Effects of Azithromycin on the Functioning of the Food Web in Freshwater Plankton
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis of Limnological Parameters
2.2. Experimental Design
2.3. Plankton Community Analyses
2.4. Statistical Analyses
3. Results
3.1. Limnological Parameters
3.2. Plankton Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; He, S.; Liu, X.; Hu, J. Biobegradation and Metabolic Mechanism of Cyprodinil by Strain Acinetobacter Sp. from a Contaminated-Agricultural Soil in China. Ecotoxicol. Environ. Saf. 2018, 159, 190–197. [Google Scholar] [CrossRef]
- Tong, L.; Eichhorn, P.; Pérez, S.; Wang, Y.; Barceló, D. Photodegradation of Azithromycin in Various Aqueous Systems under Simulated and Natural Solar Radiation: Kinetics and Identification of Photoproducts. Chemosphere 2011, 83, 340–348. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in Hospital Effluents: Occurrence, Contribution to Urban Wastewater, Removal in a Wastewater Treatment Plant, and Environmental Risk Assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [Google Scholar] [CrossRef]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial Pharmaceuticals in the Aquatic Environment—Occurrence and Environmental Implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, Y.; Wang, S.; Jia, J.; Ha, X.; Lu, Y. Floodplain Lake Response to Climate-Nutrient-Hydrological Pressure Revealed through Phytoplankton Community Succession over the Past Century. J. Hydrol. 2023, 623, 129838. [Google Scholar] [CrossRef]
- Vermillion Maier, M.L.; Tjeerdema, R.S. Azithromycin Sorption and Biodegradation in a Simulated California River System. Chemosphere 2018, 190, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Kadmi, Y. Optimization of Azithromycin Degradation: Integrating ANN-PSO Modeling, Intermediates Analysis, Identification, and Microbiological Assessment. J. Taiwan Inst. Chem. Eng. 2025, 166, 105086. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic Use in Aquaculture, Policies and Regulation, Health and Environmental Risks: A Review of the Top 15 Major Producers. Rev. Aquacult. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Golovko, O.; Kumar, V.; Fedorova, G.; Randak, T.; Grabic, R. Seasonal Changes in Antibiotics, Antidepressants/Psychiatric Drugs, Antihistamines and Lipid Regulators in a Wastewater Treatment Plant. Chemosphere 2014, 111, 418–426. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Ciorîță, A.; Soran, M.L.; Lung, I.; Kiss, B.; Ștefan, M.G.; Leucuța, D.C.; Gurzău, A.E.; Carpa, R.; Colobațiu, L.M.; et al. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics 2024, 13, 780. [Google Scholar] [CrossRef] [PubMed]
- Mackuľak, T.; Černanský, S.; Fehér, M.; Birošová, L.; Gál, M. Pharmaceuticals, Drugs, and Resistant Microorganisms—Environmental Impact on Population Health. Curr. Opin. Environ. Sci. Health 2019, 9, 40–48. [Google Scholar] [CrossRef]
- Almeida, A.R.M. Effects of Long-Term Exposure to an Antibiotic in Zebrafish: From the Organism to the Microbiome Level—ProQuest. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2021. [Google Scholar]
- Mao, Y.; Yu, Y.; Ma, Z.; Li, H.; Yu, W.; Cao, L.; He, Q. Azithromycin Induces Dual Effects on Microalgae: Roles of Photosynthetic Damage and Oxidative Stress. Ecotoxicol. Environ. Saf. 2021, 222, 112496. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Guo, P.; Peng, X.; Wen, K. Effect of Erythromycin Exposure on the Growth, Antioxidant System and Photosynthesis of Microcystis Flos-Aquae. J. Hazard. Mater. 2015, 283, 778–786. [Google Scholar] [CrossRef]
- Almeida, A.C.; Gomes, T.; Lomba, J.A.B.; Lillicrap, A. Specific Toxicity of Azithromycin to the Freshwater Microalga Raphidocelis subcapitata. Ecotoxicol. Environ. Saf. 2021, 222, 112553. [Google Scholar] [CrossRef]
- Yao, K.-S.; Zhou, P.-L.; Tan, L.-J.; Yang, H.-Q.; Qiao, L.-K.; Gao, F.-Z.; Liu, Y.-S.; Peng, F.-J.; Ying, G.-G.; Van Den Brink, P.J. Antibiotic-Induced Multi-Trophic Effects and Their Cascades in a Sub-Tropical Freshwater Ecosystem. J. Hazard. Mater. 2025, 492, 138281. [Google Scholar] [CrossRef] [PubMed]
- Oleskin, A.V.; Postnov, A.L.; Boyang, C. Impact of Biogenic Amines on the Growth of Green Microalgae. J. Pharm. Nutr. Sci. 2021, 11, 144–150. [Google Scholar] [CrossRef]
- Yan, N.; Long, S.; Xiong, K.; Zhang, T. Antibiotic Bioaccumulation in Zooplanktonfrom the Yelang Lake Reservoir of Anshun City, Southwest China. Pol. J. Environ. Stud. 2022, 31, 2367–2380. [Google Scholar] [CrossRef]
- Kagali, R.N.; Sakakura, Y.; Hagiwara, A. Locomotory Behaviour of Euryhaline Rotifer Brachionus Rotundiformis: The Potential Influence of Probiotics on Swimming Pattern and Speed. Aquac. Fish Fish. 2023, 3, 497–506. [Google Scholar] [CrossRef]
- Eckert, E.M.; Cancellario, T.; Bodelier, P.L.E.; Declerck, S.A.J.; Diwen, L.; Samad, S.; Winder, M.; Zhou, L.; Fontaneto, D. A Combination of Host Ecology and Habitat but Not Evolutionary History Explains Differences in the Microbiomes Associated with Rotifers. Hydrobiologia 2023, 850, 3813–3821. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Yang, L.; Duan, S.; Zhou, F.; Chen, J.; Liu, Y.; Zhang, B. Effects of Azithromycin on Feeding Behavior and Nutrition Accumulation of Daphnia magna under the Different Exposure Pathways. Ecotoxicol. Environ. Saf. 2020, 197, 110573. [Google Scholar] [CrossRef]
- Akbar, S.; Gu, L.; Sun, Y.; Zhou, Q.; Zhang, L.; Lyu, K.; Huang, Y.; Yang, Z. Changes in the Life History Traits of Daphnia Magna Are Associated with the Gut Microbiota Composition Shaped by Diet and Antibiotics. Sci. Total Environ. 2020, 705, 135827. [Google Scholar] [CrossRef]
- Callens, M.; De Meester, L.; Muylaert, K.; Mukherjee, S.; Decaestecker, E. The Bacterioplankton Community Composition and a Host Genotype Dependent Occurrence of Taxa Shape the Daphnia Magna Gut Bacterial Community. FEMS Microbiol. Ecol. 2020, 96, fiaa128. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, X.; Xue, X.; Zhang, L.; Zhu, X.; Huang, Y.; Chen, Y.; Yang, Z. Trade-off between Reproduction and Lifespan of the Rotifer Brachionus plicatilis under Different Food Conditions. Sci. Rep. 2017, 7, 15370. [Google Scholar] [CrossRef] [PubMed]
- Arreguin-Rebolledo, U.; Morales-Romero, L.A.; Arzate-Cárdenas, M.A.; Páez-Osuna, F.; Betancourt-Lozano, M.; Rico-Martínez, R. Contrasting Toxicity Response to a Mixture of Azithromycin and Ivermectin between a Freshwater and a Euryhaline Rotifer. Environ. Sci. Pollut. Res. 2024, 31, 49905–49915. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yang, Q.; Wang, X.; Torres, O.L.; Tang, S.; Zhang, S.; Guo, R.; Chen, J. Correlation between Antibiotic-Induced Feeding Depression and Body Size Reduction in Zooplankton (Rotifer, Brachionus calyciflorus): Neural Response and Digestive Enzyme Inhibition. Chemosphere 2019, 218, 376–383. [Google Scholar] [CrossRef]
- Macke, E.; Callens, M.; De Meester, L.; Decaestecker, E. Host-Genotype Dependent Gut Microbiota Drives Zooplankton Tolerance to Toxic Cyanobacteria. Nat. Commun. 2017, 8, 1608. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, S.; Tai, Y.; Tam, N.F.; Su, L.; Shi, Y.; Luo, B.; Tao, R.; Yang, Y.; Zhang, X. Evaluation of Factors Influencing Annual Occurrence, Bioaccumulation, and Biomagnification of Antibiotics in Planktonic Food Webs of a Large Subtropical River in South China. Water Res. 2020, 170, 115302. [Google Scholar] [CrossRef]
- Long, S.; Hamilton, P.B.; Wang, C.; Li, C.; Xue, X.; Zhao, Z.; Wu, P.; Gu, E.; Uddin, M.M.; Li, B.; et al. Bioadsorption, Bioaccumulation and Biodegradation of Antibiotics by Algae and Their Association with Algal Physiological State and Antibiotic Physicochemical Properties. J. Hazard. Mater. 2024, 468, 133787. [Google Scholar] [CrossRef]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- River Basin|ICPDR—International Commission for the Protection of the Danube River. Available online: https://www.icpdr.org/danube-basin/danube-river-basin (accessed on 16 July 2025).
- Mihaljević, M.; Getz, D.; Tadić, Z.; Živanović, B.; Gucunski, D.; Topić, J.; Kalinović, I.; Mikuska, J. Kopački Rit—Research Survey and Bibliography; Croatian Academy of Arts and Sciences: Zagreb, Croatia, 1999; p. 188. ISBN 953-154-343-7. (In Croatian Only). [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar] [CrossRef]
- SCOR-Unesco. Determination of Photosynthetic Pigments in Sea-Water. In Monographs on Oceanographic Methodology; UNESCO: Paris, France, 1966; Volume 1, p. 69. [Google Scholar]
- HRN EN 26777:1998 ISO; Water Quality—Determination of Nitrite—Molecular Absorption Spectrometric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- HRN ISO 7890-3:1998 ISO; Water Quality—Determination of Nitrate—Part 3: Spectrometric Method Using Sulfosalicylic Acid. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- HRN ISO 7150-1:1998 ISO; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- HRN ISO 6878:2008 ISO; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- HRN ISO 5663:2001 ISO; Water Quality—Determination of Total Nitrogen—Method After Mineralization with Selenium. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- Araujo, A.; McNair, J.N. Individual- and Population-Level Effects of Antibiotics on the Rotifers, Brachionus Calyciflorus and B. Plicatilis. Hydrobiologia 2007, 593, 185–199. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik: Mit 1 Tabelle Und 15 Abbildungen Im Text Und Auf 1 Tafel. Mitt. Int. Ver. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Croatian Waters. Available online: https://www.voda.hr/sites/default/files/2022-04/metodologija_uzorkovanja_laboratorijskih_analiza_i_odredivanja_omjera_ekoloske_kakvoce_bioloskih_elemenata_i_odluka.pdf (accessed on 2 June 2025).
- ASTM. Standard Guide for Conducting Terrestrial Plant Toxicity Tests. In Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 1998; Volume 11.05. E1963-98, Available online: https://www.scirp.org/reference/referencespapers?referenceid=1677103 (accessed on 18 July 2025).
- Karabin, A.; Karabin, A. Pelagic Zooplankton (Rotatoria & Crustacea) Variation in the Process of Lake Eutrophication 1. Structural and Quantitative Features. Ekol. Pol. 1986, 34, 567–616. [Google Scholar]
- Wallace, R.L.; Starkweather, P.L. Clearance Rates of Sessile Rotifers: In Vitro Determinations. Hydrobiologia 1985, 121, 139–144. [Google Scholar] [CrossRef]
- Gilbert, J.J. Food Niches of Planktonic Rotifers: Diversification and Implications. Limnol. Oceanogr. 2022, 67, 2218–2251. [Google Scholar] [CrossRef]
- Danube River Basin Management Plan; Update 2021. Available online: https://www.icpdr.org/sites/default/files/nodes/documents/drbmp_2021_final_hires.pdf (accessed on 2 June 2025).
- Nalley, J.O.; O’Donnell, D.R.; Litchman, E. Temperature Effects on Growth Rates and Fatty Acid Content in Freshwater Algae and Cyanobacteria. Algal Res. 2018, 35, 500–507. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Joniak, T. Zooplankton Diversity and Macrophyte Biometry in Shallow Water Bodies of Various Trophic State. Hydrobiologia 2016, 774, 39–51. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Zhang, C.; Mleczek, M.; Špoljar, M. Rotifers as Indicators of Trophic State in Small Water Bodies with Different Catchments (Field vs. Forest). Hydrobiologia 2025, 852, 2669–2685. [Google Scholar] [CrossRef]
- Duré, G.A.V.; Ressyésimões, N.; Magalhãesbraghin, L.D.S. Effect of Eutrophication on the Functional Diversity of Zooplankton in Shallow Ponds in Northeast Brazil. J. Plankton Res. 2021, 43, 894–907. [Google Scholar] [CrossRef]
- Galir Balkić, A.; Ternjej, I.; Špoljar, M. Hydrology Driven Changes in the Rotifer Trophic Structure and Implications for Food Web Interactions. Ecohydrology 2018, 11, e1917. [Google Scholar] [CrossRef]
- Gunathilaka, M.D.K.L.; Bao, S.; Liu, X.; Li, Y.; Pan, Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. Environ. Sci. Technol. 2023, 57, 1199–1213. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Antibiotics in Global Rivers. Natl. Sci. Open 2022, 1, 20220029. [Google Scholar] [CrossRef]
- Wallace, R.L.; Snell, T.W.; Smith, H.A. Chapter 13—Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 225–271. ISBN 978-0-12-385026-3. [Google Scholar]
- Ferrando, M.D.; Andreu, E. Feeding Behavior as an Index of Copper Stress in Daphnia magna and Brachionus calyciflorus. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1993, 106, 327–331. [Google Scholar] [CrossRef]
- Dahms, H.-U.; Hagiwara, A.; Lee, J.-S. Ecotoxicology, Ecophysiology, and Mechanistic Studies with Rotifers. Aquat. Toxicol. 2011, 101, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.S.; Midya, S. Growth Regulatory Pattern of Zooplankton in Herbicide and Antibiotic Contaminated Aquatic Ecosystem: An Overview. Watershed Ecol. Environ. 2023, 5, 153–160. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.; Yang, Y.; Tong, X.; Hu, H.; Zhang, X. Tributyl Phosphate Can Inhibit the Feeding Behavior of Rotifers by Altering the Axoneme Structure, Neuronal Coordination and Energy Supply Required for Motile Cilia. J. Hazard. Mater. 2023, 459, 132224. [Google Scholar] [CrossRef]
- Ricci, C.; Perletti, F. Starve and Survive: Stress Tolerance and Life-history Traits of a Bdelloid Rotifer. Funct. Ecol. 2006, 20, 340–346. [Google Scholar] [CrossRef]
- Frascaroli, G.; Hunter, C.; Roberts, J.; Escudero, A. Removal of Antibiotics and Their Impact on Growth, Nutrient Uptake, and Biomass Productivity in Semi-Continuous Cultivation of Auxenochlorella protothecoides. J. Environ. Manag. 2025, 375, 124261. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and Lipid Metabolism in Eukaryotic Algae. Prog. Lipid. Res. 2006, 45, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Agasild, H.; Nõges, T. Cladoceran and Rotifer Grazing on Bacteria and Phytoplankton in Two Shallow Eutrophic Lakes: In Situ Measurement with Fluorescent Microspheres. J. Plankt. Res. 2005, 27, 1155–1174. [Google Scholar] [CrossRef]
- Abidizadegan, M.; Peltomaa, E.; Blomster, J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front. Pharmacol. 2021, 11, 618836. [Google Scholar] [CrossRef] [PubMed]
- Vukašinović, N.; Serif, M.; Bacete, L. Cracking the Green Wall Code: Insights into Cell Wall Integrity across Organisms. Front. Plant Physiol. 2023, 1, 1323899. [Google Scholar] [CrossRef]
- Mercier, L.; Peltomaa, E.; Ojala, A. Comparative Analysis of Phycoerythrin Production in Cryptophytes. J. Appl. Phycol. 2022, 34, 789–797. [Google Scholar] [CrossRef]
- El-Shehawy, R.; Gorokhova, E. The Bloom-Forming Cyanobacterium Nodularia spumigena: A Peculiar Nitrogena-Fixer in the Baltic Sea Food Webs. In Cyanobacteria: Ecology, Toxicology and Management; Nova Publisher: New York, NY, USA, 2013; pp. 47–71. [Google Scholar]
- Rothhaupt, K. Differences in Particle Size-Dependent Feeding Efficiencies of Closely Related Rotifer Species. Limnol. Oceanogr. 1990, 35, 16–23. [Google Scholar] [CrossRef]
- Pajdak-Stós, A.; Fiałkowski, W.; Fiałkowska, E. Rotifers Weaken the Efficiency of the Cyanobacterium Defence against Ciliate Grazers. FEMS Microbiol. Ecol. 2020, 96, fiaa189. [Google Scholar] [CrossRef]
Antibiotic Concentration (mg/mL) | Added Volume (mL) | Fitness/Mortality | ||||||
---|---|---|---|---|---|---|---|---|
Filtrate | Zooplankton | Phytoplankton | Antibiotic | |||||
1. | 0.047 | 43.6 | 5 | 0.93 | 0.47 | A1 | A2 | A3 |
2. | 0.07 | 43.4 | 5 | 0.93 | 0.7 | B1 | B2 | B3 |
3. | 0.14 | 42.7 | 5 | 0.93 | 1.4 | C1 | C2 | C3 |
Control | 45 | 5 | 0.93 | - | D1 | D2 | D3 |
Parameter | Value |
---|---|
SD (m) | 0.89 |
WT (°C) | 18.6 |
OC (mg/L) | 8.67 |
OS (%) | 93.7 |
pH | 7.8 |
Cond (μS/cm) | 816 |
NO2-N (mg/L) | 0.002 |
NO3-N (mg/L) | 0.058 |
NH4+ (mg/L) | 0.022 |
TP (mg/L) | 0.089 |
TN (mg/L) | 0.706 |
Chl-a (μg/L) | 37.8 |
Recorded Rotifer | Preferred Rotifer Prey, Size and Type | Recorded Phytoplankton as a Probable Food Source |
---|---|---|
Species | ||
Keratella tecta, Keratella cochlearis, Lecane lunaris | Bacteria-detritus suspension; not larger than several µm | <2 μm; Aphanocapsa delicatissima (average colony size 11.29 μm), Merismopedia tenuissima (average colony size 18.43 μm) |
Epiphanes sp., Lepadella patella, Pompholyx sulcata, Ptygura sp. | Bacteria-detritus suspension and minute algae typical of eutrophic environments | 5–10 μm; Aulacoseira pusilla, Chrysococcus rufescens, Coelastrum microporum, Cryptomonas ovata, Cyclotella sp., Desmodesmus abundans, Kephyrion rubri-claustri, Lagerheimia genevensis, L. wratislawiensis, Lemmermannia tetrapedia, Mallomonas sp., Monoraphidium minutum, Oocystis lacustris, Phacotus lenticularis, Plagioselmis nannoplanctica, Pseudodidymocystis inconspicua, P. planctonica, Raphidocelis danubiana, Stephanodiscus sp., Tetradesmus dimorphus, T. lagerheimii, Tetraëdron minimum, Tetrastrum glabrum, T. staurogeniiforme, Trachelomonas volvocina |
Keratella quadrata | Phytoplankton below 20 μm; sometimes bacteria and detritus | 10–20 μm; Actinastrum hantzschii, Ankistrodesmus falcatus, Cryptomonas erosa, C. marssonii, M. arcuatum, Monoraphidium contortum, Plagioselmis lacustris, Skeletonema potamos, Trachelomonas oblonga |
Polyarthra vulgaris, Trichocerca elongata | Phytoplankton ranging 20–30 μm | 20–30 μm; Ankyra sp., Centritractus belonophorus, Fragilaria tenera, Gonium pectorale, Koliella longiseta, Monactinus simplex, Mucidosphaerium pulchellum, Nitzschia paleacea, Pediastrum duplex, Schroederia spiralis, Nitzschia sp. |
Synchaeta sp. | Maximum food particle size 50 μm | 30–50 μm; - |
Generally inedible for rotifers | >50 μm; Anabaena sp., Aulacoseira granulata, Asterionella formosa, Dinobryon divergens, Nitzschia acicularis, Phormidium sp., Planktolyngbya limnetica, Pseudanabaena limnetica, Ulnaria acus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galir, A.; Špoljarić Maronić, D.; Stević, F.; Žuna Pfeiffer, T.; Prašnikar, F.; Bek, N.; Penava, E.; Križevac, P. Effects of Azithromycin on the Functioning of the Food Web in Freshwater Plankton. J. Xenobiot. 2025, 15, 145. https://doi.org/10.3390/jox15050145
Galir A, Špoljarić Maronić D, Stević F, Žuna Pfeiffer T, Prašnikar F, Bek N, Penava E, Križevac P. Effects of Azithromycin on the Functioning of the Food Web in Freshwater Plankton. Journal of Xenobiotics. 2025; 15(5):145. https://doi.org/10.3390/jox15050145
Chicago/Turabian StyleGalir, Anita, Dubravka Špoljarić Maronić, Filip Stević, Tanja Žuna Pfeiffer, Fran Prašnikar, Nikolina Bek, Eva Penava, and Petra Križevac. 2025. "Effects of Azithromycin on the Functioning of the Food Web in Freshwater Plankton" Journal of Xenobiotics 15, no. 5: 145. https://doi.org/10.3390/jox15050145
APA StyleGalir, A., Špoljarić Maronić, D., Stević, F., Žuna Pfeiffer, T., Prašnikar, F., Bek, N., Penava, E., & Križevac, P. (2025). Effects of Azithromycin on the Functioning of the Food Web in Freshwater Plankton. Journal of Xenobiotics, 15(5), 145. https://doi.org/10.3390/jox15050145