Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies
Abstract
1. Introduction
2. Environmental PM
2.1. Pathways of Human Exposure to PM
2.2. Interaction Between PM and Toxic Substances
2.3. Localized and Systemic Effects of PM
2.4. Emerging Pollutants
3. Health Impacts of PM Exposure
3.1. Role of Oxidative Stress and Inflammation
3.2. Immune System Effects and Allergic Reactions to PM
3.2.1. Activation of Innate Immunity and Chronic Inflammation
3.2.2. Disruption of Adaptive Immune Responses
3.2.3. Immunosuppression and Impaired Host Defense Mechanisms
3.2.4. Autoimmune Disorders and Neuroinflammation
3.3. Impact of PM on the Respiratory System
3.4. Impact of PM on the Cardiovascular System
3.5. Reproductive and Neurodevelopmental Effects of PM Exposure
3.6. Genotoxic and Carcinogenic Effects of PM
Mode of Action | Description | Examples of Relevant Substances |
---|---|---|
Oxidative Stress | Generation of ROS leads to DNA damage, protein oxidation, and lipid peroxidation, promoting mutations and genomic instability [134]. | Arsenic (As) [256]. |
DNA Damage and Mutagenesis | Direct damage to DNA, such as strand breaks, cross-linking, or formation of DNA adducts, resulting in mutations that initiate carcinogenesis [257]. | Hexavalent Chromium (Cr(VI)), Benzo[a]pyrene (a PAH) [258,259]. |
Chronic Inflammation | Persistent activation of immune cells and release of pro-inflammatory cytokines generate ROS and reactive nitrogen species, indirectly damaging DNA [260]. | Crystalline Silica [261]. |
Epigenetic Alterations | Changes in DNA methylation, histone modification, or microRNA expression alter gene regulation, silencing tumor suppressor genes or activating oncogenes [262]. | Arsenic (As), Cadmium (Cd) [263,264]. |
Disruption of Cellular Signaling Pathways | Interference with pathways regulating cell proliferation, apoptosis, and DNA repair leads to uncontrolled cell growth and resistance to cell death [265]. | Cadmium (Cd), Lead (Pb) [216,266]. |
3.7. Influence of PM on the Human Microbiome
Xenobiotic Toxicant Substances | Particulate Matter | |
---|---|---|
Disruption of Microbial Composition | Chemicals or heavy metals can selectively inhibit beneficial microbes and promote pathogens (e.g., Pseudomonas aeruginosa) [280,281]. | Can act as a physical carrier for pathogenic microbes introducing new microbes and shifting microbial balance toward pro-inflammatory species [282]. |
Induction of Inflammation | Directly activates immune cells, leading to cytokine release (e.g., IL-6, IL-8, and TNF-α), ROS generation and dysbiosis [283]. | Activates pattern recognition receptors (e.g., TLRs), inducing ROS and inflammatory cytokines; exacerbates oxidative stress via physical interaction with epithelial cells [284]. |
Impairment of Epithelial Function | Reduces ciliary function in the lung and mucus production, allowing microbial overgrowth; promoting epithelial integrity in the gastrointestinal system (“leaky gut” syndrome) [285,286]. | Physically obstructs cilia and increases mucus viscosity, impairing clearance in the lung; physically disrupts the mucus layer and weakens tight junctions in the gastrointestinal tract [287,288]. |
Alterations of Host–Microbe Interactions | Reduces immune defenses, promoting pathogen colonization [289]. | Acts as an adjuvant, hyperactivating immune responses and disrupting microbial homeostasis [173,290]. |
3.8. Systemic Risk Modeling
4. Strategies for Mitigating PM Exposure
4.1. Regulatory Policies and Standards for PM Emission Control
4.2. Technological Innovations in Emission Reduction
4.3. Approaches to Maintaining High Air Quality
4.4. Degradation of Xenobiotic Pollutants
4.5. Role of Nutrition in Mitigating PM Effects
4.6. Applications of Artificial Intelligence in PM Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADHD | Attention-deficit/hyperactivity disorder |
AI | Artificial intelligence |
ASD | Autism spectrum disorder |
CNS | Central nervous system |
COPD | Chronic obstructive pulmonary disease |
DC | Dendritic cell |
DDT | Dichlordiphenyltrichlorethan |
EPA | Environmental Protection Agency |
HEPA | High-efficiency particulate air |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
NAAQS | National Ambient Air Quality Standards |
NK | Natural killer cell |
PAH | Polycyclic aromatic hydrocarbons |
PCB | Polychlorinated biphenyl |
PM | Particulate matter |
ROS | Reactive oxygen species |
Th17 | T helper 17 cell |
Th2 | T helper 2 cell |
TLR | Toll-like receptor |
TNF-α | Tumor necrosis factor-alpha |
Treg | Regulatory T cell |
UFP | Ultrafine particle |
VOC | Volatile organic compound |
References
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Farley, R.; Zhou, S.; Collier, S.; Jiang, W.; Onasch, T.B.; Shilling, J.E.; Kleinman, L.; Sedlacek Iii, A.J.; Zhang, Q. Chemical Evolution of Biomass Burning Aerosols across Wildfire Plumes in the Western U.S.: From Near-Source to Regional Scales. ACS EST Air 2025, 2, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Shahpoury, P.; Schuster, J.; Harner, T. Oxidative potential of ambient particulate matter from community sites in Alberta’s oil sands region. Chemosphere 2025, 378, 144374. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Y.; Liu, B.; Luo, Z.; Zhou, G.; Mao, K. PM2.5 from automobile exhaust induces apoptosis in male rat germ cells via the ROS-UPRmt signaling pathway. PLoS ONE 2025, 20, e0313803. [Google Scholar] [CrossRef]
- Ramadan, B.S.; Rosmalina, R.T.; Syafrudin; Munawir; Khair, H.; Widiyanti, A.; Rachman, I.; Matsumoto, T. Potential exposure to metals-bound particulate during open burning of different waste materials. Environ. Monit. Assess. 2025, 197, 495. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, P. Environmental threats posed by xenobiotics. In Bioremediation of Emerging Contaminants from Soils: Soil Health Conservation for Improved Ecology and Food Security; Kumar, P., Chaudhary, V., van Hullebusch, E.D., Busquets, R., Srivastav, A.L., Eds.; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2024; pp. 183–201. ISBN 9780443139932. [Google Scholar]
- Balachandar, R.; Viramgami, A.; Singh, D.P.; Kulkarni, N.; Chudasama, B.; Sivaperumal, P.; Upadhyay, K. Association between chronic PM2.5 exposure and neurodegenerative biomarkers in adults from critically polluted area. BMC Public Health 2025, 25, 1413. [Google Scholar] [CrossRef]
- Jung, Y.S.; Johnson, M.M.; Burke, M.; Heft-Neal, S.; Bondy, M.L.; Chinthrajah, R.S.; Cullen, M.R.; Nelson, L.; Dresser, C.; Nadeau, K.C. Fine Particulate Matter From 2020 California Wildfires and Mental Health-Related Emergency Department Visits. JAMA Netw. Open 2025, 8, e253326. [Google Scholar] [CrossRef]
- Keleb, A.; Abeje, E.T.; Daba, C.; Endawkie, A.; Tsega, Y.; Abere, G.; Mamaye, Y.; Bezie, A.E. The odds of developing asthma and wheeze among children and adolescents exposed to particulate matter: Asystematic review and meta-analysis. BMC Public Health 2025, 25, 1225. [Google Scholar] [CrossRef]
- Sidwell, A.; Smith, S.C.; Roper, C. A comparison of fine particulate matter (PM2.5) in vivo exposure studies incorporating chemical analysis. J. Toxicol. Environ. Health B Crit. Rev. 2022, 25, 422–444. [Google Scholar] [CrossRef]
- León-Mejía, G.; Cappetta, M.; Letícia Hilário Garcia, A.; Fiorillo-Moreno, O.; Rohr, P.; Muñoz-Acevedo, A.; Miranda-Guevara, A.; Quintana-Sosa, M.; Martinez-Lopez, W.; Pêgas Henriques, J.A.; et al. Global DNA methylation and its association with genetic instability and exposure to inorganic elements and polycyclic aromatic hydrocarbons in coal mining dust. Mutagenesis 2025, 1–9. [Google Scholar] [CrossRef]
- Saldanha, Í.S.; Rocha, C.A.; Pontes, F.; Santos, R.P.; Nascimento, R.F.; Costa, A.B.; Bertoncini, B.; Cavalcante, R.M. Influence of source contributions and seasonal variations on particle-associated polycyclic aromatic hydrocarbons and cancer risks in a rapidly urbanizing South American City (Fortaleza, Brazil). Environ. Toxicol. Chem. 2025, 44, 1378–1388. [Google Scholar] [CrossRef]
- Wechselberger, C.; Messner, B.; Bernhard, D. The Role of Trace Elements in Cardiovascular Diseases. Toxics 2023, 11, 956. [Google Scholar] [CrossRef]
- Badami, M.M.; Aghaei, Y.; Sioutas, C. Impact of Emission Standards on Fine Particulate Matter Toxicity: A Long-Term Analysis in Los Angeles. Toxics 2025, 13, 140. [Google Scholar] [CrossRef]
- Faruqui, N.; Orell, S.; Dondi, C.; Leni, Z.; Kalbermatter, D.M.; Gefors, L.; Rissler, J.; Vasilatou, K.; Mudway, I.S.; Kåredal, M.; et al. Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells. Int. J. Mol. Sci. 2025, 26, 830. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sial, M.U.; Bashir, M.A.; Bilal, M.; Raza, Q.-U.-A.; Ali Raza, H.M.; Rehim, A.; Geng, Y. Pesticides Xenobiotics in Soil Ecosystem and Their Remediation Approaches. Sustainability 2022, 14, 3353. [Google Scholar] [CrossRef]
- Anzenbacher, P. Metabolism of Drugs and Other Xenobiotics; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9783527329038. [Google Scholar]
- Stapleton, P.A.; Minarchick, V.C.; McCawley, M.; Knuckles, T.L.; Nurkiewicz, T.R. Xenobiotic particle exposure and microvascular endpoints: A call to arms. Microcirculation 2012, 19, 126–142. [Google Scholar] [CrossRef]
- Mussalo, L.; Avesani, S.; Shahbaz, M.A.; Závodná, T.; Saveleva, L.; Järvinen, A.; Lampinen, R.; Belaya, I.; Krejčík, Z.; Ivanova, M.; et al. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. Sci. Total Environ. 2023, 905, 167038. [Google Scholar] [CrossRef]
- Patterson, A.D.; Gonzalez, F.J.; Idle, J.R. Xenobiotic metabolism: A view through the metabolometer. Chem. Res. Toxicol. 2010, 23, 851–860. [Google Scholar] [CrossRef]
- Zhu, Y.; Boye, A.; Body-Malapel, M.; Herkovits, J. The Toxic Effects of Xenobiotics on the Health of Humans and Animals. BioMed Res. Int. 2017, 2017, 4627872. [Google Scholar] [CrossRef] [PubMed]
- Ramaka, S. Xenobiotics in Health and Disease: The Two Sides of a Coin: A Clinician’s Perspective. Open Acc. J. Toxicol. 2020, 4, 555641. [Google Scholar] [CrossRef]
- Ghio, A.J.; Kummarapurugu, S.T.; Tong, H.; Soukup, J.M.; Dailey, L.A.; Boykin, E.; Ian Gilmour, M.; Ingram, P.; Roggli, V.L.; Goldstein, H.L.; et al. Biological effects of desert dust in respiratory epithelial cells and a murine model. Inhal. Toxicol. 2014, 26, 299–309. [Google Scholar] [CrossRef]
- Hammond, J.; Maher, B.A.; Gonet, T.; Bautista, F.; Allsop, D. Oxidative Stress, Cytotoxic and Inflammatory Effects of Urban Ultrafine Road-Deposited Dust from the UK and Mexico in Human Epithelial Lung (Calu-3) Cells. Antioxidants 2022, 11, 1814. [Google Scholar] [CrossRef]
- Dahl, A.R.; Lewis, J.L. Respiratory tract uptake of inhalants and metabolism of xenobiotics. Annu. Rev. Pharmacol. Toxicol. 1993, 33, 383–407. [Google Scholar] [CrossRef]
- Brittebo, E.B.; Brandt, I. Interactions of xenobiotics in the respiratory tract following non-inhalation routes of exposure. Int. J. Epidemiol. 1990, 19 (Suppl. S1), S24–S31. [Google Scholar] [CrossRef]
- Collins, S.L.; Patterson, A.D. The gut microbiome: An orchestrator of xenobiotic metabolism. Acta Pharm. Sin. B 2020, 10, 19–32. [Google Scholar] [CrossRef]
- Thomson, E.M.; Vladisavljevic, D.; Mohottalage, S.; Kumarathasan, P.; Vincent, R. Mapping acute systemic effects of inhaled particulate matter and ozone: Multiorgan gene expression and glucocorticoid activity. Toxicol. Sci. 2013, 135, 169–181. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Kimura, S. Understanding the role of xenobiotic-metabolism in chemical carcinogenesis using gene knockout mice. Mutat. Res. 2001, 477, 79–87. [Google Scholar] [CrossRef]
- Stradtman, S.C.; Freeman, J.L. Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine. Toxics 2021, 9, 207. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Li, J.; Liao, J.; Liu, J.; Hu, C.; Sun, X.; Zheng, T.; Xia, W.; Xu, S.; et al. Prenatal and early postnatal exposure to ambient particulate matter and early childhood neurodevelopment: A birth cohort study. Environ. Res. 2022, 210, 112946. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Thompson, J.E. Airborne Particulate Matter: Human Exposure and Health Effects. J. Occup. Environ. Med. 2018, 60, 392–423. [Google Scholar] [CrossRef]
- Iqbal, S.; Ramini, A.; Kaja, S. Impact of particulate matter and air pollution on ocular surface disease: A systematic review of preclinical and clinical evidence. Ocul. Surf. 2025, 35, 100–116. [Google Scholar] [CrossRef]
- Löndahl, J.; Möller, W.; Pagels, J.H.; Kreyling, W.G.; Swietlicki, E.; Schmid, O. Measurement techniques for respiratory tract deposition of airborne nanoparticles: A critical review. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 229–254. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Sun, S.; Dong, Y.; Tian, Z.; Zhan, L.; Wang, X. Effects of urban particulate matter on the quality of erythrocytes. Chemosphere 2023, 313, 137560. [Google Scholar] [CrossRef]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef]
- Nemmar, A.; Hoet, P.H.M.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaerts, M.F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. Passage of inhaled particles into the blood circulation in humans. Circulation 2002, 105, 411–414. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 2002, 65, 1513–1530. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 2001, 109 (Suppl. S4), 547–551. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, P.G.; Wang, S.-W.; Vyas, V.M.; Sun, Q.; Burke, J.; Vedantham, R.; McCurdy, T.; Ozkaynak, H. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, Q.; Song, E.; Song, Y. Characterization of blood protein adsorption on PM2.5 and its implications on cellular uptake and cytotoxicity of PM2.5. J. Hazard. Mater. 2021, 414, 125499. [Google Scholar] [CrossRef]
- Michael, S.; Montag, M.; Dott, W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. 2013, 183, 19–29. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Peters, A.; Veronesi, B.; Calderón-Garcidueñas, L.; Gehr, P.; Chen, L.C.; Geiser, M.; Reed, W.; Rothen-Rutishauser, B.; Schürch, S.; Schulz, H. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol. 2006, 3, 13. [Google Scholar] [CrossRef]
- Noh, K.; Thi, L.T.; Jeong, B.R. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environ. Sci. Pollut. Res. Int. 2019, 26, 25762–25774. [Google Scholar] [CrossRef]
- Kong, H.K.; Yoon, D.K.; Lee, H.W.; Lee, C.M. Evaluation of particulate matter concentrations according to cooking activity in a residential environment. Environ. Sci. Pollut. Res. Int. 2021, 28, 2443–2456. [Google Scholar] [CrossRef]
- Hussain, N.; Jaitley, V.; Florence, A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 2001, 50, 107–142. [Google Scholar] [CrossRef]
- Delon, L.; Gibson, R.J.; Prestidge, C.A.; Thierry, B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J. Control. Release 2022, 343, 584–599. [Google Scholar] [CrossRef]
- Sun, D.; Liu, C.; Zhu, Y.; Yu, C.; Guo, Y.; Sun, D.; Pang, Y.; Pei, P.; Du, H.; Yang, L.; et al. Long-Term Exposure to Fine Particulate Matter and Incidence of Esophageal Cancer: A Prospective Study of 0.5 Million Chinese Adults. Gastroenterology 2023, 165, 61–70.e5. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Chen, Y.; Song, G.; Zhang, H.; Huang, K.; Luo, Y.; Cheng, N. Discovery and solution for microplastics: New risk carriers in food. Food Chem. 2025, 471, 142784. [Google Scholar] [CrossRef]
- Balasch, A.; Moreno, T.; Eljarrat, E. Assessment of Daily Exposure to Organophosphate Esters through PM2.5 Inhalation, Dust Ingestion, and Dermal Contact. Environ. Sci. Technol. 2023, 57, 20669–20677. [Google Scholar] [CrossRef]
- Fernando, P.D.S.M.; Piao, M.J.; Zhen, A.X.; Ahn, M.J.; Yi, J.M.; Choi, Y.H.; Hyun, J.W. Extract of Cornus officinalis Protects Keratinocytes from Particulate Matter-induced Oxidative Stress. Int. J. Med. Sci. 2020, 17, 63–70. [Google Scholar] [CrossRef]
- Piao, M.J.; Ahn, M.J.; Kang, K.A.; Ryu, Y.S.; Hyun, Y.J.; Shilnikova, K.; Zhen, A.X.; Jeong, J.W.; Choi, Y.H.; Kang, H.K.; et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch. Toxicol. 2018, 92, 2077–2091. [Google Scholar] [CrossRef]
- Yang, Q.; Li, K.; Li, D.; Zhang, Y.; Liu, X.; Wu, K. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed. Pharmacother. 2019, 117, 109177. [Google Scholar] [CrossRef]
- Yu, D.; Cai, W.; Shen, T.; Wu, Y.; Ren, C.; Li, T.; Hu, C.; Zhu, M.; Yu, J. PM2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol. Toxicol. 2023, 39, 2615–2630. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Patra, A.K.; Gorai, A.K. A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges. Asia-Pac. J. Atmos. Sci. 2021, 57, 679–699. [Google Scholar] [CrossRef]
- Batista, T.; Jamal, S.A.; Isbaex, C. Sentinel Data for Monitoring of Pollutant Emissions by Maritime Transport—A Literature Review. Remote Sens. 2025, 17, 2202. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Saisana, M. Multi-objective optimization of air quality monitoring. Environ. Monit. Assess. 2008, 136, 87–99. [Google Scholar] [CrossRef]
- Schäfer, K.; Fömmel, G.; Hoffmann, H.; Briz, S.; Junkermann, W.; Emeis, S.; Jahn, C.; Leipold, S.; Sedlmaier, A.; Dinev, S.; et al. Three-Dimensional Ground-Based Measurements of Urban Air Quality to Evaluate Satellite Derived Interpretations for Urban Air Pollution. Water Air Soil Pollut. Focus 2002, 2, 91–102. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Pasch, A.N.; Szykman, J.J.; Zhang, L.; Wang, Y.X.; Chen, D. Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. Environ. Sci. Technol. 2012, 46, 11971–11978. [Google Scholar] [CrossRef]
- Terenzi, V.; Tratzi, P.; Paolini, V.; Ianniello, A.; Barnaba, F.; Bassani, C. Comprehensive Validation of MODIS-MAIAC Aerosol Products and Long-Term Aerosol Detection over an Urban–Rural Area Around Rome in Central Italy. Remote Sens. 2025, 17, 2051. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, G.; Zhao, N. Integrate machine learning and geostatistics for high-resolution mapping of ground-level PM2.5 concentrations. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health; Li, L., Ed.; Elsevier: San Diego, CA, USA, 2020; pp. 135–151. ISBN 9780128158227. [Google Scholar]
- Yadollahi, R.; Vasilev, K.; Simovic, S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. J. Nanomater. 2015, 2015, 216375. [Google Scholar] [CrossRef]
- Nikam, T.; Nikam, R.; Sharma, Y.; Patil, D. Applications Of Nanoparticle System In Drug Delivery Technology. Int. J. Pharm. Sci. 2024, 2, 103–118. [Google Scholar] [CrossRef]
- Chaiwong, W.; Liwsrisakun, C.; Inchai, J.; Duangjit, P.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Niyatiwatchanchai, N.; et al. Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter. J. Clin. Med. 2025, 14, 2360. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Y.; Liu, C.; Tian, Y.; Xia, D.; Liu, Z.; Pan, L.; Xiong, M.; Xiong, J.; Meng, L.; et al. Fine Particulate Matter Triggers α-Synuclein Fibrillization and Parkinson-like Neurodegeneration. Mov. Disord. 2022, 37, 1817–1830. [Google Scholar] [CrossRef]
- Jiang, L.; Shao, M.; Song, C.; Zhou, L.; Nie, W.; Yu, H.; Wang, S.; Liu, Y.; Yu, L. The Role of Epigenetic Mechanisms in the Development of PM2.5-Induced Cognitive Impairment. Toxics 2025, 13, 119. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, Y.; Liu, C.; Dai, Z.; Liang, X.; Zhang, N.; Wu, W.; Wen, J.; Zhang, H. The causal effect of air pollution on the risk of essential hypertension: A Mendelian randomization study. Front. Public Health 2024, 12, 1247149. [Google Scholar] [CrossRef]
- Jung, G.S.; Lee, J.H.; Lee, M.J.; Lee, I.; Park, H.; Kim, N.; Kim, J.-Y.; Im, W.; Cho, S.; Choi, Y.S. Effects of chronic particulate matter exposure on endometriosis-associated signaling pathways and disease progression. Mol. Hum. Reprod. 2025, 31, gaaf013. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Huang, C.; Chen, L.; Zhang, X.; Tian, W. The association between particulate matter 2.5 and thyroid function and thyroid cancer: A meta-analysis. Int. Arch. Occup. Environ. Health 2025, 98, 267–282. [Google Scholar] [CrossRef]
- Li, F.; Duan, X.; Li, M.; Gao, Y.; Kang, Y.; Zheng, W.; Guo, X.; Chen, Y. Environmental pollution and human fertility: Investigating the relationship between PM2.5 exposure and assisted reproductive technology outcomes. BMC Public Health 2025, 25, 1357. [Google Scholar] [CrossRef]
- Chapizanis, D.; Karakitsios, S.; Gotti, A.; Sarigiannis, D.A. Assessing personal exposure using Agent Based Modelling informed by sensors technology. Environ. Res. 2021, 192, 110141. [Google Scholar] [CrossRef]
- Karakoltzidis, A.; Agalliadou, A.; Kermenidou, M.; Nikiforou, F.; Chatzimpaloglou, A.; Feleki, E.; Karakitsios, S.; Gotti, A.; Sarigiannis, D.A. Agent-based modelling: A stochastic approach to assessing personal exposure to environmental pollutants-Insights from the URBANOME project. Sci. Total Environ. 2025, 967, 178804. [Google Scholar] [CrossRef]
- Syama, K.P.; Blais, E.; Kumarathasan, P. Maternal mechanisms in air pollution exposure-related adverse pregnancy outcomes: A systematic review. Sci. Total Environ. 2025, 970, 178999. [Google Scholar] [CrossRef]
- Rivera Rivera, N.Y.; Tamayo-Ortiz, M.; Mercado García, A.; Just, A.C.; Kloog, I.; Téllez-Rojo, M.M.; Wright, R.O.; Wright, R.J.; Rosa, M.J. Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environ. Res. 2021, 192, 110365. [Google Scholar] [CrossRef]
- Gheissari, R.; Liao, J.; Garcia, E.; Pavlovic, N.; Gilliland, F.D.; Xiang, A.H.; Chen, Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. Toxics 2022, 10, 458. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Kermenidou, M.; Nikolaki, S.; Zikopoulos, D.; Semelidis, S.; Papagiannakis, A.; Tzimou, R. Total exposure to airborne particulate matter in cities: The effect of biomass combustion. Sci. Total Environ. 2014, 493, 795–805. [Google Scholar] [CrossRef]
- Ma, X.; Zou, B.; Deng, J.; Gao, J.; Longley, I.; Xiao, S.; Guo, B.; Wu, Y.; Xu, T.; Xu, X.; et al. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. Environ. Int. 2024, 183, 108430. [Google Scholar] [CrossRef]
- Wan Azmi, W.N.F.; Pillai, T.R.; Latif, M.T.; Shaharudin, R.; Koshy, S. Development of land use regression model to estimate particulate matter (PM10) and nitrogen dioxide (NO2) concentrations in Peninsular Malaysia. Atmos. Environ. X 2024, 21, 100244. [Google Scholar] [CrossRef]
- Cai, J.; Ge, Y.; Li, H.; Yang, C.; Liu, C.; Meng, X.; Wang, W.; Niu, C.; Kan, L.; Schikowski, T.; et al. Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations. Atmos. Environ. 2020, 223, 117267. [Google Scholar] [CrossRef]
- Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.-H.; Doerfler, D.; Gordon, T.; Devlin, R.B. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal. Toxicol. 2007, 19 (Suppl. S1), 7–16. [Google Scholar] [CrossRef]
- Bakr, S.; Sayed, M.A.; Salem, K.M.; Morsi, E.M.; Masoud, M.; Ezzat, E.M. Lead (Pb) and cadmium (Cd) blood levels and potential hematological health risk among inhabitants of the claimed hazardous region around Qaroun Lake in Egypt. BMC Public Health 2023, 23, 1071. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- Vidrio, E.; Jung, H.; Anastasio, C. Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions. Atmos. Environ. 2008, 42, 4369–4379. [Google Scholar] [CrossRef] [PubMed]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef]
- Zhang, H.; Han, Y.; Qiu, X.; Wang, Y.; Li, W.; Liu, J.; Chen, X.; Li, R.; Xu, F.; Chen, W.; et al. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals. Chemosphere 2020, 253, 126748. [Google Scholar] [CrossRef]
- Ju, S.; Lim, L.; Ki, Y.-J.; Choi, D.-H.; Song, H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part. Fibre Toxicol. 2022, 19, 29. [Google Scholar] [CrossRef]
- Bowman, J.D.; Surani, S.; Horseman, M.A. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease. Curr. Cardiol. Rev. 2017, 13, 86–93. [Google Scholar] [CrossRef]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.P.; Guilarte, T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. 2013, 2, 99–114. [Google Scholar] [CrossRef]
- Bakulski, K.M.; Seo, Y.A.; Hickman, R.C.; Brandt, D.; Vadari, H.S.; Hu, H.; Park, S.K. Heavy Metals Exposure and Alzheimer’s Disease and Related Dementias. J. Alzheimers. Dis. 2020, 76, 1215–1242. [Google Scholar] [CrossRef] [PubMed]
- Jager, T.; Ashauer, R. How to Evaluate the Quality of Toxicokinetic-Toxicodynamic Models in the Context of Environmental Risk Assessment. Integr. Environ. Assess. Manag. 2018, 14, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Yin, Y.; Chen, K.; Zhen, X.; Zhang, X.; Jiang, H.; Wang, H.; Kuang, X.; Cui, Y.; Dai, M.; et al. Concentration and atmospheric transport of PM2.5-bound polycyclic aromatic hydrocarbons at Mount Tai, China. Sci. Total Environ. 2021, 786, 147513. [Google Scholar] [CrossRef]
- Butler, J.D.; Crossley, P. Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmos. Environ. (1967) 1981, 15, 91–94. [Google Scholar] [CrossRef]
- Turner, A.; Ip, K.-H. Bioaccessibility of metals in dust from the indoor environment: Application of a physiologically based extraction test. Environ. Sci. Technol. 2007, 41, 7851–7856. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Zhu, T.; Wang, J.; Ye, M. Modeling of dioxin adsorption on activated carbon. Chem. Eng. J. 2016, 283, 1210–1215. [Google Scholar] [CrossRef]
- Islam, N.; Saikia, B.K. An overview on atmospheric carbonaceous particulate matter into carbon nanomaterials: A new approach for air pollution mitigation. Chemosphere 2022, 303, 135027. [Google Scholar] [CrossRef]
- Barsanti, K.C.; Pankow, J.F. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids. Atmos. Environ. 2006, 40, 6676–6686. [Google Scholar] [CrossRef]
- Das, D.; Gaur, V.; Verma, N. Removal of volatile organic compound by activated carbon fiber. Carbon 2004, 42, 2949–2962. [Google Scholar] [CrossRef]
- Obeng, G.M.; Aram, S.A.; Agyei, D.; Saalidong, B.M. Exposure to particulate matter (PM2.5) and volatile organic compounds (VOCs), and self-reported health symptoms among fish smokers: A case study in the Western Region of Ghana. PLoS ONE 2023, 18, e0283438. [Google Scholar] [CrossRef] [PubMed]
- Shiru, G.A.; Auta, M.; Mustapha, S.A. Removal of Phosphate and Ammonium Ion from Domestic Wastewater Using Clay Feldspar in Wupa Sewage Treatment Plant Abuja. Univ. J. Green Chem. 2024, 2, 218–228. [Google Scholar] [CrossRef]
- Hammond, C.M.; Root, R.A.; Maier, R.M.; Chorover, J. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochim. Cosmochim. Acta 2020, 286, 306–323. [Google Scholar] [CrossRef]
- Berro, Y.; Gueddida, S.; Lebègue, S.; Pasc, A.; Canilho, N.; Kassir, M.; Hassan, F.E.H.; Badawi, M. Atomistic description of phenol, CO and H2O adsorption over crystalline and amorphous silica surfaces for hydrodeoxygenation applications. Appl. Surf. Sci. 2019, 494, 721–730. [Google Scholar] [CrossRef]
- Zaady, E.; Sarig, S.; Katra, I. Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis. Agronomy 2022, 12, 1826. [Google Scholar] [CrossRef]
- Malusá, E.; Tartanus, M.; Danelski, W.; Miszczak, A.; Szustakowska, E.; Kicińska, J.; Furmanczyk, E.M. Monitoring of DDT in Agricultural Soils under Organic Farming in Poland and the Risk of Crop Contamination. Environ. Manag. 2020, 66, 916–929. [Google Scholar] [CrossRef]
- Balasubramani, A.; Howell, N.L.; Rifai, H.S. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon. Sci. Total Environ. 2014, 473–474, 702–713. [Google Scholar] [CrossRef]
- Mataix, M.; Rodríguez-Luna, A.; Gutiérrez-Pérez, M.; Milani, M.; Gandarillas, A.; Espada, J.; Pérez-Davó, A. Deschampsia antarctica extract (Edafence®) as a powerful skin protection tool against the aging exposome. Plast. Aesthet. Res. 2020, 7, 69. [Google Scholar] [CrossRef]
- Barouki, R. Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie 2010, 92, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Alakesh, A.; Jhunjhunwala, S. The consequences of particle uptake on immune cells. Trends Pharmacol. Sci. 2022, 43, 305–320. [Google Scholar] [CrossRef]
- Pagán, A.J.; Ramakrishnan, L. The Formation and Function of Granulomas. Annu. Rev. Immunol. 2018, 36, 639–665. [Google Scholar] [CrossRef] [PubMed]
- Woodard, B.H.; Rosenberg, S.I.; Farnham, R.; Adams, D.O. Incidence and nature of primary granulomatous inflammation in surgically removed material. Am. J. Surg. Pathol. 1982, 6, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Pierik, M.; de Hertogh, G.; Vermeire, S.; van Assche, G.; van Eyken, P.; Joossens, S.; Claessens, G.; Vlietinck, R.; Rutgeerts, P.; Geboes, K. Epithelioid granulomas, pattern recognition receptors, and phenotypes of Crohn’s disease. Gut 2005, 54, 223–227. [Google Scholar] [CrossRef]
- Rosen, Y. Pathology of Granulomatous Pulmonary Diseases. Arch. Pathol. Lab. Med. 2022, 146, 233–251. [Google Scholar] [CrossRef]
- Nair, N.; Patrick, H.; Narula, J. Particulate matter granulomas masquerading as sarcoidosis: A diagnostic dilemma. Biomol. Concepts 2015, 6, 229–233. [Google Scholar] [CrossRef]
- Shah, K.K.; Pritt, B.S.; Alexander, M.P. Histopathologic review of granulomatous inflammation. J. Clin. Tuberc. Other Mycobact. Dis. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Nakamizo, S.; Kabashima, K. Cutaneous granulomas: Mechanisms, cellular interactions and therapeutic insights. Br. J. Dermatol. 2025, 192, 974–982. [Google Scholar] [CrossRef]
- Grammatikos, A.; Gennery, A.R. Inflammatory Complications in Chronic Granulomatous Disease. J. Clin. Med. 2024, 13, 1092. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.M.; Pasciuto, G.; Verrecchia, E.; Sicignano, L.L.; Gerardino, L.; Massaro, M.G.; Urbani, A.; Manna, R. Sarcoidosis and Cancer: The Role of the Granulomatous Reaction as a Double-Edged Sword. J. Clin. Med. 2024, 13, 5232. [Google Scholar] [CrossRef] [PubMed]
- Faurschou, M.; Omland, L.H.; Obel, N.; Lindhardsen, J.; Baslund, B. Risk of Cancer Among Sarcoidosis Patients With Biopsy-verified Nonnecrotizing Granulomatous Inflammation: Population-based Cohort Study. J. Rheumatol. 2022, 49, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.-K.; Huang, R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 2023, 4, e327. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef]
- Krause, S.; Ouellet, V.; Allen, D.; Allen, S.; Moss, K.; Nel, H.A.; Manaseki-Holland, S.; Lynch, I. The potential of micro- and nanoplastics to exacerbate the health impacts and global burden of non-communicable diseases. Cell Rep. Med. 2024, 5, 101581. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environ. Pollut. 2024, 343, 123190. [Google Scholar] [CrossRef]
- Alijagic, A.; Suljević, D.; Fočak, M.; Sulejmanović, J.; Šehović, E.; Särndahl, E.; Engwall, M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. Environ. Int. 2024, 188, 108736. [Google Scholar] [CrossRef]
- Vignesh, A.; Menaka, C.; Amal, T.C.; Selvakumar, S.; Vasanth, K. Exploring the dual impact of nanoparticles on human well-being: A comprehensive review of risks and benefits. Next Nanotechnol. 2025, 8, 100223. [Google Scholar] [CrossRef]
- Liu, Z.J.; Roy, A.; Zheng, Y.; Annabi, N. Harnessing carbon nanomaterials for reactive oxygen species regulation: Insights into generation, scavenging, and sensing. Adv. Drug Deliv. Rev. 2025, 224, 115651. [Google Scholar] [CrossRef]
- Juan, C.A.; La Pérez de Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, Y.; Tang, L.; Ye, L.; Chen, C.; Ling, Q.; Wang, X.; He, L.; Chen, X.; Wang, Y.; et al. Topical Application of VitB6 Ameliorates PM2.5-Induced Dry Eye via NFκB Pathway in a Murine Model. Biomedicines 2025, 13, 541. [Google Scholar] [CrossRef]
- Herath, H.M.U.L.; Piao, M.J.; Kang, K.A.; Fernando, P.D.S.M.; Hyun, C.; Cho, S.J.; Hyun, J.W. The mitigation mechanism of morin on PM2.5-induced apoptosis by inhibiting mitochondrial damage via the ROS/ERK signaling pathway in human HaCaT keratinocytes. Int. J. Environ. Health Res. 2025, 1–16. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, W.; Liao, R.; Cao, W.; Huang, F.; Wang, X.; Li, M.; Li, Y. Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 812. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, X.; Zhang, L.; Wu, W.; Zhou, R.; Li, S.; Liu, Y.; Tan, F.; Han, X.; Wang, Q.; et al. PM2.5 regulates TGF-β1/Smads-mediated pulmonary fibrosis via ROS/SnoN in vitro and in vivo. Int. Immunopharmacol. 2025, 153, 114477. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.-P.; He, X.-L.; Jia, Z.-H.; Hu, S.-H.; Feng, X.; Jiang, Y.-H.; Li, Q.; Zhao, L.-Q.; Cui, X.-L.; Ye, S.-Y.; et al. Midkine, a novel MCP-1 activator mediated PM2.5-aggravated experimental pulmonary fibrosis. Environ. Int. 2025, 197, 109354. [Google Scholar] [CrossRef]
- Zhao, C.; Pu, W.; Wazir, J.; Jin, X.; Wei, L.; Song, S.; Su, Z.; Li, J.; Deng, Y.; Wang, H. Long-term exposure to PM2.5 aggravates pulmonary fibrosis and acute lung injury by disrupting Nrf2-mediated antioxidant function. Environ. Pollut. 2022, 313, 120017. [Google Scholar] [CrossRef]
- Lelieveld, S.; Wilson, J.; Dovrou, E.; Mishra, A.; Lakey, P.S.J.; Shiraiwa, M.; Pöschl, U.; Berkemeier, T. Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species. Environ. Sci. Technol. 2021, 55, 14069–14079. [Google Scholar] [CrossRef]
- Libalova, H.; Milcova, A.; Cervena, T.; Vrbova, K.; Rossnerova, A.; Novakova, Z.; Topinka, J.; Rossner, P. Kinetics of ROS generation induced by polycyclic aromatic hydrocarbons and organic extracts from ambient air particulate matter in model human lung cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018, 827, 50–58. [Google Scholar] [CrossRef]
- Weber, S.A.; Insaf, T.Z.; Hall, E.S.; Talbot, T.O.; Huff, A.K. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ. Res. 2016, 151, 399–409. [Google Scholar] [CrossRef]
- Liu, K.; Shi, M.; Li, X.; Zeng, X.; Liu, X. Curcumin Modulates the PTEN/PI3K/AKT Pathway to Alleviate Inflammation and Oxidative Stress in PM2.5-Induced Chronic Obstructive Pulmonary Disease. Food Chem. Toxicol. 2025, 201, 115460. [Google Scholar] [CrossRef]
- Shi, M.; Liu, K.; Li, X.; Zeng, X.-L.; Liu, X.-J. Melatonin ameliorates PM2.5-induced airway inflammation and apoptosis by PERK/eIF2α/ATF4/CHOP in chronic obstructive pulmonary disease mice. Toxicol. Appl. Pharmacol. 2025, 499, 117314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Zhang, T.; Wu, Y.; Xi, Y.; Wu, T.; Li, M.; Li, Y.; Zhou, S.; Wu, M.; et al. Circulating Interleukin-6 Mediates PM2.5-Induced Ovarian Injury by Suppressing the PPARγ Pathway. Research 2024, 7, 538. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Liu, Y.; Wang, Z.; Wang, X.; Han, Z.; Yan, X.; Meng, A. PM2.5 activated NLRP3 inflammasome and IL-1β release in MH-S cells by facilitating autophagy via activating Wnt5a. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221137464. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.; Hassanvand, M.S.; Baeeri, M.; Gholami, M.; Bayrami, Z.; Yunesian, M.; Sahraian, M.A.; Nikfar, S.; Abdollahi, M. Exploring the impact of ambient air PM2.5 on multiple sclerosis: An experimental dive into neuroinflammation. Toxicol. Mech. Methods 2025, 35, 581–591. [Google Scholar] [CrossRef]
- Zeng, F.; Pang, G.; Hu, L.; Sun, Y.; Peng, W.; Chen, Y.; Xu, D.; Xia, Q.; Zhao, L.; Li, Y.; et al. Subway Fine Particles (PM2.5)-Induced Pro-Inflammatory Response Triggers Airway Epithelial Barrier Damage Through the TLRs/NF-κB-Dependent Pathway In Vitro. Environ. Toxicol. 2024, 39, 5296–5308. [Google Scholar] [CrossRef]
- Le, Y.; Hu, X.; Zhu, J.; Wang, C.; Yang, Z.; Lu, D. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol. Ind. Health 2019, 35, 670–678. [Google Scholar] [CrossRef]
- Chen, P.; Ning, X.; Feng, W.; Li, Y.; Chen, G.; Shi, X.; Pan, Y.; Shi, X.; Xiao, Y.; Liu, Y.; et al. Chronic Exposure to Bioaerosols in PM2.5 from Garbage Stations Accelerates Vascular Aging via the NF-κB/NLRP3 Pathway. Adv. Sci. 2024, 11, e2404142. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Shi, Y.; Jiang, J.; Du, Z.; Chen, R.; Duan, J.; Sun, Z. Subacute exposure of PM2.5 induces airway inflammation through inflammatory cell infiltration and cytokine expression in rats. Chemosphere 2020, 251, 126423. [Google Scholar] [CrossRef]
- Sun, N.; Shi, H.; Li, X.; Gao, C.; Liu, R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. Environ. Int. 2023, 171, 107711. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A.; Linnea-Niemi, J.V.; Kudłak, B.; Williams, M.J.; Jönsson, J.; Schiöth, H.B. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. Geohealth 2022, 6, e2021GH000552. [Google Scholar] [CrossRef] [PubMed]
- Grytting, V.S.; Chand, P.; Låg, M.; Øvrevik, J.; Refsnes, M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part. Fibre Toxicol. 2022, 19, 14. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; de Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, A.; Park, S.B.; Lee, S.-J.; Moon, Y. Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. Toxics 2021, 9, 18. [Google Scholar] [CrossRef]
- Holme, J.A.; Låg, M.; Skuland, T.; Parenicová, M.; Ciganek, M.; Penciková, K.; Grytting, V.S.; Neca, J.; Øvrevik, J.; Mariussen, E.; et al. Characterization of elements, PAHs, AhR-activity and pro-inflammatory responses of road tunnel-derived particulate matter in human hepatocyte-like and bronchial epithelial cells. Toxicol. In Vitr. 2023, 90, 105611. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Moretti, J.; Blander, J.M. Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr. Opin. Immunol. 2014, 26, 100–110. [Google Scholar] [CrossRef]
- Park, S.-H.; Yoon, S.-J.; Choi, S.; Jung, J.; Park, J.-Y.; Park, Y.-H.; Seo, J.; Lee, J.; Lee, M.-S.; Lee, S.-J.; et al. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. Exp. Mol. Med. 2022, 54, 1901–1912. [Google Scholar] [CrossRef]
- Valderrama, A.; Zapata, M.I.; Hernandez, J.C.; Cardona-Arias, J.A. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020. Heliyon 2022, 8, e08778. [Google Scholar] [CrossRef]
- Taylor-Blair, H.C.; Siu, A.C.W.; Haysom-McDowell, A.; Kokkinis, S.; Bani Saeid, A.; Chellappan, D.K.; Oliver, B.G.G.; Paudel, K.R.; de Rubis, G.; Dua, K. The impact of airborne particulate matter-based pollution on the cellular and molecular mechanisms in chronic obstructive pulmonary disease (COPD). Sci. Total Environ. 2024, 954, 176413. [Google Scholar] [CrossRef]
- Matthews, N.C.; Pfeffer, P.E.; Mann, E.H.; Kelly, F.J.; Corrigan, C.J.; Hawrylowicz, C.M.; Lee, T.H. Urban Particulate Matter-Activated Human Dendritic Cells Induce the Expansion of Potent Inflammatory Th1, Th2, and Th17 Effector Cells. Am. J. Respir. Cell Mol. Biol. 2016, 54, 250–262. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Ho, T.R.; Mann, E.H.; Kelly, F.J.; Sehlstedt, M.; Pourazar, J.; Dove, R.E.; Sandstrom, T.; Mudway, I.S.; Hawrylowicz, C.M. Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology 2018, 153, 502–512. [Google Scholar] [CrossRef]
- Gałuszka, A.; Stec, M.; Węglarczyk, K.; Kluczewska, A.; Siedlar, M.; Baran, J. Transition Metal Containing Particulate Matter Promotes Th1 and Th17 Inflammatory Response by Monocyte Activation in Organic and Inorganic Compounds Dependent Manner. Int. J. Environ. Res. Public Health 2020, 17, 1227. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, J.F.; Romo-Martínez, E.J.; Durán-Avelar, M.d.J.; García-Magallanes, N.; Vibanco-Pérez, N. Th17 cells in autoimmune and infectious diseases. Int. J. Inflam. 2014, 2014, 651503. [Google Scholar] [CrossRef] [PubMed]
- Hafkamp, F.M.J.; Groot Kormelink, T.; de Jong, E.C. Targeting DCs for Tolerance Induction: Don’t Lose Sight of the Neutrophils. Front. Immunol. 2021, 12, 732992. [Google Scholar] [CrossRef] [PubMed]
- Mpakosi, A.; Cholevas, V.; Tzouvelekis, I.; Passos, I.; Kaliouli-Antonopoulou, C.; Mironidou-Tzouveleki, M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare 2024, 12, 1767. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Chehrazi, C.V.E.; Henderson, M.W.; Noah, T.L.; Jaspers, I. Diesel exhaust particles modify natural killer cell function and cytokine release. Part. Fibre Toxicol. 2013, 10, 16. [Google Scholar] [CrossRef]
- Tuazon, J.A.; Kilburg-Basnyat, B.; Oldfield, L.M.; Wiscovitch-Russo, R.; Dunigan-Russell, K.; Fedulov, A.V.; Oestreich, K.J.; Gowdy, K.M. Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Curr. Allergy Asthma Rep. 2022, 22, 77–92. [Google Scholar] [CrossRef]
- Kayalar, Ö.; Rajabi, H.; Konyalilar, N.; Mortazavi, D.; Aksoy, G.T.; Wang, J.; Bayram, H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front. Immunol. 2024, 15, 1324552. [Google Scholar] [CrossRef]
- Ma, J.; Chiu, Y.-F.; Kao, C.-C.; Chuang, C.-N.; Chen, C.-Y.; Lai, C.-H.; Kuo, M.-L. Fine particulate matter manipulates immune response to exacerbate microbial pathogenesis in the respiratory tract. Eur. Respir. Rev. 2024, 33, 230259. [Google Scholar] [CrossRef]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012, 2012, 782462. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Weerasinghe-Mudiyanselage, P.D.E.; Kim, B.; Kang, S.; Kim, J.-S.; Moon, C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. Ecotoxicol. Environ. Saf. 2023, 266, 115565. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Mundandhara, S.; Devlin, R.B.; Madden, M. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies. Toxicol. Appl. Pharmacol. 2005, 207, 269–275. [Google Scholar] [CrossRef]
- Farina, F.; Sancini, G.; Mantecca, P.; Gallinotti, D.; Camatini, M.; Palestini, P. The acute toxic effects of particulate matter in mouse lung are related to size and season of collection. Toxicol. Lett. 2011, 202, 209–217. [Google Scholar] [CrossRef]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Künzli, N.; Kaiser, R.; Medina, S.; Studnicka, M.; Chanel, O.; Filliger, P.; Herry, M.; Horak, F.; Puybonnieux-Texier, V.; Quénel, P.; et al. Public-health impact of outdoor and traffic-related air pollution: A European assessment. Lancet 2000, 356, 795–801. [Google Scholar] [CrossRef]
- Schins, R.P.F.; Knaapen, A.M. Genotoxicity of poorly soluble particles. Inhal. Toxicol. 2007, 19 (Suppl. S1), 189–198. [Google Scholar] [CrossRef]
- Weng, C.-M.; Wang, C.-H.; Lee, M.-J.; He, J.-R.; Huang, H.-Y.; Chao, M.-W.; Chung, K.F.; Kuo, H.-P. Aryl hydrocarbon receptor activation by diesel exhaust particles mediates epithelium-derived cytokines expression in severe allergic asthma. Allergy 2018, 73, 2192–2204. [Google Scholar] [CrossRef]
- de Homdedeu, M.; Cruz, M.; Sanchez-Díez, S.; Ojanguren, I.; Romero-Mesones, C.; Vanoirbeek, J.; Velde, G.V.; Muñoz, X. The immunomodulatory effects of diesel exhaust particles in asthma. Environ. Pollut. 2020, 263, 114600. [Google Scholar] [CrossRef]
- Takano, H.; Yoshikawa, T.; Ichinose, T.; Miyabara, Y.; Imaoka, K.; Sagai, M. Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am. J. Respir. Crit. Care Med. 1997, 156, 36–42. [Google Scholar] [CrossRef]
- Diaz-Sanchez, D.; Dotson, A.R.; Takenaka, H.; Saxon, A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J. Clin. Investig. 1994, 94, 1417–1425. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, K.; McDonald-Hyman, C.; Noth, E.M.; Pratt, B.; Hammond, S.K.; Balmes, J.; Tager, I. Ambient air pollution impairs regulatory T-cell function in asthma. J. Allergy Clin. Immunol. 2010, 126, 845–852.e10. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, K.; van Eeden, S.F. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediat. Inflamm. 2013, 2013, 619523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Huang, M.-Z.; Chen, C.-L.; Kuo, C.-Y.; Yang, C.-Y.; Chiang-Ni, C.; Chen, Y.-Y.M.; Hsieh, C.-M.; Wu, H.-Y.; Kuo, M.-L.; et al. PM2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part. Fibre Toxicol. 2020, 17, 37. [Google Scholar] [CrossRef]
- Zhao, H.; Li, W.; Gao, Y.; Li, J.; Wang, H. Exposure to particular matter increases susceptibility to respiratory Staphylococcus aureus infection in rats via reducing pulmonary natural killer cells. Toxicology 2014, 325, 180–188. [Google Scholar] [CrossRef]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. Int. 2020, 27, 42390–42404. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Baccarelli, A.; Zanobetti, A.; Martinelli, I.; Grillo, P.; Hou, L.; Lanzani, G.; Mannucci, P.M.; Bertazzi, P.A.; Schwartz, J. Air pollution, smoking, and plasma homocysteine. Environ. Health Perspect. 2007, 115, 176–181. [Google Scholar] [CrossRef]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; Park, M.V.D.Z.; Gosens, I.; de Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J. Particle size and pathogenicity in the respiratory tract. Virulence 2013, 4, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yang, Y.; Zhang, H.; Wu, W.; Dai, Z.; Liang, X.; Chen, S. PM2.5 increases the risk of early-onset COPD mediated by smoking and shared genes: A large-scale genetic analysis. Clin. Exp. Med. 2025, 25, 116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ding, X.; Zhou, L.; Song, C.; Kang, T.; Xu, Y.; Liu, Y.; Han, Y.; Zhao, W.; Zhang, B.; et al. Effect of PM2.5 exposure on susceptibility to allergic asthma in elderly rats treated with allergens. Sci. Rep. 2025, 15, 5594. [Google Scholar] [CrossRef]
- Wallis, R.S.; Broder, M.S.; Wong, J.Y.; Hanson, M.E.; Beenhouwer, D.O. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin. Infect. Dis. 2004, 38, 1261–1265. [Google Scholar] [CrossRef]
- Fallahi-Sichani, M.; El-Kebir, M.; Marino, S.; Kirschner, D.E.; Linderman, J.J. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 2011, 186, 3472–3483. [Google Scholar] [CrossRef]
- Mohan, V.P.; Scanga, C.A.; Yu, K.; Scott, H.M.; Tanaka, K.E.; Tsang, E.; Tsai, M.M.; Flynn, J.L.; Chan, J. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: Possible role for limiting pathology. Infect. Immun. 2001, 69, 1847–1855. [Google Scholar] [CrossRef]
- Im Kim, D.; Song, M.-K.; Yuk, J.E.; Seo, H.J.; Lee, K. Establishment of an artificial particulate matter-induced lung disease model through analyzing pathological changes and transcriptomic profiles in mice. Sci. Rep. 2023, 13, 5955. [Google Scholar] [CrossRef]
- Makrufardi, F.; Bai, K.-J.; Suk, C.-W.; Rusmawatiningtyas, D.; Chung, K.F.; Chuang, H.-C. Alveolar deposition of inhaled fine particulate matter increased risk of severity of pulmonary tuberculosis in the upper and middle lobes. ERJ Open Res. 2023, 9, 00064-2023. [Google Scholar] [CrossRef]
- Pan, Y.; Mei, J.; Jiang, J.; Xu, K.; Gao, X.; Jiang, S.; Liu, Y. PFAS in PMs might be the escalating hazard to the lung health. Nano Res. 2023, 16, 13113–13133. [Google Scholar] [CrossRef]
- Koyama, H.; Kamogashira, T.; Yamasoba, T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants 2024, 13, 76. [Google Scholar] [CrossRef]
- Pal, S.; Firdous, S.M. Unraveling the role of heavy metals xenobiotics in cancer: A critical review. Discov. Oncol. 2024, 15, 615. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Qiu, X.; Zhang, H.; Lu, X.; Li, H.; Chen, W.; Zhang, L.; Que, C.; Zhu, T. Association between exposure to polycyclic aromatic hydrocarbons and lipid peroxidation in patients with chronic obstructive pulmonary disease. Sci. Total Environ. 2021, 780, 146660. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Huang, Y.; Li, L.; Yu, L.; Xiao, P.; Wang, Q. Time trends in coronary heart disease mortality attributed to outdoor PM2.5 in China: An age-period-cohort analysis using the Global Burden of Disease Study 2019. Front. Public Health 2025, 13, 1517507. [Google Scholar] [CrossRef]
- Zhang, Z.; An, R.; Guo, H.; Yang, X. Effects of PM2.5 exposure and air temperature on risk of cardiovascular disease: Evidence from a prospective cohort study. Front. Public Health 2024, 12, 1487034. [Google Scholar] [CrossRef]
- Pota, P.; Suwannasom, P.; Chattipakorn, S.C.; Chattipakorn, N. From smog to scarred hearts: Unmasking the detrimental impact of air pollution on myocardial ischemia-reperfusion injury. Cell. Mol. Life Sci. 2025, 82, 65. [Google Scholar] [CrossRef]
- Miller, M.R. The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol. Ther. 2022, 232, 107996. [Google Scholar] [CrossRef]
- Song, B.; Bie, Y.; Feng, H.; Xie, B.; Liu, M.; Zhao, F. Inflammatory Factors Driving Atherosclerotic Plaque Progression New Insights. J. Transl. Int. Med. 2022, 10, 36–47. [Google Scholar] [CrossRef]
- Bezsonov, E.; Khotina, V.; Glanz, V.; Sobenin, I.; Orekhov, A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023, 11, 1424. [Google Scholar] [CrossRef]
- Afshar-Kharghan, V.; Thiagarajan, P. Leukocyte adhesion and thrombosis. Curr. Opin. Hematol. 2006, 13, 34–39. [Google Scholar] [CrossRef]
- Chanda, F.; Lin, K.-X.; Chaurembo, A.I.; Huang, J.-Y.; Zhang, H.-J.; Deng, W.-H.; Xu, Y.-J.; Li, Y.; Fu, L.-D.; Cui, H.-D.; et al. PM2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. Sci. Total Environ. 2024, 954, 176255. [Google Scholar] [CrossRef]
- Wróblewski, M.; Miłek, J.; Godlewski, A.; Wróblewska, J. The Impact of Arsenic, Cadmium, Lead, Mercury, and Thallium Exposure on the Cardiovascular System and Oxidative Mechanisms in Children. Curr. Issues Mol. Biol. 2025, 47, 483. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Zheng, W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. Toxics 2024, 12, 388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Bhattacharya, S. In vitro toxicity of mercury, cadmium, and arsenic to platelet aggregation: Influence of adenylate cyclase and phosphodiesterase activity. In Vitr. Mol. Toxicol. 2000, 13, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Bose, R.; Bhattacharya, S. Low doses of heavy metals disrupt normal structure and function of rat platelets. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 65–75. [Google Scholar] [CrossRef]
- Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am. Heart J. 2014, 168, 812–822. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, F.; Li, C. Effect of Fine Particulate Matter (PM2.5) on Rat Placenta Pathology and Perinatal Outcomes. Med. Sci. Monit. 2016, 22, 3274–3280. [Google Scholar] [CrossRef]
- Nagiah, S.; Phulukdaree, A.; Naidoo, D.; Ramcharan, K.; Naidoo, R.N.; Moodley, D.; Chuturgoon, A. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment. Hum. Exp. Toxicol. 2015, 34, 838–847. [Google Scholar] [CrossRef]
- Vornic, I.; Buciu, V.; Furau, C.G.; Gaje, P.N.; Ceausu, R.A.; Dumitru, C.-S.; Barb, A.C.; Novacescu, D.; Cumpanas, A.A.; Latcu, S.C.; et al. Oxidative Stress and Placental Pathogenesis: A Contemporary Overview of Potential Biomarkers and Emerging Therapeutics. Int. J. Mol. Sci. 2024, 25, 12195. [Google Scholar] [CrossRef]
- Duan, S.; Zheng, Y.; Tian, J.; Zhang, L. Single-cell RNA sequencing of estrual mice reveals PM2.5-induced uterine cell heterogeneity and reproductive toxicity. Ecotoxicol. Environ. Saf. 2024, 284, 116968. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wu, Y.; Li, X.; Zheng, D.; Sun, L. Personal exposure to polycyclic aromatic hydrocarbons-bound particulate matter during pregnancy and umbilical inflammation and oxidative stress. Ecotoxicol. Environ. Saf. 2025, 291, 117896. [Google Scholar] [CrossRef]
- Techapichetvanich, P.; Sillapaprayoon, S.; Vivithanaporn, P.; Pimtong, W.; Khemawoot, P. Assessing developmental and transcriptional effects of PM2.5 on zebrafish embryos. Toxicol. Rep. 2024, 12, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, T.; Cardoso Melo, R.D.; de Vries, M.; Lakerveld, J.; Zijlema, W.; Hartman, C.A. Longitudinal effects of environmental noise and air pollution exposure on autism spectrum disorder and attention-deficit/hyperactivity disorder during adolescence and early adulthood: The TRAILS study. Environ. Res. 2023, 227, 115704. [Google Scholar] [CrossRef] [PubMed]
- Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.; Lanphear, N.; Hanley, G.E.; Oberlander, T.F.; Winters, M. Association of Prenatal Exposure to Air Pollution With Autism Spectrum Disorder. JAMA Pediatr. 2019, 173, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.X.; Sampaio, P.; Rasga, C.; Martiniano, H.; Faria, C.; Café, C.; Oliveira, A.; Duque, F.; Oliveira, G.; Sousa, L.; et al. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. Environ. Res. 2023, 228, 115795. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N.; Saokaew, S. Exploring the association between early-life air pollution exposure and autism spectrum disorders in children: A systematic review and meta-analysis. Reprod. Toxicol. 2024, 125, 108582. [Google Scholar] [CrossRef]
- Roy, R.; D’Angiulli, A. Air pollution and neurological diseases, current state highlights. Front. Neurosci. 2024, 18, 1351721. [Google Scholar] [CrossRef]
- Du, X.; Guan, L.; Chen, C.; Wang, X.; Geng, X. Long-term exposure to PM2.5 exacerbates dopaminergic neuronal loss through CpG hypermethylation induced down-regulation of PINK1 and DJ-1 genes. Sci. Rep. 2025, 15, 10778. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Stommel, E.W.; Torres-Jardón, R.; Hernández-Luna, J.; Aiello-Mora, M.; González-Maciel, A.; Reynoso-Robles, R.; Pérez-Guillé, B.; Silva-Pereyra, H.G.; Tehuacanero-Cuapa, S.; et al. Alzheimer and Parkinson diseases, frontotemporal lobar degeneration and amyotrophic lateral sclerosis overlapping neuropathology start in the first two decades of life in pollution exposed urbanites and brain ultrafine particulate matter and industrial nanoparticles, including Fe, Ti, Al, V, Ni, Hg, Co, Cu, Zn, Ag, Pt, Ce, La, Pr and W are key players. Metropolitan Mexico City health crisis is in progress. Front. Hum. Neurosci. 2023, 17, 1297467. [Google Scholar] [CrossRef]
- Han, Y.; Yu, Z.; Chen, Y.; Guo, X.; Liu, Y.; Zhang, H.; Li, Z.; Chen, L. PM2.5 induces developmental neurotoxicity in cortical organoids. Environ. Pollut. 2024, 361, 124913. [Google Scholar] [CrossRef]
- Kim, M.E.; Lee, J.S. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr. Issues Mol. Biol. 2024, 47, 8. [Google Scholar] [CrossRef]
- Lepeta, K.; Lourenco, M.V.; Schweitzer, B.C.; Martino Adami, P.V.; Banerjee, P.; Catuara-Solarz, S.; de La Fuente Revenga, M.; Guillem, A.M.; Haidar, M.; Ijomone, O.M.; et al. Synaptopathies: Synaptic dysfunction in neurological disorders-A review from students to students. J. Neurochem. 2016, 138, 785–805. [Google Scholar] [CrossRef]
- Devanand, D.P.; Sano, M.; Tang, M.X.; Taylor, S.; Gurland, B.J.; Wilder, D.; Stern, Y.; Mayeux, R. Depressed mood and the incidence of Alzheimer’s disease in the elderly living in the community. Arch. Gen. Psychiatry 1996, 53, 175–182. [Google Scholar] [CrossRef]
- Reed, M.D.; Gigliotti, A.P.; McDonald, J.D.; Seagrave, J.C.; Seilkop, S.K.; Mauderly, J.L. Health effects of subchronic exposure to environmental levels of diesel exhaust. Inhal. Toxicol. 2004, 16, 177–193. [Google Scholar] [CrossRef]
- Lee, S.-H.; Chen, Y.-H.; Chien, C.-C.; Yan, Y.-H.; Chen, H.-C.; Chuang, H.-C.; Hsieh, H.-I.; Cho, K.-H.; Kuo, L.-W.; Chou, C.C.-K.; et al. Three month inhalation exposure to low-level PM2.5 induced brain toxicity in an Alzheimer’s disease mouse model. PLoS ONE 2021, 16, e0254587. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Levesque, S.; Surace, M.J.; McDonald, J.; Block, M.L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflamm. 2011, 8, 105. [Google Scholar] [CrossRef]
- Yan, Y.; Guo, F.; Liu, K.; Ding, R.; Wang, Y. The effect of endocrine-disrupting chemicals on placental development. Front. Endocrinol. 2023, 14, 1059854. [Google Scholar] [CrossRef]
- Silva-Adaya, D.; Garza-Lombó, C.; Gonsebatt, M.E. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021, 86, 125–138. [Google Scholar] [CrossRef]
- Kim, A.C.; Lim, S.; Kim, Y.K. Metal Ion Effects on Aβ and Tau Aggregation. Int. J. Mol. Sci. 2018, 19, 128. [Google Scholar] [CrossRef]
- Murata, H.; Barnhill, L.M.; Bronstein, J.M. Air Pollution and the Risk of Parkinson’s Disease: A Review. Mov. Disord. 2022, 37, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.A.; Olaniran, A.O. Neurotoxicity of Polycyclic Aromatic Hydrocarbons: A Systematic Mapping and Review of Neuropathological Mechanisms. Toxics 2022, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.S.; Alvarado, P.N.; Larrea, A.M.; Rojas, W.; Gomez-Lopera, N. Analysis of cytotoxicity and genotoxicity of diesel exhaust PM2.5 generated from diesel and dual natural gas-diesel engines. Environ. Toxicol. Pharmacol. 2025, 114, 104638. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Jiang, G.; Chen, L.; Zhou, H.; Fourches, D.; Tropsha, A.; Yan, B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 2014, 114, 7740–7781. [Google Scholar] [CrossRef]
- Arif, I.; Adams, M.D.; Johnson, M.T.J. A meta-analysis of the carcinogenic effects of particulate matter and polycyclic aromatic hydrocarbons. Environ. Pollut. 2024, 351, 123941. [Google Scholar] [CrossRef]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumie, M.; Lo Guidice, J.-M.; Courcot, D.; Garçon, G. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ. Res. 2019, 171, 510–522. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.; Yang, B.; Li, B.; Guo, J.; Xiao, C. PM2.5 induces cell cycle arrest through regulating mTOR/P70S6K1 signaling pathway. Exp. Ther. Med. 2019, 17, 4371–4378. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Chen, Q.; Huang, Y.; Zhou, D.; Yang, W.; Yang, L.; Xiong, J.; Gao, K.; Sun, L.; et al. Downregulation of tRNA methyltransferase FTSJ1 by PM2.5 promotes glycolysis and malignancy of NSCLC via facilitating PGK1 expression and translation. Cell Death Dis. 2024, 15, 911. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Jiang, Y.; Li, D.; Chen, L.; Dong, G.; Zhang, R.; Niu, Y.; Chen, W.; Chen, S. Interactions between fibroblasts and monocyte-derived cells in chronic lung injuries induced by real-ambient particulate matter exposure. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2024, 899, 503807. [Google Scholar] [CrossRef]
- Cui, A.; Xiang, M.; Xu, M.; Lu, P.; Wang, S.; Zou, Y.; Qiao, K.; Jin, C.; Li, Y.; Lu, M.; et al. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett. 2019, 302, 60–74. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Banerjee, M.; Giri, A.K. Role of genomic instability in arsenic-induced carcinogenicity. A review. Environ. Int. 2013, 53, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.; Nakanishi, M.; Yoshiyama, K.; Maki, H. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Genes Cells 2006, 11, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, A.; Maitre, A.; Lefebvre, E.; Marques, M.; Marie, C.; Ravanat, J.-L.; Douki, T. Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzoapyrene as a pure compound and in complex mixtures. Mutat. Res. 2009, 671, 67–75. [Google Scholar] [CrossRef]
- Wise, J.T.F.; Lu, H.; Meaza, I.; Wise, S.S.; Williams, A.R.; Wise, J.Y.; Mason, M.D.; Wise, J.P. Prolonged Particulate Hexavalent Chromium Exposure Induces DNA Double-Strand Breaks and Inhibits Homologous Recombination Repair in Primary Rodent Lung Cells. Biol. Trace Elem. Res. 2024, 202, 5653–5663. [Google Scholar] [CrossRef]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef]
- Wu, R.; Högberg, J.; Adner, M.; Stenius, U.; Zheng, H. Crystalline silica particles induce DNA damage in respiratory epithelium by ATX secretion and Rac1 activation. Biochem. Biophys. Res. Commun. 2021, 548, 91–97. [Google Scholar] [CrossRef]
- Miller, J.L.; Grant, P.A. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Epigenetics Dev. Dis. 2013, 61, 289–317. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Shao, C.; Tan, Y.; Cai, L. Cadmium and its epigenetic effects. Curr. Med. Chem. 2012, 19, 2611–2620. [Google Scholar] [CrossRef]
- Islam, R.; Zhao, L.; Wang, Y.; Lu-Yao, G.; Liu, L.-Z. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers 2022, 14, 4502. [Google Scholar] [CrossRef] [PubMed]
- Sobanski, T.; Rose, M.; Suraweera, A.; O’Byrne, K.; Richard, D.J.; Bolderson, E. Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Front. Cell Dev. Biol. 2021, 9, 633305. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, L.; Liang, Y.; Peng, D.; Aschner, M.; Jiang, Y. Signal transduction associated with lead-induced neurological disorders: A review. Food Chem. Toxicol. 2021, 150, 112063. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.Y.; Kaplan, G.G.; Madsen, K.L. Air pollution effects on the gut microbiota: A link between exposure and inflammatory disease. Gut Microbes 2014, 5, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Vieceli, T.; Tejada, S.; Martinez-Reviejo, R.; Pumarola, T.; Schrenzel, J.; Waterer, G.W.; Rello, J. Impact of air pollution on respiratory microbiome: A narrative review. Intensive Crit. Care Nurs. 2023, 74, 103336. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Comba, I.Y.; Cho, T.; Engen, P.A.; Yazıcı, C.; Soberanes, S.; Hamanaka, R.B.; Niğdelioğlu, R.; Meliton, A.Y.; Ghio, A.J.; et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ. Pollut. 2018, 240, 817–830. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Engen, P.A.; Soberanes, S.; Urich, D.; Forsyth, C.B.; Nigdelioglu, R.; Chiarella, S.E.; Radigan, K.A.; Gonzalez, A.; Jakate, S.; et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part. Fibre Toxicol. 2011, 8, 19. [Google Scholar] [CrossRef]
- Arca-Lafuente, S.; Nuñez-Corcuera, B.; Ramis, R.; Karakitsios, S.; Sarigiannis, D.; García Dos Santos, S.; Fernández-Rodríguez, A.; Briz, V. Effects of urban airborne particulate matter exposure on the human upper respiratory tract microbiome: A systematic review. Respir. Res. 2025, 26, 118. [Google Scholar] [CrossRef]
- Xue, Y.; Chu, J.; Li, Y.; Kong, X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol. Lett. 2020, 334, 14–20. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Hubbard, J.; Korzenik, J.; Sands, B.E.; Panaccione, R.; Ghosh, S.; Wheeler, A.J.; Villeneuve, P.J. The inflammatory bowel diseases and ambient air pollution: A novel association. Am. J. Gastroenterol. 2010, 105, 2412–2419. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; McGinley, E.L.; Binion, D.G.; Saeian, K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: An ecologic analysis. Inflamm. Bowel Dis. 2011, 17, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef] [PubMed]
- Leblhuber, F.; Ehrlich, D.; Steiner, K.; Geisler, S.; Fuchs, D.; Lanser, L.; Kurz, K. The Immunopathogenesis of Alzheimer’s Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021, 13, 361. [Google Scholar] [CrossRef]
- Fouladi, F.; Bailey, M.J.; Patterson, W.B.; Sioda, M.; Blakley, I.C.; Fodor, A.A.; Jones, R.B.; Chen, Z.; Kim, J.S.; Lurmann, F.; et al. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ. Int. 2020, 138, 105604. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.J.; Naik, N.N.; Wild, L.E.; Patterson, W.B.; Alderete, T.L. Exposure to air pollutants and the gut microbiota: A potential link between exposure, obesity, and type 2 diabetes. Gut Microbes 2020, 11, 1188–1202. [Google Scholar] [CrossRef]
- Alderete, T.L.; Jones, R.B.; Chen, Z.; Kim, J.S.; Habre, R.; Lurmann, F.; Gilliland, F.D.; Goran, M.I. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ. Res. 2018, 161, 472–478. [Google Scholar] [CrossRef]
- Ghosh, S.; Nukavarapu, S.P.; Jala, V.R. Effects of heavy metals on gut barrier integrity and gut microbiota. Microbiota Host 2023, 2, e230015. [Google Scholar] [CrossRef]
- Teffera, M.; Veith, A.C.; Ronnekleiv-Kelly, S.; Bradfield, C.A.; Nikodemova, M.; Tussing-Humphreys, L.; Malecki, K. Diverse mechanisms by which chemical pollutant exposure alters gut microbiota metabolism and inflammation. Environ. Int. 2024, 190, 108805. [Google Scholar] [CrossRef]
- Chezganova, E.; Efimova, O.; Sakharova, V.; Efimova, A.; Sozinov, S.; Kutikhin, A.; Ismagilov, Z.; Brusina, E. Ventilation-Associated Particulate Matter Is a Potential Reservoir of Multidrug-Resistant Organisms in Health Facilities. Life 2021, 11, 639. [Google Scholar] [CrossRef]
- Utembe, W.; Kamng’ona, A.W. Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans. Sci. Total Environ. 2024, 955, 176938. [Google Scholar] [CrossRef]
- Yadav, B.; Bhattacharya, S.S.; Rosen, L.; Nagpal, R.; Yadav, H.; Yadav, J.S. Oro-Respiratory Dysbiosis and Its Modulatory Effect on Lung Mucosal Toxicity during Exposure or Co-Exposure to Carbon Nanotubes and Cigarette Smoke. Nanomaterials 2024, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, P.S.; Grootaers, G.; van der Does, A.M.; Krul, C.A.M.; Kooter, I.M. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol. In Vitr. 2018, 47, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Abrami, M.; Biasin, A.; Tescione, F.; Tierno, D.; Dapas, B.; Carbone, A.; Grassi, G.; Conese, M.; Di Gioia, S.; Larobina, D.; et al. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int. J. Mol. Sci. 2024, 25, 1933. [Google Scholar] [CrossRef]
- Woodby, B.; Schiavone, M.L.; Pambianchi, E.; Mastaloudis, A.; Hester, S.N.; Wood, S.M.; Pecorelli, A.; Valacchi, G. Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model. Int. J. Environ. Res. Public Health 2020, 17, 3234. [Google Scholar] [CrossRef]
- Winans, B.; Humble, M.C.; Lawrence, B.P. Environmental toxicants and the developing immune system: A missing link in the global battle against infectious disease? Reprod. Toxicol. 2011, 31, 327–336. [Google Scholar] [CrossRef]
- Marín-Palma, D.; Fernandez, G.J.; Ruiz-Saenz, J.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 2023, 13, 12773. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Handakas, E.; Simou, K.; Solomou, E.; Gotti, A. Integrated exposure and risk characterization of bisphenol-A in Europe. Food Chem. Toxicol. 2016, 98, 134–147. [Google Scholar] [CrossRef]
- Ajisafe, O.M.; Adekunle, Y.A.; Egbon, E.; Ogbonna, C.E.; Olawade, D.B. The role of machine learning in predictive toxicology: A review of current trends and future perspectives. Life Sci. 2025, 378, 123821. [Google Scholar] [CrossRef]
- Li, L.; Westgate, J.N.; Hughes, L.; Zhang, X.; Givehchi, B.; Toose, L.; Armitage, J.M.; Wania, F.; Egeghy, P.; Arnot, J.A. A Model for Risk-Based Screening and Prioritization of Human Exposure to Chemicals from Near-Field Sources. Environ. Sci. Technol. 2018, 52, 14235–14244. [Google Scholar] [CrossRef]
- Batool, M.; Zamir, A.; Alqhtani, H.; Saeed, H.; Rasool, M.F. A Mechanistic Physiologically Based Pharmacokinetic (PBPK) modeling approach for fexofenadine: Predictive pharmacokinetic insights in humans. Saudi Pharm. J. 2025, 33, 24. [Google Scholar] [CrossRef]
- Hartmanshenn, C.; Scherholz, M.; Androulakis, I.P. Physiologically-based pharmacokinetic models: Approaches for enabling personalized medicine. J. Pharmacokinet. Pharmacodyn. 2016, 43, 481–504. [Google Scholar] [CrossRef]
- Escher, B.I.; Hackermüller, J.; Polte, T.; Scholz, S.; Aigner, A.; Altenburger, R.; Böhme, A.; Bopp, S.K.; Brack, W.; Busch, W.; et al. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 2017, 99, 97–106. [Google Scholar] [CrossRef]
- Neo, E.X.; Hasikin, K.; Mokhtar, M.I.; Lai, K.W.; Azizan, M.M.; Razak, S.A.; Hizaddin, H.F. Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review. Front. Public Health 2022, 10, 851553. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Kermenidou, M.V. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Sci. Total Environ. 2015, 524–525, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Thaveevong, P.; Ahmad, M.; Panyametheekul, S.; Chetwittayachan, T.; Zhang, Y. Chemical composition and oxidative potential of fine particulate matter (PM2.5) in urban parks of Bangkok, Thailand: Implication for public health. Environ. Chall. 2025, 20, 101194. [Google Scholar] [CrossRef]
- Luo, X.-S.; Huang, W.; Shen, G.; Pang, Y.; Tang, M.; Li, W.; Zhao, Z.; Li, H.; Wei, Y.; Xie, L.; et al. Source differences in the components and cytotoxicity of PM 2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity. Atmos. Chem. Phys. 2024, 24, 1345–1360. [Google Scholar] [CrossRef]
- Kim Oanh, N.T.; Pongkiatkul, P.; Upadhyay, N.; Hopke, P.P. Designing ambient particulate matter monitoring program for source apportionment study by receptor modeling. Atmos. Environ. 2009, 43, 3334–3344. [Google Scholar] [CrossRef]
- Kuklinska, K.; Wolska, L.; Namiesnik, J. Air quality policy in the U.S. and the EU—A review. Atmos. Pollut. Res. 2015, 6, 129–137. [Google Scholar] [CrossRef]
- Cromar, K.R.; Lee, A.G.; Harkema, J.R.; Annesi-Maesano, I. Science-based Policy Recommendations for Fine Particulate Matter in the United States. Am. J. Respir. Crit. Care Med. 2022, 206, 1067–1069. [Google Scholar] [CrossRef]
- Glazener, A.; Khreis, H. Transforming Our Cities: Best Practices Towards Clean Air and Active Transportation. Curr. Environ. Health Rep. 2019, 6, 22–37. [Google Scholar] [CrossRef]
- Bouscasse, H.; Gabet, S.; Kerneis, G.; Provent, A.; Rieux, C.; Ben Salem, N.; Dupont, H.; Troude, F.; Mathy, S.; Slama, R. Designing local air pollution policies focusing on mobility and heating to avoid a targeted number of pollution-related deaths: Forward and backward approaches combining air pollution modeling, health impact assessment and cost-benefit analysis. Environ. Int. 2022, 159, 107030. [Google Scholar] [CrossRef]
- Filigrana, P.; Levy, J.I.; Gauthier, J.; Batterman, S.; Adar, S.D. Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Son, Y.-S.; Kim, K.-H. A review of traditional and advanced technologies for the removal of particulate matter in subway systems. Indoor Air 2019, 29, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Pachaiappan, R.; Cornejo-Ponce, L.; Rajendran, R.; Manavalan, K.; Femilaa Rajan, V.; Awad, F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022, 13, 8432–8477. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, D.; Jiang, X.; Zhang, S.; Lin, Z. Assessment of Urban Forest Ecological Benefit Based on the i-Tree Eco Model—A Case Study of Changchun Central City. Forests 2023, 14, 1304. [Google Scholar] [CrossRef]
- Kacprzak, M.J.; Ellis, A.; Fijałkowski, K.; Kupich, I.; Gryszpanowicz, P.; Greenfield, E.; Nowak, D. Urban forest species selection for improvement of ecological benefits in Polish cities-The actual and forecast potential. J. Environ. Manag. 2024, 366, 121732. [Google Scholar] [CrossRef]
- Yin, L.; Yang, X.; Xing, Y.; Lu, P.; Tsai, C.-J.; Attoui, M.; Cui, Y.; Liu, Y.; Li, Z. Removal of ultrafine particles by porous nanomaterials with varied morphologies. Powder Technol. 2019, 342, 380–387. [Google Scholar] [CrossRef]
- Tong, Z.; Li, Y.; Westerdahl, D.; Freeman, R.B. The impact of air filtration units on primary school students’ indoor exposure to particulate matter in China. Environ. Pollut. 2020, 266, 115107. [Google Scholar] [CrossRef]
- Vijayan, V.K.; Paramesh, H.; Salvi, S.S.; Dalal, A.A.K. Enhancing indoor air quality—The air filter advantage. Lung India 2015, 32, 473–479. [Google Scholar] [CrossRef]
- Thompson, M.; Castorina, R.; Chen, W.; Moore, D.; Peerless, K.; Hurley, S. Effectiveness of Air Filtration in Reducing PM2.5 Exposures at a School in a Community Heavily Impacted by Air Pollution. Atmosphere 2024, 15, 901. [Google Scholar] [CrossRef]
- Chen, C.-F.; Hsu, C.-H.; Chang, Y.-J.; Lee, C.-H.; Lee, D.L. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. Int. J. Environ. Res. Public Health 2022, 19, 11517. [Google Scholar] [CrossRef]
- Dubey, S.; Rohra, H.; Taneja, A. Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon 2021, 7, e07976. [Google Scholar] [CrossRef] [PubMed]
- Morishita, M.; Adar, S.D.; D’Souza, J.; Ziemba, R.A.; Bard, R.L.; Spino, C.; Brook, R.D. Effect of Portable Air Filtration Systems on Personal Exposure to Fine Particulate Matter and Blood Pressure Among Residents in a Low-Income Senior Facility: A Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.W.; Barn, P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: A Review of the Recent Literature. Curr. Environ. Health Rep. 2020, 7, 424–440. [Google Scholar] [CrossRef]
- Klaver, Z.M.; Crane, R.C.; Ziemba, R.A.; Bard, R.L.; Adar, S.D.; Brook, R.D.; Morishita, M. Reduction of Outdoor and Indoor PM2.5 Source Contributions via Portable Air Filtration Systems in a Senior Residential Facility in Detroit, Michigan. Toxics 2023, 11, 1019. [Google Scholar] [CrossRef]
- Miglani, R.; Parveen, N.; Kumar, A.; Ansari, M.A.; Khanna, S.; Rawat, G.; Panda, A.K.; Bisht, S.S.; Upadhyay, J.; Ansari, M.N. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022, 12, 818. [Google Scholar] [CrossRef]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, W.; Bhatt, P.; Chen, S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front. Bioeng. Biotechnol. 2021, 9, 632059. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Kumar, A.; Senthilkumar, N.; Shkir, M.; Pandit, B.; Imran, M.; Prakash, C.; Ubaidullah, M. Recent advances in microbial-assisted degradation and remediation of xenobiotic contaminants; challenges and future prospects. J. Water Process Eng. 2024, 60, 105106. [Google Scholar] [CrossRef]
- Bora, B.; Kauser, H.; Geed, S.R. Bioremediation strategies for xenobiotic degradation in petroleum-impacted industrial ecosystems: Practical challenges and future directions. J. Water Process Eng. 2025, 70, 106877. [Google Scholar] [CrossRef]
- Rathore, S.; Varshney, A.; Mohan, S.; Dahiya, P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol. Genet. Eng. Rev. 2022, 38, 1–32. [Google Scholar] [CrossRef]
- Heshammuddin, N.A.; Al-Gheethi, A.; Saphira Radin Mohamed, R.M.; Bin Khamidun, M.H. Eliminating xenobiotics organic compounds from greywater through green synthetic nanoparticles. Environ. Res. 2023, 222, 115316. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M.N. Genetically engineered microorganisms for environmental remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Sharma, S.; Xia, C.; Nadda, A.K.; Lam, S.S.; Tong, Y.W. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere 2022, 306, 135538. [Google Scholar] [CrossRef] [PubMed]
- Hondal, R.J. Selenium vitaminology: The connection between selenium, vitamin C, vitamin E, and ergothioneine. Curr. Opin. Chem. Biol. 2023, 75, 102328. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; La Pérez de Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int. J. Mol. Sci. 2024, 25, 2600. [Google Scholar] [CrossRef] [PubMed]
- Hodges, R.E.; Minich, D.M. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J. Nutr. Metab. 2015, 2015, 760689. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; Telis, N.; German, J.B.; Hammock, B.D. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif. Agric. 2011, 65, 106–111. [Google Scholar] [CrossRef]
- Guo, J.; Knol, L.L.; Yang, X.; Kong, L. Dietary fiber intake is inversely related to serum heavy metal concentrations among US adults consuming recommended amounts of seafood: NHANES 2013–2014. Food Front. 2022, 3, 142–149. [Google Scholar] [CrossRef]
- Espinosa-Vellarino, F.L.; Garrido, I.; Casimiro, I.; Silva, A.C.; Espinosa, F.; Ortega, A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. Plants 2024, 13, 609. [Google Scholar] [CrossRef]
- Bermingham, E.N.; Hesketh, J.E.; Sinclair, B.R.; Koolaard, J.P.; Roy, N.C. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: A meta-analysis. Nutrients 2014, 6, 4002–4031. [Google Scholar] [CrossRef]
- Xu, W.; Barrientos, T.; Andrews, N.C. Iron and copper in mitochondrial diseases. Cell Metab. 2013, 17, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.Z.; Nizam, N.S.M.; Muhamad, A.; Saiman, M.I.; Crouse, K.A.; Abdul Rahman, M.B. Imidazole-rich copper peptides as catalysts in xenobiotic degradation. PLoS ONE 2020, 15, e0238147. [Google Scholar] [CrossRef] [PubMed]
- Chadalavada, S.; Faust, O.; Salvi, M.; Seoni, S.; Raj, N.; Raghavendra, U.; Gudigar, A.; Barua, P.D.; Molinari, F.; Acharya, R. Application of artificial intelligence in air pollution monitoring and forecasting: A systematic review. Environ. Model. Softw. 2025, 185, 106312. [Google Scholar] [CrossRef]
- Rowley, A.; Karakuş, O. Predicting air quality via multimodal AI and satellite imagery. Remote Sens. Environ. 2023, 293, 113609. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hyg. Environ. Health Adv. 2024, 12, 100114. [Google Scholar] [CrossRef]
- Naveed, K.; Umer, T.; Asghar, A.B.; Aslam, M.; Ejsmont, K.; Mohammed Metwally, A.S.; Thanh, K.N. Machine learning assisted predictive urban digital twin for intelligent monitoring of air quality index for smart city environment. Environ. Model. Softw. 2025, 192, 106559. [Google Scholar] [CrossRef]
- Subramaniam, S.; Raju, N.; Ganesan, A.; Rajavel, N.; Chenniappan, M.; Prakash, C.; Pramanik, A.; Basak, A.K.; Dixit, S. Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review. Sustainability 2022, 14, 9951. [Google Scholar] [CrossRef]
- Molfino, N.A.; Turcatel, G.; Riskin, D. Machine Learning Approaches to Predict Asthma Exacerbations: A Narrative Review. Adv. Ther. 2024, 41, 534–552. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Karakitsios, S.; Anesti, O.; Stem, A.; Valvi, D.; Sumner, S.C.J.; Chatzi, L.; Snyder, M.P.; Thompson, D.C.; Vasiliou, V. Advancing translational exposomics: Bridging genome, exposome and personalized medicine. Hum. Genom. 2025, 19, 48. [Google Scholar] [CrossRef]
Classical Xenobiotic Toxicants | Particulate Matter | |
---|---|---|
Nature and Origin | Chemicals not naturally produced by the body or commonly found in the environment (e.g., pesticides, industrial chemicals, and pharmaceuticals) [17,18,19]. | Complex mixture of tiny particles and liquid droplets suspended in the air, originating from both natural sources (e.g., sand, dust, pollen, sea salts) and anthropogenic sources (e.g., emissions from vehicles, industrial activities) [20,21]. |
Composition | Specific chemical substances with defined molecular structures [22]. | Often contains a variety of substances, including xenobiotic and toxic pollutants like heavy metals and organic compounds; particles themselves are not necessarily toxic but exert a variety of physiological and pathophysiological effects [13]. |
Health Effects | Directly cause adverse health effects due to their chemical properties and interactions with biological systems [23,24]. | Exerts effects through mechanisms such as the generation of ROS and oxidative stress, leading to cellular damage, inflammation, and disruption of normal cellular functions [25,26]. |
Exposure Pathways | Typically enter the body through ingestion, inhalation, or dermal absorption [27,28,29]. | Primarily enters the body through inhalation and ingestion, depositing in the respiratory system and the gastrointestinal tract and potentially causing systemic effects [30,31]. |
Health Outcomes | Associated with specific toxicological effects depending on the substance (e.g., neurotoxicity, carcinogenicity) [32,33]. | Linked to a broad range of health issues, including respiratory diseases (e.g., asthma, COPD), cardiovascular diseases (e.g., heart attacks, hypertension), neurological effects (e.g., cognitive decline, neurodegenerative diseases), and reproductive and developmental issues (e.g., birth defects, low birth weight) [34,35,36]. |
Compound | Toxicokinetics | Toxicodynamics |
---|---|---|
Heavy Metals (e.g., Pb, Cd, As) | Soluble metals can cross biological barriers (e.g., alveolar–capillary membrane) and enter the bloodstream, leading to systemic distribution; may accumulate in organs such as the liver and kidneys [88,89]. | Can interfere with cellular processes by binding to proteins and enzymes; induces oxidative stress and inflammation, contributing to organ damage and chronic diseases [90]. |
Transition Metals (e.g., Fe, Cu, Ni) | Catalyze the production of ROS via Fenton-like reactions; may remain in lung tissues, prolonging exposure [91]. | ROS generation leads to oxidative damage to lipids, proteins, and DNA; contributes to respiratory and cardiovascular diseases [91]. |
Polycyclic Aromatic Hydrocarbons (PAHs) | Lipophilic nature allows absorption through the respiratory tract and distribution into fatty tissues; metabolized in the liver via cytochrome P450 enzymes, forming reactive intermediates [92]. | Reactive intermediates can form DNA adducts, leading to mutations and increased cancer risk; induces oxidative stress and inflammation [93]. |
Nitro-PAHs | Similar to PAHs, nitro-PAHs are metabolized into reactive intermediates; can persist in tissues due to their chemical stability. | Forms DNA adducts, increasing genotoxicity and cancer risk; potent inducers of oxidative stress [94]. |
Endotoxins (Biological Sources) | Endotoxins are not absorbed systemically but remain in the respiratory tract, where they interact with immune cells. | Activates TLRs on immune cells, triggering inflammation and release of pro-inflammatory cytokines; exacerbates respiratory diseases like asthma and COPD [95]. |
Soluble Metals (e.g., Ni, V) | Soluble metals are absorbed into the bloodstream and distributed systemically; can accumulate in cardiovascular tissues. | Causes systemic inflammation, endothelial dysfunction, and increased blood coagulation; contributes to cardiovascular diseases [96]. |
Neurotoxic Metals (e.g., Mn) | Can cross the blood–brain barrier after systemic absorption; accumulates in brain tissues, leading to prolonged exposure [97]. | Induces neuroinflammation and oxidative stress in the brain; associated with neurodegenerative diseases like Parkinson’s and Alzheimer’s [98]. |
Mechanism | Examples | |
---|---|---|
Adsorption via Van der Waals Forces | Weak intermolecular forces allow xenobiotic and toxic substances to adhere to the surface of particulate matter. | PAHs adsorbing onto soot particles in urban air pollution [100,101]. |
Electrostatic Attraction | Charged xenobiotic toxicant molecules bind to oppositely charged particulate matter. | Heavy metals like Pb or Cd binding to negatively charged fine dust particles [102]. |
Hydrophobic Interactions | Nonpolar xenobiotic toxicant substances bind to hydrophobic surfaces of particulate matter. | Persistent organic pollutants, such as dioxins, binding to carbonaceous PM [103,104]. |
Covalent Bond Formation | Xenobiotic and toxic substances form covalent bonds with reactive functional groups on particulate matter. | Reactive aldehydes or ketones forming covalent bonds with organic matter in PM [105]. |
Physical Entrapment | Xenobiotic and toxic substances become physically trapped within porous particulate matter. | VOCs trapped in porous volcanic ash or activated carbon particles [106,107]. |
Ion Exchange | Ionic xenobiotic toxicants exchange with ions on the surface of particulate matter. | Ammonium ions (NH4+) from fertilizers binding to mineral dust particles [108]. |
Complexation with Metal Oxides | Xenobiotic and toxic substances form complexes with metal oxides present on particulate matter. | Forming complexes with iron oxides in PM from mining activities [109]. |
Hydrogen Bonding | Hydrogen bonds form between xenobiotic toxicants and functional groups on particulate matter. | Phenolic compounds binding to hydroxyl groups on silica particles [110]. |
Surface Coating | Xenobiotic and toxic substances coat the surface of particulate matter, forming a thin layer. | Pesticides like DDT coating soil dust particles during agricultural spraying [111,112]. |
Aggregation with Organic Matter | Xenobiotic and toxic substances aggregate with organic matter present in particulate matter. | PCBs binding to organic carbon in PM from industrial emissions [113]. |
Immune Cell Type | Type of Interaction | Effects in the Human Body |
---|---|---|
Macrophages | Phagocytosis of particles; activation via pattern recognition receptors (e.g., TLRs) [160]. | Release of pro-inflammatory cytokines (e.g., IL-6, TNF-α, IL-1β); ROS generation; NLRP3 inflammasome activation; chronic inflammation and tissue damage in the lungs; cancer metastasis [160,161]. |
Neutrophils | Chemotaxis in response to cytokines; direct activation by particles [162]. | Increased neutrophil infiltration, NETosis, ROS release, tissue damage, acute lung injury; exacerbation of respiratory diseases (e.g., asthma, COPD) [163]. |
Dendritic Cells (DCs) | Uptake of particulate matter and presentation of associated antigens; activation by associated components; AhR-mediated signaling [164]. | Impaired antigen presentation and T cell activation; skewing of adaptive immune responses (e.g., Th2 or Th17 cell dominance) [165]. |
T Helper Cells (Th Cells) | Skewing of Th cell subsets by associated components; Th2 and Th17 activation by particle-induced cytokines [166]. | Th2 dominance promotes allergic inflammation (e.g., asthma); Th17 activation contributes to autoimmune diseases and chronic inflammation [167]. |
Regulatory T Cells (Tregs) | Inhibited induction via tolerogenic DCs; suppression of Treg activity; impaired immune regulation due to oxidative stress and inflammation [168]. | Reduced immune tolerance, leading to exacerbation of autoimmune diseases; increased risk of chronic inflammation [169]. |
Natural Killer (NK) Cells | Indirect modulation via cytokine shifts and particle-induced stress [31]. | Impaired cytotoxicity; increased susceptibility to infection and tumor growth [170]. |
B cells | Antigen exposure and co-stimulation [157]. | Elevated IgE production; exacerbation of allergic responses [157,171]. |
Epithelial Cells | Direct interaction with particles deposited in the respiratory tract; activation via ROS and cytokines [172]. | Release of pro-inflammatory mediators (e.g., IL-8, granulocyte–macrophage colony-stimulating factor); recruitment of immune cells to the site of exposure; damage to epithelial barriers, increasing susceptibility to infections [173]. |
Microglia (Brain Immune Cells) | Activation by particles translocated to the brain via the olfactory nerve or systemic circulation [174]. | Neuroinflammation and oxidative stress in the brain; linked to neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s) [175]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, T.; Lipp, A.-M.; Wechselberger, C. Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies. J. Xenobiot. 2025, 15, 131. https://doi.org/10.3390/jox15040131
Lang T, Lipp A-M, Wechselberger C. Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies. Journal of Xenobiotics. 2025; 15(4):131. https://doi.org/10.3390/jox15040131
Chicago/Turabian StyleLang, Tamara, Anna-Maria Lipp, and Christian Wechselberger. 2025. "Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies" Journal of Xenobiotics 15, no. 4: 131. https://doi.org/10.3390/jox15040131
APA StyleLang, T., Lipp, A.-M., & Wechselberger, C. (2025). Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies. Journal of Xenobiotics, 15(4), 131. https://doi.org/10.3390/jox15040131