Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models
Abstract
1. Introduction
2. Curcumin
3. Strategies to Enhance the Bioavailability of Curcumin
4. Antioxidant Activity of Curcumin
5. Curcumin and the Mitochondrion
5.1. Role of Mitochondria in the Etiology of Diseases
5.2. Effects of Curcumin on Mitochondria
5.2.1. Mitochondrial Respiration, ROS, and Antioxidant Enzymes
5.2.2. Curcumin’s Interaction with Mitochondrial Components and Its Modulation of Membrane Fluidity
6. Intrinsic Apoptosis
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARE | Antioxidant response elements |
ATP | Adenosine triphosphate |
ATPase | Adenosine triphosphatase |
Bcl-2 | Apoptosis regulator Bcl-2 |
BMSCs | Bone marrow-derived stem cells |
CAT | Catalase |
DMPC | Dimyristoylphosphatidylcholine |
DOPC | 1,2-dioleoyl-sn-glycero-3-phosphocholine |
DRP1 | Dynamin-related protein 1 |
FADH2 | Flavin adenine dinucleotide in its reduced form |
FDA | Food and Drug Administration |
GPx | Glutathione peroxidase |
GR | Glutathione reductase |
GSH | Glutathione |
GTP | Guanosine triphosphate |
H2O2 | Hydrogen peroxide |
hPDLSCs | Human periodontal ligament stem cells |
HL-1 | Mouse atrial cardiomyocyte cell line |
HPLC | High-performance liquid chromatography |
i.p. | Intraperitoneal (injection) |
Keap1 | Kelch-like ECH-associated protein 1 |
LPS | Lipopolysaccharide |
MAMs | Mitochondrial-associated membranes |
MFN2 | Mitofusin 2 |
MDA | Malondialdehyde |
MOMP | Mitochondrial outer membrane permeabilization |
mPTP | Mitochondrial permeability transition pore |
MSC | Mesenchymal stem cells |
MSCs | Mouse lung mesenchymal stem cells |
NAC | N-acetylcysteine |
NADH | Nicotinamide adenine dinucleotide in its reduced form |
NO | Nitric oxide |
NRF1 | Nuclear respiratory factor 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
O2 | Oxygen |
O2− | Superoxide radical |
OH | Hydroxyl groups |
OPA1 | Dynamin-like 120 kDa mitochondrial protein OPA1 |
PLGA | Poly(lactic-co-glycolic acid) |
ROS | Reactive oxygen species |
rRNA | Ribosomal RNA |
SOD | Superoxide dismutase |
SULT | Sulfotransferase isoenzymes |
TBARS | Thiobarbituric acid reactive substances |
TCA | Tricarboxylic acid |
TFAM | Transcription factor A, mitochondrial. |
TMCL | Tetramyristoylcardiolipin |
tRNA | Transfer RNA |
UGTs | 5’-diphospho-glucuronosyltransferases |
References
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives—A Review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.C.; Vieira, E.C.S.; de Oliveira, T.F. Curcuma Longa L. Leaves: Characterization (Bioactive and Antinutritional Compounds) for Use in Human Food in Brazil. Food Chem. 2018, 265, 308–315. [Google Scholar] [CrossRef]
- Ganapathy, G.; Preethi, R.; Moses, J.A.; Anandharamakrishnan, C. Diarylheptanoids as Nutraceutical: A Review. Biocatal. Agric. Biotechnol. 2019, 19, 101109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Chen, Z.; Chen, G.; Wang, D.; Tang, S.; Deng, H.; Wang, J.; Li, S.; Lan, J.; Tong, J.; et al. Curcumin Attenuates Asthmatic Airway Inflammation and Mucus Hypersecretion Involving a PPAR γ -Dependent NF-κ B Signaling Pathway In Vivo and In Vitro. Mediat. Inflamm. 2019, 2019, 4927430. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant Effects of Curcumin in Models of Neurodegeneration, Aging, Oxidative and Nitrosative Stress: A Review. Neuroscience 2019, 406, 1–21. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef]
- Doello, K.; Ortiz, R.; Alvarez, P.J.; Melguizo, C.; Cabeza, L.; Prados, J. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment Using Curcumin: A Literature Review. Nutr. Cancer 2018, 70, 569–578. [Google Scholar] [CrossRef]
- Zhang, H.A.; Kitts, D.D. Turmeric and Its Bioactive Constituents Trigger Cell Signaling Mechanisms That Protect against Diabetes and Cardiovascular Diseases. Mol. Cell. Biochem. 2021, 476, 3785–3814. [Google Scholar] [CrossRef]
- Zhang, J.; Jinnai, S.; Ikeda, R.; Wada, M.; Hayashidac, S.; Nakashima, K. A Simple HPLC-Fluorescence Method for Quantitation of Curcuminoids and Its Application to Turmeric Products. Anal. Sci. 2009, 25, 385–388. [Google Scholar] [CrossRef]
- Allegra, A.; Mirabile, G.; Ettari, R.; Pioggia, G.; Gangemi, S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int. J. Mol. Sci. 2022, 23, 14710. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018, 10, 855. [Google Scholar] [CrossRef]
- Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective Effects of Curcumin. Adv. Exp. Med. Biol. 2007, 595, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II Trial of Curcumin in Patients with Advanced Pancreatic Cancer. Clin. Cancer Res. 2008, 14, 4491–4499. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the Active Substance of Turmeric: Its Effects on Health and Ways to Improve Its Bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- Priyadarsini, K. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. Photophysics, Photochemistry and Photobiology of Curcumin: Studies from Organic Solutions, Bio-Mimetics and Living Cells. J. Photochem. Photobiol. C Photochem. Rev. 2009, 10, 81–95. [Google Scholar] [CrossRef]
- Pan, M.H.; Huang, T.M.; Lin, J.K. Biotransformation of Curcumin through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 1999, 27, 486–494. [Google Scholar] [CrossRef]
- Dei Cas, M.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef]
- Ireson, C.R.; Jones, D.J.L.; Orr, S.; Coughtrie, M.W.H.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Metabolism of the Cancer Chemopreventive Agent Curcumin in Human and Rat Intestine. Cancer Epidemiol. Biomark. Prev. 2002, 11, 105–111. [Google Scholar]
- Hoehle, S.I.; Pfeiffer, E.; Metzler, M. Glucuronidation of Curcuminoids by Human Microsomal and Recombinant UDP-glucuronosyltransferases. Mol. Nutr. Food Res. 2007, 51, 932–938. [Google Scholar] [CrossRef]
- Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the Curcumin Metabolic Pathway Involving a Unique Enzyme in an Intestinal Microorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Suresh, D.; Srinivasan, K. Tissue Distribution & Elimination of Capsaicin, Piperine & Curcumin Following Oral Intake in Rats. Indian J. Med. Res. 2010, 131, 682–691. [Google Scholar]
- Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Improving Curcumin Solubility and Bioavailability by Encapsulation in Saponin-Coated Curcumin Nanoparticles Prepared Using a Simple PH-Driven Loading Method. Food Funct. 2018, 9, 1829–1839. [Google Scholar] [CrossRef]
- Tsai, Y.-M.; Chang-Liao, W.-L.; Chien, C.-F.; Lin, L.-C.; Tsai, T.-H. Effects of Polymer Molecular Weight on Relative Oral Bioavailability of Curcumin. Int. J. Nanomed. 2012, 7, 2957–2966. [Google Scholar] [CrossRef]
- Shahani, K.; Swaminathan, S.K.; Freeman, D.; Blum, A.; Ma, L.; Panyam, J. Injectable Sustained Release Microparticles of Curcumin: A New Concept for Cancer Chemoprevention. Cancer Res. 2010, 70, 4443–4452. [Google Scholar] [CrossRef]
- Kim, T.H.; Jiang, H.H.; Youn, Y.S.; Park, C.W.; Tak, K.K.; Lee, S.; Kim, H.; Jon, S.; Chen, X.; Lee, K.C. Preparation and Characterization of Water-Soluble Albumin-Bound Curcumin Nanoparticles with Improved Antitumor Activity. Int. J. Pharm. 2011, 403, 285–291. [Google Scholar] [CrossRef]
- Smith, M.R.; Gangireddy, S.R.; Narala, V.R.; Hogaboam, C.M.; Standiford, T.J.; Christensen, P.J.; Kondapi, A.K.; Reddy, R.C. Curcumin Inhibits Fibrosis-Related Effects in IPF Fibroblasts and in Mice Following Bleomycin-Induced Lung Injury. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2010, 298, L616–L625. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Liu, Z.-Q. Phenolic and Enolic Hydroxyl Groups in Curcumin: Which Plays the Major Role in Scavenging Radicals? J. Agric. Food Chem. 2009, 57, 11041–11046. [Google Scholar] [CrossRef]
- Priyadarsini, K.I.; Maity, D.K.; Naik, G.H.; Kumar, M.S.; Unnikrishnan, M.K.; Satav, J.G.; Mohan, H. Role of Phenolic O-H and Methylene Hydrogen on the Free Radical Reactions and Antioxidant Activity of Curcumin. Free Radic. Biol. Med. 2003, 35, 475–484. [Google Scholar] [CrossRef]
- Malik, P.; Mukherjee, T.K. Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin. Chin. J. Biol. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Indira Priyadarsini, K. Chemical and Structural Features Influencing the Biological Activity of Curcumin. Curr. Pharm. Des. 2013, 19, 2093–2100. [Google Scholar] [CrossRef]
- Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int. J. Mol. Sci. 2021, 22, 7094. [Google Scholar] [CrossRef] [PubMed]
- Thakam, A.; Saewan, N. Antioxidant Activities of Curcumin-Metal Complexes. Thai J. Agric. Sci. 2011, 44, 188–193. [Google Scholar]
- Mei, X.; Xu, D.; Xu, S.; Zheng, Y.; Xu, S. Gastroprotective and Antidepressant Effects of a New Zinc(II)–Curcumin Complex in Rodent Models of Gastric Ulcer and Depression Induced by Stresses. Pharmacol. Biochem. Behav. 2011, 99, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Hieu, T.Q.; Thao, D.T.T. Enhancing the Solubility of Curcumin Metal Complexes and Investigating Some of Their Biological Activities. J. Chem. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Li, R.; Jia, Z.; Zhu, H. Regulation of Nrf2 Signaling. React. Oxyg. Species 2019, 8, 312–322. [Google Scholar] [CrossRef]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kang, M.-I.; Okawa, H.; Ohtsuji, M.; Zenke, Y.; Chiba, T.; Igarashi, K.; Yamamoto, M. Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase to Regulate Proteasomal Degradation of Nrf2. Mol. Cell. Biol. 2004, 24, 7130–7139. [Google Scholar] [CrossRef]
- He, F.; Antonucci, L.; Karin, M. NRF2 as a Regulator of Cell Metabolism and Inflammation in Cancer. Carcinogenesis 2020, 41, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Chun, K.-S.; Kim, D.-H.; Kim, S.-J.; Kim, S.H.; Cho, N.-C.; Na, H.-K.; Surh, Y.-J. Curcumin Induces Stabilization of Nrf2 Protein through Keap1 Cysteine Modification. Biochem. Pharmacol. 2020, 173, 113820. [Google Scholar] [CrossRef] [PubMed]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and Molecular Mechanisms of Mitochondrial Function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Schon, E.A. Mitochondrial Genetics and Disease. Trends Biochem. Sci. 2000, 25, 555–560. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, S.; Zhang, L.; Yu, Z. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Venditti, P. Mitochondrial Management of Reactive Oxygen Species. Antioxidants 2021, 10, 1824. [Google Scholar] [CrossRef]
- Miwa, S.; Kashyap, S.; Chini, E.; von Zglinicki, T. Mitochondrial Dysfunction in Cell Senescence and Aging. J. Clin. Investig. 2022, 132, e158447. [Google Scholar] [CrossRef]
- Iacobazzi, V.; Infantino, V. Citrate—New Functions for an Old Metabolite. Biol. Chem. 2014, 395, 387–399. [Google Scholar] [CrossRef]
- Spinelli, J.B.; Haigis, M.C. The Multifaceted Contributions of Mitochondria to Cellular Metabolism. Nat. Cell Biol. 2018, 20, 745–754. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, J.; Zhang, M.; Wang, Y.; Shi, X. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs): Possible Therapeutic Targets in Heart Failure. Front. Cardiovasc. Med. 2023, 10, 1083935. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, S.; Ou, Y.; Hu, F.; Long, D. Mitochondria-Associated Endoplasmic Reticulum Membranes: A Promising Toxicity Regulation Target. Acta Histochem. 2023, 125, 152000. [Google Scholar] [CrossRef]
- Schon, E.A.; Area-Gomez, E. Mitochondria-Associated ER Membranes in Alzheimer Disease. Mol. Cell. Neurosci. 2013, 55, 26–36. [Google Scholar] [CrossRef]
- Moselhy, O.A.; Abdel-Aziz, N.; El-bahkery, A.; Moselhy, S.S.; Ibrahim, E.A. Curcumin Nanoparticles Alleviate Brain Mitochondrial Dysfunction and Cellular Senescence in γ-Irradiated Rats. Sci. Rep. 2025, 15, 3857. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, J.; Li, X.; Zhu, H.; Sun, J.; Jiang, L.; Xue, C.; Zhang, L.; Xu, C.; Xing, S.; et al. Tetrahydrocurcumin Ameliorates Postinfarction Cardiac Dysfunction and Remodeling by Inhibiting Oxidative Stress and Preserving Mitochondrial Function via SIRT3 Signaling Pathway. Phytomedicine 2023, 121, 155127. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Singh, S.S.; Birla, H.; Zahra, W.; Keshri, P.K.; Dilnashin, H.; Singh, R.; Singh, S.; Singh, S.P. Curcumin Modulates P62-Keap1-Nrf2-Mediated Autophagy in Rotenone-Induced Parkinson’s Disease Mouse Models. ACS Chem. Neurosci. 2023, 14, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Trejo, O.E.; Tapia, E.; Molina-Jijón, E.; Medina-Campos, O.N.; Macías-Ruvalcaba, N.A.; León-Contreras, J.C.; Hernández-Pando, R.; García-Arroyo, F.E.; Cristóbal, M.; Sánchez-Lozada, L.G.; et al. Curcumin Prevents Mitochondrial Dynamics Disturbances in Early 5/6 Nephrectomy: Relation to Oxidative Stress and Mitochondrial Bioenergetics. BioFactors 2017, 43, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Soto-Urquieta, M.G.; López-Briones, S.; Pérez-Vázquez, V.; Saavedra-Molina, A.; González-Hernández, G.A.; Ramírez-Emiliano, J. Curcumin Restores Mitochondrial Functions and Decreases Lipid Peroxidation in Liver and Kidneys of Diabetic Db/Db Mice. Biol. Res. 2014, 47, 74. [Google Scholar] [CrossRef]
- Rastogi, M.; Ojha, R.P.; Sagar, C.; Agrawal, A.; Dubey, G.P. Protective Effect of Curcuminoids on Age-Related Mitochondrial Impairment in Female Wistar Rat Brain. Biogerontology 2014, 15, 21–31. [Google Scholar] [CrossRef]
- Kuo, J.-J.; Chang, H.-H.; Tsai, T.-H.; Lee, T.-Y. Positive Effect of Curcumin on Inflammation and Mitochondrial Dysfunction in Obese Mice with Liver Steatosis. Int. J. Mol. Med. 2012, 30, 673–679. [Google Scholar] [CrossRef]
- Sood, P.K.; Nahar, U.; Nehru, B. Curcumin Attenuates Aluminum-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain. Neurotox. Res. 2011, 20, 351–361. [Google Scholar] [CrossRef]
- Molina-Jijón, E.; Tapia, E.; Zazueta, C.; El Hafidi, M.; Zatarain-Barrón, Z.L.; Hernández-Pando, R.; Medina-Campos, O.N.; Zarco-Márquez, G.; Torres, I.; Pedraza-Chaverri, J. Curcumin Prevents Cr(VI)-Induced Renal Oxidant Damage by a Mitochondrial Pathway. Free Radic. Biol. Med. 2011, 51, 1543–1557. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Liao, H.; Hao, S.; Liu, R.; Huang, H.; Duan, C. Curcumin Simultaneously Improves Mitochondrial Dynamics and Myocardial Cell Bioenergy after Sepsis via the SIRT1-DRP1/PGC-1α Pathway. Heliyon 2024, 10, e28501. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Dohl, J.; Elenberg, F.; Chen, Y.; Deuster, P. Curcumin Induces Concentration-dependent Alterations in Mitochondrial Function through ROS in C2C12 Mouse Myoblasts. J. Cell. Physiol. 2019, 234, 6371–6381. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, J.; Wang, Y.; Zhao, B.; Zhang, Y.; Han, F.; Zheng, Z.; Hu, D. Curcumin Pretreatment Prevents Hydrogen Peroxide-Induced Oxidative Stress through Enhanced Mitochondrial Function and Deactivation of Akt/Erk Signaling Pathways in Rat Bone Marrow Mesenchymal Stem Cells. Mol. Cell. Biochem. 2018, 443, 37–45. [Google Scholar] [CrossRef]
- Jat, D.; Parihar, P.; Kothari, S.C.; Parihar, M.S. Curcumin Reduces Oxidative Damage by Increasing Reduced Glutathione and Preventing Membrane Permeability Transition in Isolated Brain Mitochondria. Cell. Mol. Biol. 2013, 59, OL1899–OL1905. [Google Scholar]
- Atsumi, T.; Tonosaki, K.; Fujisawa, S. Induction of Early Apoptosis and ROS-Generation Activity in Human Gingival Fibroblasts (HGF) and Human Submandibular Gland Carcinoma (HSG) Cells Treated with Curcumin. Arch. Oral Biol. 2006, 51, 913–921. [Google Scholar] [CrossRef]
- Duda, M.; Cygan, K.; Wisniewska-Becker, A. Effects of Curcumin on Lipid Membranes: An EPR Spin-Label Study. Cell Biochem. Biophys. 2020, 78, 139–147. [Google Scholar] [CrossRef]
- Barry, J.; Fritz, M.; Brender, J.R.; Smith, P.E.S.; Lee, D.-K.; Ramamoorthy, A. Determining the Effects of Lipophilic Drugs on Membrane Structure by Solid-State NMR Spectroscopy: The Case of the Antioxidant Curcumin. J. Am. Chem. Soc. 2009, 131, 4490–4498. [Google Scholar] [CrossRef]
- Starok, M.; Preira, P.; Vayssade, M.; Haupt, K.; Salomé, L.; Rossi, C. EGFR Inhibition by Curcumin in Cancer Cells: A Dual Mode of Action. Biomacromolecules 2015, 16, 1634–1642. [Google Scholar] [CrossRef]
- Ben-Zichri, S.; Kolusheva, S.; Danilenko, M.; Ossikbayeva, S.; Stabbert, W.J.; Poggio, J.L.; Stein, D.E.; Orynbayeva, Z.; Jelinek, R. Cardiolipin Mediates Curcumin Interactions with Mitochondrial Membranes. Biochim. Biophys. Acta (BBA)—Biomembr. 2019, 1861, 75–82. [Google Scholar] [CrossRef]
- Gudyka, J.; Ceja-Vega, J.; Ivanchenko, K.; Morocho, Z.; Panella, M.; Gamez Hernandez, A.; Clarke, C.; Perez, E.; Silverberg, S.; Lee, S. Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure. ACS Pharmacol. Transl. Sci. 2024, 7, 1546–1556. [Google Scholar] [CrossRef]
- Aloi, E.; Tone, C.M.; Barberi, R.C.; Ciuchi, F.; Bartucci, R. Effects of Curcumin in the Interaction with Cardiolipin-Containg Lipid Monolayers and Bilayers. Biophys. Chem. 2023, 301, 107082. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Dohl, J.; Wang, L.; Chen, Y.; Gasier, H.G.; Deuster, P.A. Curcumin Ameliorates Heat-Induced Injury through NADPH Oxidase–Dependent Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and Mouse Skeletal Muscle. J. Nutr. 2020, 150, 2257–2267. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, K.; Qu, X.-H.; Wang, T.; Yang, P.; Yang, Y.; Jiang, L.-P.; Wan, Y.-Y.; Tou, F.-F.; Chen, Z.-P.; et al. Curcumin Protects Retinal Neuronal Cells against Oxidative Stress-Induced Damage by Regulating Mitochondrial Dynamics. Exp. Eye Res. 2022, 224, 109239. [Google Scholar] [CrossRef]
- Mehta, H.J.; Patel, V.; Sadikot, R.T. Curcumin and Lung Cancer—A Review. Target. Oncol. 2014, 9, 295–310. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, L.; Li, W.; Liang, Q.; Li, Z. Curcumin Induces Apoptosis and Autophagy Inhuman Renal Cell Carcinoma Cells via Akt/MTOR Suppression. Bioengineered 2021, 12, 5017–5027. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin Inhibits Proliferation and Promotes Apoptosis of Breast Cancer Cells. Exp. Ther. Med. 2018, 16, 1266–1272. [Google Scholar] [CrossRef]
- Guo, W.; Ding, Y.; Pu, C.; Wang, Z.; Deng, W.; Jin, X. Curcumin Inhibits Pancreatic Cancer Cell Proliferation by Regulating Beclin1 Expression and Inhibiting the Hypoxia-Inducible Factor-1α-Mediated Glycolytic Pathway. J. Gastrointest. Oncol. 2022, 13, 3254–3262. [Google Scholar] [CrossRef]
- Li, P.; Pu, S.; Lin, C.; He, L.; Zhao, H.; Yang, C.; Guo, Z.; Xu, S.; Zhou, Z. Curcumin Selectively Induces Colon Cancer Cell Apoptosis and S Cell Cycle Arrest by Regulates Rb/E2F/P53 Pathway. J. Mol. Struct. 2022, 1263, 133180. [Google Scholar] [CrossRef]
- Bolger, G.T.; Licollari, A.; Bagshaw, R.; Tan, A.; Greil, R.; Vcelar, B.; Majeed, M.; Sordillo, P. Intense Uptake of Liposomal Curcumin by Multiple Myeloma Cell Lines: Comparison to Normal Lymphocytes, Red Blood Cells and Chronic Lymphocytic Leukemia Cells. Anticancer Res. 2019, 39, 1161–1168. [Google Scholar] [CrossRef]
- Kunwar, A.; Barik, A.; Mishra, B.; Rathinasamy, K.; Pandey, R.; Priyadarsini, K.I. Quantitative Cellular Uptake, Localization and Cytotoxicity of Curcumin in Normal and Tumor Cells. Biochim. Biophys. Acta—Gen. Subj. 2008, 1780, 673–679. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Wang, L.; Chen, L.; Goh, B.-C. Curcumin in Cancer Therapy: Exploring Molecular Mechanisms and Overcoming Clinical Challenges. Cancer Lett. 2023, 570, 216332. [Google Scholar] [CrossRef]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- Vogler, M.; Braun, Y.; Smith, V.M.; Westhoff, M.-A.; Pereira, R.S.; Pieper, N.M.; Anders, M.; Callens, M.; Vervliet, T.; Abbas, M.; et al. The BCL2 Family: From Apoptosis Mechanisms to New Advances in Targeted Therapy. Signal Transduct. Target. Ther. 2025, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Wang, Z.; Yang, T.; Su, X.; Chen, Y.; Liu, L.; Deng, Q.; Liu, Q.; Shao, C.; Zhu, W. Curcumin Induces Mitochondrial Dysfunction-Associated Oxidative DNA Damage in Ovarian Cancer Cells. PLoS ONE 2025, 20, e0319846. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, E.; Kotiya, A.; Bhuyan, R.; Raza, S.T.; Misra, A.; Ahmad, R.; Mahdi, A.A. Curcumin Chemo-Sensitizes Intrinsic Apoptosis through ROS-Mediated Mitochondrial Hyperpolarization and DNA Damage in Breast Cancer Cells. Cell. Signal. 2025, 128, 111637. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kasinathan, A.; Ganesan, R.; Balasubramanian, A.; Bhaskaran, J.; Suresh, S.; Srinivasan, R.; Aravind, K.B.; Sivalingam, N. Curcumin Induces Apoptosis and Cell Cycle Arrest via the Activation of Reactive Oxygen Species–Independent Mitochondrial Apoptotic Pathway in Smad4 and P53 Mutated Colon Adenocarcinoma HT29 Cells. Nutr. Res. 2018, 51, 67–81. [Google Scholar] [CrossRef]
- Kocyigit, A.; Guler, E.M. Curcumin Induce DNA Damage and Apoptosis through Generation of Reactive Oxygen Species and Reducing Mitochondrial Membrane Potential in Melanoma Cancer Cells. Cell. Mol. Biol. 2017, 63, 97–105. [Google Scholar] [CrossRef]
- Jayakumar, S.; Patwardhan, R.S.; Pal, D.; Singh, B.; Sharma, D.; Kutala, V.K.; Sandur, S.K. Mitochondrial Targeted Curcumin Exhibits Anticancer Effects through Disruption of Mitochondrial Redox and Modulation of TrxR2 Activity. Free Radic. Biol. Med. 2017, 113, 530–538. [Google Scholar] [CrossRef]
- Moustapha, A.; Pérétout, P.; Rainey, N.; Sureau, F.; Geze, M.; Petit, J.-M.; Dewailly, E.; Slomianny, C.; Petit, P. Curcumin Induces Crosstalk between Autophagy and Apoptosis Mediated by Calcium Release from the Endoplasmic Reticulum, Lysosomal Destabilization and Mitochondrial Events. Cell Death Discov. 2015, 1, 15017. [Google Scholar] [CrossRef]
- Wang, J.; Qi, L.; Zheng, S.; Wu, T. Curcumin Induces Apoptosis through the Mitochondria-Mediated Apoptotic Pathway in HT-29 Cells. J. Zhejiang Univ. Sci. B 2009, 10, 93–102. [Google Scholar] [CrossRef]
- Wang, X.; Shen, K.; Wang, J.; Liu, K.; Wu, G.; Li, Y.; Luo, L.; Zheng, Z.; Hu, D. Hypoxic Preconditioning Combined with Curcumin Promotes Cell Survival and Mitochondrial Quality of Bone Marrow Mesenchymal Stem Cells, and Accelerates Cutaneous Wound Healing via PGC-1α/SIRT3/HIF-1α Signaling. Free Radic. Biol. Med. 2020, 159, 164–176. [Google Scholar] [CrossRef]
- Tan, L.; Cao, Z.; Chen, H.; Xie, Y.; Yu, L.; Fu, C.; Zhao, W.; Wang, Y. Curcumin Reduces Apoptosis and Promotes Osteogenesis of Human Periodontal Ligament Stem Cells under Oxidative Stress in Vitro and in Vivo. Life Sci. 2021, 270, 119125. [Google Scholar] [CrossRef]
- Ke, S.; Zhang, Y.; Lan, Z.; Li, S.; Zhu, W.; Liu, L. Curcumin Protects Murine Lung Mesenchymal Stem Cells from H2O2 by Modulating the Akt/Nrf2/HO-1 Pathway. J. Int. Med. Res. 2020, 48, 0300060520910665. [Google Scholar] [CrossRef]
Experimental Model | Curcumin Dose/Concentration | Impact of Stress Condition on Mitochondria | Effect of Curcumin and/or Its Metabolites | Antioxidant Enzymes or Endogenous Antioxidants Involved | Ref. |
---|---|---|---|---|---|
In vivo studies | |||||
Cellular senescence in rat brain tissue exposed to γ-radiation | Curcumin nanoparticles, 10 mg/kg in 1 mL water, three times/week for 8 weeks | ↑ lipid peroxidation (MDA); ↓ antioxidant biomarkers; ↓ activities of mitochondrial complexes I and II; ↓ ATP production | ↓ MDA; ↑ activities of mitochondrial complexes and ATP production | ↑ SOD activity; ↑ GSH content | [54] |
Myocardial infarction in rats | 120 mg/kg for 4 weeks | ↓ mitochondrial DNA content; ↓ activities of Complexes I and V; ↑ MDA in cardiac tissue | ↑ mitochondrial DNA content; ↑ activities of Complexes I and V; ↑ ATP content | ↑ SOD and GPx activities | [55] |
Rotenone-induced Parkinson’s in mice | 80 mg/kg for 35 days | Impaired activities of Complexes I–V; ↑ MDA in substantia nigra | ↑ activities of all mitochondrial complexes; ↓ MDA in substantia nigra | ↑ CAT activity via Nrf2 induction | [56] |
Five-sixths nephrectomy (5/6 Nx) in rats | 60 mg/kg for 7 days pre-5/6 Nx | ↑ H2O2 production; ↓ activities of Complexes I and V; ↓ antioxidant enzymes; ↑ protein–MDA adducts | ↓ H2O2; ↑ respiratory complex activities; ↓ protein–MDA adducts | Preservation of SOD and GPx activities | [57] |
Diabetic (db/db) mice | 60 mg/kg for 4 weeks | ↑ mitochondrial O2 consumption in liver and kidney; ↑ mitochondrial MDA; ↓ mitochondrial NO synthesis in liver | In kidney mitochondria, restores state-4 and state-3 O2 consumption to wild-type levels; ↓ TBARS in both organs; ↑ ATPase activity and NO synthesis in liver | Not determined | [58] |
Age-related mitochondrial dysfunction in rat brain | Curcuma longa rhizome extract (78.1% curcumin), 100 mg/kg for 3 months | ↓ activities of mitochondrial complexes; ↓ total ATP content; structural damage to cristae and membranes | ↑ complex activities; restores ATP content to 86% of young controls; ↓ prevalence of damaged mitochondria | Not determined | [59] |
Obese mice with hepatic steatosis | Diet supplemented with 1% or 3% curcumin | ↓ hepatic mitochondrial DNA expression and of biogenesis genes (e.g., NRF1, TFAM); ↓ ATP; ↑ TBARS | Normalizes expression of mitochondrial biogenesis genes; ↓ TBARS; ↑ ATP | ↑ hepatic GSH expression | [60] |
Aluminum-induced neurotoxicity in rats | 50 mg/kg i.p. | ↓ activities of Complexes I, II and IV in cortex, midbrain and whole brain; ↓ ATP synthesis; ↓ GSH in cortex and midbrain | Restores activities of all three complexes in all regions; ↑ ATP synthesis | ↑ GSH content in cortex and midbrain | [61] |
Potassium dichromate (K2Cr2O7)-induced renal oxidative damage in rats | Curcumin 400 mg/kg for 10 days pre-K2Cr2O7 | ↑ lipid peroxidation and protein carbonyls; ↓ aconitase and mitochondrial complex activities (except IV); ↓ total GSH | ↓lipid peroxidation and protein carbonyls; prevents ↑ complex activities ↑ GSH | ↑ CAT, GPx and SOD activities | [62] |
In vitro studies | |||||
LPS-stimulated HL-1 cardiomyocytes (sepsis model) | Curcumin 20 µM | LPS induced mitochondrial morphological changes; ↓ mitochondrial membrane potential; ↑ ROS | Restores mitochondrial morphology from punctate to filamentous; partially restores network structure; ↑ membrane potential; ↓ ROS | Not determined | [63] |
Mouse C2C12 myoblasts | Curcumin 5 and 20 µM | — | At high [curcumin]: ↑ ROS; ↑ mitochondrial permeability; cytochrome c release; caspase 9 and 3 activation; cell death. At low [curcumin]: ↑ ROS-dependent mitochondrial mass and membrane potential | Not determined | [64] |
H2O2-induced oxidative stress in rat bone marrow MSC | Curcumin 5 and 10 µM | ↓ mitochondrial membrane potential; ↓ cellular ATP; ↑ intracellular ROS | ↑ membrane potential; ↑ ATP; ↓ ROS accumulation | Not determined | [65] |
Isolated mouse brain mitochondria treated with t-butyl hydroperoxide | Curcumin 100–500 µM | ↑ lipid peroxidation; ↑ protein carbonylation; loss of membrane integrity (mPTP opening) | ↓ lipid peroxidation and protein carbonylation; prevents mPTP opening | ↑ endogenous GSH levels | [66] |
Cell Type | Curcumin (and Derivatives) Concentration | Effect on Mitochondria | Ref. |
---|---|---|---|
HO9810, OVCAR3 (ovarian cancer cells) | 5–30 µM | Decrease in mitochondrial membrane potential; increased mitochondrial O2− and H2O2 levels. Imbalance between Bax and Bcl-2 protein levels. Elevated levels of cleaved caspase-3. | [86] |
MCF-7 (breast cancer cells) | 14 µM | Sensitizes cells to doxorubicin, enhancing ROS generation and decreasing mitochondrial membrane potential. Upregulation of Bax, Bak, and caspase-3 genes; significant downregulation of Bcl-2. | [87] |
HT-29 (human colon cancer cells) | 10 and 40 µM | Significant time- and concentration-dependent decrease in mitochondrial membrane potential; increased intracellular ROS production. | [88] |
B16-F10 (mouse melanoma cells) L-929 (mouse fibroblasts) | 2.5–50 µM | In both tumor and normal cells, a concentration-dependent increase in cleaved caspase-3 and Bax expression, with decreased Bcl-2 expression. Significant loss of mitochondrial membrane potential from 40 µM in tumor cells. | [89] |
A549 (lung cancer cells) Mitocurcumin | 2.5–10 µM | Increased Bax levels and concomitant decrease in Bcl-2 levels. Depletion of mitochondrial GSH. Loss of mitochondrial membrane potential, increased cytochrome c levels, and enhanced caspase-3 activity. | [90] |
Huh-7 (human hepatoma-derived cells) | 5–30 µM | Decreased mitochondrial membrane potential after 24 h of incubation. At 50 µM, 92% of cells exhibited low membrane potential. The decrease was associated with increased O2− and H2O2 levels. | [91] |
HT-29 (human colon cancer cells) | 10–80 µmol/L | Decreased expression of Bcl-2 and Bcl-xL. Cytochrome c release followed by activation of caspase-3. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avendaño-Briseño, K.A.; Escutia-Martínez, J.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models. J. Xenobiot. 2025, 15, 139. https://doi.org/10.3390/jox15050139
Avendaño-Briseño KA, Escutia-Martínez J, Hernández-Cruz EY, Pedraza-Chaverri J. Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models. Journal of Xenobiotics. 2025; 15(5):139. https://doi.org/10.3390/jox15050139
Chicago/Turabian StyleAvendaño-Briseño, Karla Alejandra, Jorge Escutia-Martínez, Estefani Yaquelin Hernández-Cruz, and José Pedraza-Chaverri. 2025. "Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models" Journal of Xenobiotics 15, no. 5: 139. https://doi.org/10.3390/jox15050139
APA StyleAvendaño-Briseño, K. A., Escutia-Martínez, J., Hernández-Cruz, E. Y., & Pedraza-Chaverri, J. (2025). Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models. Journal of Xenobiotics, 15(5), 139. https://doi.org/10.3390/jox15050139