate effects | [48] |
Oral | 1.5, 5 mg/kg | 28 days | Open Field | High doses induce anxiety behavior | [49] |
Oral | 20 mg/kg | 21 days | Rotarod | Decreased coordination | [50] |
Subcutaneous | 0.6, 2.5, 10, 40 mg/kg | Acute | Open Field | The 2.5, 10, and 40 mg/kg increased locomotor activity | [51] |
Subcutaneous | 1, 5 mg/kg | Prior aversive conditioning | Aversive conditioning | Increased learning | [52] |
Intraperitoneal | 2 mg/kg | 30 days | Open Field, Morris Water Maze | Impaired spatial memory and working memory | [53] |
Intraperitoneal | 5 mg/kg | Twice daily (for chronic treatment) for 7 days A single dose of 5 mg/kg | Object exploration in Circular Open Field | Alters recognition memory, no effect on locomotor activity | [54] |
Intraperitoneal | 2 mg/kg | 28 days | Inhibitory avoidance test, Continuous multiple inhibitory avoidance | The age and time of treatment can alter learning and memory | [55] |
Intraperitoneal | 2 mg/kg | Twice daily for 15 days | Sucrose Preference test, Elevated Plus Maze, Forced Swimming, Open Field | Decreases sucrose preference, causes anxiety, and stress | [56] |
Intraperitoneal | 2 mg/kg | Twice daily for 16 days | Place Conditioning, Forced Swimming, Open Field | High doses of cocaine given appeared less rewarding, causes depressive effects, reduced habituation | [57] |
Intraperitoneal | 2 mg/kg | Twice daily for 14 days | Fear conditioning | No effects during the fear acquisition, increased anxiety-like behavior | [58] |
Intraperitoneal | 2 mg/kg | Twice daily for 16 days | Play behavior, Sucrose Preference, Novel Environment, Elevated Plus Maze, Social interaction, Sexual behavior, Forced Swimming | Decreased response to sucrose, novel environment, and sexual behavior. Increased anxiety-like behavior | [59] |
Intraperitoneal | 10 mg/kg | 21 days | Open Field, Forced Swimming, Elevated Plus Maze, Tail suspension, Morris Water Maze | Increased depression and anxiety behavior. Decreased locomotor activity | [60] |
Intraperitoneal | 2 mg/kg | 21 days | Sucrose Preference | Increased anxiety behavior | [61] |
Intraperitoneal | 10 mg/kg | 5 days | Morris Water Maze, Forced Swimming, Open Field | Antidepressant effect and increased anxiety behavior | [62] |
Intraperitoneal | 5, 50 mg/kg | 15 days for 5 mg/kg Acute for 50 mg/kg | Inhibitory avoidance, Object recognition | Acute treatment with 5 mg/kg improved memory while acute treatment with 50 mg/kg decreased memory in avoidance test. High doses impaired memory recognition | [63] |
In food | 1 mg/kg | 17 weeks | Morris Water Maze | No change in visual learning | [64] |
Organ | Toxic Effects | Mechanism | References |
---|---|---|---|
Retina | Decreased photoreceptor viability (661 W cells), caspase activation, ROS (reactive oxygen species) accumulation, MDA (malondialdehyde) increase, dysregulated autophagy | Oxidative stress, apoptosis, autophagy | [95] |
Liver | Increased liver enzymes, liver failure | Metabolic disorders, enzymatic adaptation, oxidative stress | [113,114,115,116,117] |
Kidneys | Necrosis, inflammation, cellular infiltrate, decreased renal corpuscle volume and Bowman’s space, increased BUN (blood urea nitrogen) and creatinine; partially reversible with ATP | Inflammation, apoptosis, dysregulated autophagy, oxidative stress, NF-κB activation | [118,119] |
Heart | Interstitial edema, vascular congestion, fibrinous material; oxidative stress; at very high doses, minor changes in QT and blood pressure; ischemia–reperfusionischemia-reperfusion does not worsen lesions | Oxidative stress, inflammation, hemodynamic disturbances at high doses | [110,120,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jîtcă, G.; Mehelean, I.E.; Maier, A.N.; Jîtcă, C.-M. Methylphenidate and Its Impact on Redox Balance and Behavior. J. Xenobiot. 2025, 15, 157. https://doi.org/10.3390/jox15050157
Jîtcă G, Mehelean IE, Maier AN, Jîtcă C-M. Methylphenidate and Its Impact on Redox Balance and Behavior. Journal of Xenobiotics. 2025; 15(5):157. https://doi.org/10.3390/jox15050157
Chicago/Turabian StyleJîtcă, George, Ingrid Evelin Mehelean, Ana Natalia Maier, and Carmen-Maria Jîtcă. 2025. "Methylphenidate and Its Impact on Redox Balance and Behavior" Journal of Xenobiotics 15, no. 5: 157. https://doi.org/10.3390/jox15050157
APA StyleJîtcă, G., Mehelean, I. E., Maier, A. N., & Jîtcă, C.-M. (2025). Methylphenidate and Its Impact on Redox Balance and Behavior. Journal of Xenobiotics, 15(5), 157. https://doi.org/10.3390/jox15050157