Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
Abstract
1. Introduction
2. Methodology of the Review
3. Pharmaceuticals and EDCs in Aquatic Environments
3.1. Sources of Pharmaceuticals and EDCs
3.1.1. Domestic and Municipal Wastewater as Sources of Pharmaceuticals and EDCs
3.1.2. Industrial Effluents as Sources of Pharmaceuticals and EDCs
3.1.3. Agricultural Runoff as a Source of Pharmaceuticals and EDCs
3.1.4. Aquaculture Practices as a Source of Pharmaceuticals and EDCs
3.1.5. Landfill and Leachate Runoff as a Source of Pharmaceuticals and EDCs
3.2. Pathways of Pharmaceuticals and EDCs in Aquatic Environments
4. Reproductive Strategies of Aquatic Fauna
4.1. Aquatic Fauna Reproduction Physiology Disrupted by Pharmaceuticals and EDCs
4.1.1. Gametogenesis
4.1.2. Spawning and Fertilization
4.2. Impacts of Pharmaceuticals and EDCs on Aquatic Mammal Reproduction
4.3. Impacts of Pharmaceuticals and EDCs on Bird Reproduction, with a Focus on Penguins
4.4. Ecological and Population-Level Consequences of Pharmaceuticals and EDCs
4.5. Mitigation Strategies
5. Penguins as Sentinel Organisms for Pharmaceutical and EDC Pollution on the Reproductive Biology of Aquatic Fauna
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOPs | Advanced oxidation processes |
PFAS | Per- and polyfluoroalkyl substances |
PBDEs | Polybrominated diphenyl ethers |
EDSP | Eco-directed sustainable prescribing |
HPG | Hypothalamic–pituitary–gonadal |
DDE | Dichlorodiphenyldichloroethylene |
EDCs | Endocrine Disrupting Chemicals |
POPs | Persistent organic pollutants |
TBT | Tributyltin |
References
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Gupta, M.; Rani, L.; Srivastav, A.L. Siyaram Impact and Remediation Strategies for Emerging Organic Water Pollutants: An Overview. In In Advances in Pollution Research, Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability; Srivastav, A.L., Grewal, A.S., Markandeya, Pham, T.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 219–226. [Google Scholar]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Obinna, J.; Onyinyechi, B.; Ejileugha, C. Pharmaceuticals and Personal Care Products as Emerging Contaminants: Need for Combined Treatment Strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Pan, J.; Liu, P.; Yu, X.; Zhang, Z.; Liu, J. The Adverse Role of Endocrine Disrupting Chemicals in the Reproductive System. Front. Endocrinol. 2024, 14, 1324993. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, A.; Mordec, M.; Caban, M.; Øverjordet, I.B.; Wielogórska, E.; Włodarska-Kowalczuk, M.; Balazy, P.; Chełchowski, M.; Lepoint, G. Bioaccumulation of Pharmaceuticals and Stimulants in Macrobenthic Food Web in the European Arctic as Determined Using Stable Isotope Approach. Sci. Total Environ. 2024, 909, 168557. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.N.; Liu, S.; Xu, R.; Huang, Q.Y.; Pan, Y.F.; Li, H.X.; Lin, L.; Hou, R.; Cheng, Y.Y.; Xu, X.R. New Insight into the Bioaccumulation and Trophic Transfer of Free and Conjugated Antibiotics in an Estuarine Food Web Based on Multimedia Fate and Model Simulation. J. Hazard. Mater. 2024, 465, 133088. [Google Scholar] [CrossRef]
- Gabriel, L.; Barboza, A.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O.; Guilherminoa, L. Bisphenol A and Its Analogs in Muscle and Liver of Fish from the North East Atlantic Ocean in Relation to Microplastic Contamination. Exposure and Risk to Human Consumers. J. Hazard. Mater. 2020, 393, 122419. [Google Scholar] [CrossRef]
- Vighi, M.; Borrell, A.; Sahyoun, W.; Net, S.; Aguilar, A.; Ouddane, B.; Garcia-Garin, O. Concentrations of Bisphenols and Phthalate Esters in the Muscle of Mediterranean Striped Dolphins (Stenella coeruleoalba). Chemosphere 2023, 339, 139686. [Google Scholar] [CrossRef]
- Peivasteh-roudsari, L.; Barzegar-bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, Dietary Exposure, and Toxicity of Endocrine-Disrupting Food Chemical Contaminants: A Comprehensive Review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Nibamureke, U.M.C.; Barnhoorn, I.E.J. Screening of Pharmaceuticals in Surface Waters from Vhembe District, Limpopo Province, South Africa. Water 2025, 17, 379. [Google Scholar] [CrossRef]
- Thavarayan, L.; Moodley, B. Development of a Solid-Phase Extraction Method for LC-PDA Detection of Selected Pharmaceuticals and Their Metabolites in Surface Water and Sediment from the Isipingo River, KwaZulu-Natal, South Africa. Sci. Afr. 2025, 28, e02655. [Google Scholar] [CrossRef]
- Ribeiro Trisotto, L.F.; Figueredo, C.C.; Gomes, M.P. Rivers at Risks: The Interplay of “COVID Kit” Medication Misuse and Urban Waterway Contaminants. Chemosphere 2025, 370, 143933. [Google Scholar] [CrossRef]
- dos Santos, M.S.R.; Vidal, C.; Santos, V.S.; Domingues, R.; Montagner, C.C. Seasonal Variation and Risk Assessment for the Presence of Pharmaceuticals in Brazilian Urban Rivers. Environ. Sci. Water Res. Technol. 2025, 11, 681–690. [Google Scholar] [CrossRef]
- Yin, C.; Tan, Y.; Chen, Y.; Gao, S.; Wu, M.; Zhang, Z. Mass Load and Source Apportionment of Pharmaceutical and Personal Care Product in the Wuhan Section of the Yangtze River, China. Sci. Total Environ. 2025, 959, 178222. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Wu, M.; Zhou, Y.; Cheng, T.; Liu, H.; Zhang, J.; Luo, W.; Huang, Y.; Liu, Y.; Wang, B.; et al. Risk Assessment of Antibiotic Residues and Resistance Profile of E. coli in Typical Rivers of Sichuan, China. PLoS ONE 2025, 20, e0306161. [Google Scholar] [CrossRef]
- Yuan, X.; Sun, S.; Wu, R.; Kang, Y.; Wu, L.; Chen, M.; Fan, J.; Guo, C.; Xu, J. Response of Microbial Communities to Antiviral Drug Stress in Surface Water in Beijing. Water 2025, 17, 118. [Google Scholar] [CrossRef]
- Lee, T.H.Y.; Duangnamon, D.; Boontha, T.; Webster, R.D.; Ziegler, A.D. Emerging and Persistent Contaminants in a Remote Coastal Stream System: Five Priority Compounds in Southeast Asia. Sustainability 2025, 17, 581. [Google Scholar] [CrossRef]
- Deryal, G.; Korkmaz, N.E.; Aksu, A.; Kapudan, T.; Gazioğlu, C.; Çağlar Balkıs, N. Presence and Environmental Risk Assessment of Fluoxetine and Serotonin Hormone in the Istanbul Strait, Türkiye. Int. J. Environ. Res. 2025, 19, 86. [Google Scholar] [CrossRef]
- Salma, U.; Nishimura, Y.; Tokumura, M.; Hossain, A.; Watanabe, K.; Noro, K.; Raknuzzaman, M.; Amagai, T.; Makino, M. Occurrence, Seasonal Variation, and Environmental Risk of Multiclass Antibiotics in the Urban Surface Water of the Buriganga River, Bangladesh. Chemosphere 2025, 370, 143956. [Google Scholar] [CrossRef]
- Martínez, V.; Lee, D.; Alyami, I.; Zimila, H.; Bautista, F.; Fuentes, A.; López, M.J.; Valencia, G.; Quanrud, D.; Arnold, R.G.; et al. Trace Organic Compounds and Photosensitizing Activity in Salvadoran Surface and Tap Water Sources: A First Look. Environ. Pollut. 2025, 367, 125622. [Google Scholar] [CrossRef] [PubMed]
- López-Velázquez, K.; Ronderos-Lara, J.G.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A.; Villanueva-Rodríguez, M.; Guzmán-Mar, J.L.; Hoil-Canul, E.R.; Cabellos-Quiroz, J.L. Endocrine-Disrupting Compounds in Urban Rivers of the Southern Border of Mexico: Occurrence and Ecological Risk Assessment. Emerg. Contam. 2025, 11, 100456. [Google Scholar] [CrossRef]
- Zaki, M.R.M.; Razak, M.R.; Haron, D.E.M.; Isa, N.M.; Yusoff, F.M.; Aris, A.Z. Multiclass Endocrine Disrupting Compounds in Surface Water from Selangor River Basin: Occurrence and Ecological Risk Assessment. ACS ES&T Water 2025, 5, 583–593. [Google Scholar]
- Ren, C.; Fang, Q.; Long, H.; Liu, F.; Lan, W.; Gao, G. Pollution Characteristics, Sources and Ecological Risks of Steroid Hormones in Fangchenggang Bay, South China Sea: Significant Impacts of Rivers and Domestic Sewage Entering the Sea. J. Hazard. Mater. 2025, 489, 137556. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, W.; Zhang, Q.; Zhang, X.; Liu, Y.; Yang, X. Determination and Risk Assessment of Phenolic Endocrine-Disrupting Chemicals in the Rivers of Wuhan. Anal. Lett. 2025. [Google Scholar] [CrossRef]
- Pala, N.; Vorkamp, K.; Bossi, R.; Ancora, S.; Ademollo, N.; Baroni, D.; Sarà, G.; Corsolini, S. Chemical Threats for the Sentinel Pygoscelis Adeliae from the Ross Sea (Antarctica): Occurrence and Levels of Persistent Organic Pollutants (POPs), Perfluoroalkyl Substances (PFAS) and Mercury within the Largest Marine Protected Area Worldwide. Sci. Total Environ. 2024, 947, 174562. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.J.; McGrath, T.J.; Emmerson, L.; Allinson, G.; Shimeta, J. Adélie Penguin Colonies as Indicators of Brominated Flame Retardants (BFRs) in East Antarctica. Chemosphere 2020, 250, 126320. [Google Scholar] [CrossRef]
- Clark-Wolf, T.J.; Holt, K.A.; Johansson, E.; Nisi, A.C.; Rafiq, K.; West, L.; Boersma, P.D.; Hazen, E.L.; Moore, S.E.; Abrahms, B. The Capacity of Sentinel Species to Detect Changes in Environmental Conditions and Ecosystem Structure. J. Appl. Ecol. 2024, 61, 1638–1648. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, T.; Lu, G.; Li, M.; Li, Y.; Hou, J.; He, C.; Gao, P. Ecosystem Risk-Based Prioritization of Micropollutants in Wastewater Treatment Plant Effluents across China. Water Res. 2024, 263, 122168. [Google Scholar] [CrossRef]
- AL Falahi, O.A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ewadh, H.M.; Kurniawan, S.B.; Imron, M.F. Occurrence of Pharmaceuticals and Personal Care Products in Domestic Wastewater, Available Treatment Technologies, and Potential Treatment Using Constructed Wetland: A Review. Process Saf. Environ. Prot. 2022, 168, 1067–1088. [Google Scholar] [CrossRef]
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of Pharmaceutical Effluents on Aquatic Ecosystems. Sci. Afr. 2022, 17, e01288. [Google Scholar] [CrossRef]
- Kashif, M.; Kashif, A.; Fuwad, A.; Choi, Y. Current Advances in Treatment Technologies for Removal of Emerging Contaminants from Water—A Critical Review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Bird, K.; Boopathy, R.; Nathaniel, R.; LaFleur, G. Water Pollution and Observation of Acquired Antibiotic Resistance in Bayou Lafourche, a Major Drinking Water Source in Southeast Louisiana, USA. Environ. Sci. Pollut. Res. 2019, 26, 34220–34232. [Google Scholar] [CrossRef] [PubMed]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A Review of Emerging Organic Contaminants (EOCs), Antibiotic Resistant Bacteria (ARB), and Antibiotic Resistance Genes (ARGs) in the Environment: Increasing Removal with Wetlands and Reducing Environmental Impacts. Bioresour. Technol. 2020, 307, 123228. [Google Scholar] [CrossRef]
- Gharibian, S.; Hazrati, H. Towards Practical Integration of MBR with Electrochemical AOP: Improved Biodegradability of Real Pharmaceutical Wastewater and Fouling Mitigation. Water Res. 2022, 218, 118478. [Google Scholar] [CrossRef]
- Prasad, D.K.; Shukla, R.; Ahammad, S.Z. Pharmaceuticals and Personal Care Products and Heavy Metals in the Ganga River, India: Distribution, Ecological and Human Health Risk Assessment. Environ. Res. 2024, 263, 119993. [Google Scholar] [CrossRef] [PubMed]
- Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W. Occurrence and Removal of Chemicals of Emerging Concern in Wastewater Treatment Plants and Their Impact on Receiving Water Systems. Sci. Total Environ. 2021, 754, 142122. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Netshithothole, R.; Managa, M.; Botha, T.L.; Madikizela, L.M. Occurrence of Selected Pharmaceuticals in Wastewater and Sludge Samples from Wastewater Treatment Plants in Eastern Cape Province of South Africa. S. Afr. J. Chem. 2024, 78, 7–14. [Google Scholar] [CrossRef]
- Darbre, P.D. Chemical Components of Plastics as Endocrine Disruptors: Overview and Commentary. Birth Defects Res. 2020, 112, 1300–1307. [Google Scholar] [CrossRef]
- Palsania, P.; Singhal, K.; Dar, M.A.; Kaushik, G. Food Grade Plastics and Bisphenol A: Associated Risks, Toxicity, and Bioremediation Approaches. J. Hazard. Mater. 2024, 466, 133474. [Google Scholar] [CrossRef] [PubMed]
- Alijagic, A.; Suljević, D.; Fočak, M.; Sulejmanović, J.; Šehović, E.; Särndahl, E.; Engwall, M. The Triple Exposure Nexus of Microplastic Particles, Plastic-Associated Chemicals, and Environmental Pollutants from a Human Health Perspective. Environ. Int. 2024, 188, 108736. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Sarker, A.; Ram, K.; Uddin, M.G.; Walker, T.R.; Chowdhury, T.; Uddin, J.; Khandaker, M.U.; Rahman, M.M.; Idris, A.M. Microplastic Toxicity in Aquatic Organisms and Aquatic Ecosystems: A Review. Water. Air. Soil Pollut. 2023, 234, 52. [Google Scholar] [CrossRef]
- Banaee, M.; Multisanti, C.R.; Impellitteri, F.; Piccione, G.; Faggio, C. Environmental Toxicology of Microplastic Particles on Fish: A Review. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2025, 287, 110042. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shan, C.; Fu, W.; Wei, S.; Pan, B. Occurrences and Fates of Per- and Polyfluoralkyl Substances in Textile Dyeing Wastewater along Full-Scale Treatment Processes. Water Res. 2023, 242, 120289. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Gill, R.; Gill, S.S.; Singh, K.; Sofo, A.; Tuteja, N. Editorial: Emerging Contaminants and Their Effect on Agricultural Crops. Front. Plant Sci. 2023, 14, 1296252. [Google Scholar] [CrossRef]
- Frey, L.; Tanunchai, B.; Glaser, B. Antibiotics Residues in Pig Slurry and Manure and Its Environmental Contamination Potential. A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 31. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Li, X.; Ma, X.; Ru, S.; Qiu, T.; Lu, A. Veterinary Antibiotics and Estrogen Hormones in Manures from Concentrated Animal Feedlots and Their Potential Ecological Risks. Environ. Res. 2021, 198, 110463. [Google Scholar] [CrossRef]
- Quaik, S.; Embrandiri, A.; Ravindran, B.; Hossain, K.; Al-Dhabi, N.A.; Arasu, M.V.; Ignacimuthu, S.; Ismail, N. Veterinary Antibiotics in Animal Manure and Manure Laden Soil: Scenario and Challenges in Asian Countries. J. King Saud Univ.-Sci. 2020, 32, 1300–1305. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in Animal Manure and Manure-Based Fertilizers: Occurrence and Ecological Risk Assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P.; Senbore, S. Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics 2023, 11, 538. [Google Scholar] [CrossRef]
- Chow, R.; Curchod, L.; Davies, E.; Veludo, A.F.; Oltramare, C.; Dalvie, M.A.; Stamm, C. Science of the Total Environment Seasonal Drivers and Risks of Aquatic Pesticide Pollution in Drought and Post-Drought Conditions in Three Mediterranean Watersheds. Sci. Total Environ. 2023, 858, 159784. [Google Scholar] [CrossRef] [PubMed]
- Guimarães-Ervilha, L.O.; Assis, M.Q.; da Silva Bento, I.P.; da Silva Lopes, I.; Iasbik-lima, T.; Carvalho, R.P.R.; Machado-Neves, M. Exploring the Endocrine-Disrupting Potential of Atrazine for Male Reproduction: A Systematic Review and Meta-Analysis. Reprod. Biol. 2025, 25, 100989. [Google Scholar] [CrossRef] [PubMed]
- Marlatt, V.L.; Bayen, S.; Castaneda-Cortès, D.; Delbès, G.; Grigorova, P.; Langlois, V.S.; Martyniuk, C.J.; Metcalfe, C.D.; Parent, L.; Rwigemera, A.; et al. Impacts of Endocrine Disrupting Chemicals on Reproduction in Wildlife and Humans. Environ. Res. 2022, 208, 112584. [Google Scholar] [CrossRef]
- Deng, Y.-Y.; Zou, M.-Y.; Liu, W.; Lian, Y.-L.; Guo, Q.-M.; Zhang, X.-M.; A, D. Antibiotic Removal and Microbial Response Mechanism in Constructed Wetlands Treating Aquaculture Wastewater Containing Veterinary Drugs. J. Clean. Prod. 2023, 394, 136271. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, S.; Tan, M.; Shen, J.; Zhao, H.; Wu, D. Occurrence, Removal, and Risk Assessment of Emerging Contaminants in Aquatic Products Processing Sewage Treatment Plants. Environ. Sci. Pollut. Res. Int. 2023, 30, 117772–117784. [Google Scholar] [CrossRef]
- Islam, P.; Hossain, M.I.; Khatun, P.; Masud, R.I.; Tasnim, S.; Anjum, M.; Islam, M.Z.; Nibir, S.S.; Rafiq, K.; Islam, M.A. Steroid Hormones in Fish, Caution for Present and Future: A Review. Toxicol. Rep. 2024, 13, 101733. [Google Scholar] [CrossRef]
- Munzhelele, E.P.; Mudzielwana, R.; Ayinde, W.B.; Gitari, W.M. Pharmaceutical Contaminants in Wastewater and Receiving Water Bodies of South Africa: A Review of Sources, Pathways, Occurrence, Effects, and Geographical Distribution. Water 2024, 16, 796. [Google Scholar] [CrossRef]
- Qian, Y.; Hu, P.; Lang-Yona, N.; Xu, M.; Guo, C.; Gu, J.D. Global Landfill Leachate Characteristics: Occurrences and Abundances of Environmental Contaminants and the Microbiome. J. Hazard. Mater. 2024, 461, 132446. [Google Scholar] [CrossRef]
- Yu, X.; Lyu, S.; Zhao, W.; Guo, C.; Xu, J.; Sui, Q. A Picture of Pharmaceutical Pollution in Landfill Leachates: Occurrence, Regional Differences and Influencing Factors. Waste Manag. 2024, 184, 20–27. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Ruhí, A.; Acuña, V.; Barceló, D.; Huerta, B.; Mor, J.; Rodríguez-mozaz, S.; Sabater, S. Bioaccumulation and Trophic Magnification of Pharmaceuticals and Endocrine Disruptors in a Mediterranean River Food Web. Sci. Total Environ. 2016, 540, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Hidayati, N.V.; Asia, L.; Khabouchi, I.; Torre, F.; Widowati, I.; Sabdono, A.; Doumenq, P.; Dhamar, A. Ecological Risk Assessment of Persistent Organic Pollutants (POPs) in Surface Sediments from Aquaculture System. Chemosphere 2021, 263, 128372. [Google Scholar] [CrossRef]
- Leppanen, M.T.; Sourisseau, S.; Burgess, R.M.; Simpson, S.L.; Sibley, P.; Jonker, M.T.O. Sediment Toxicity Tests: A Critical Review of Their Use in Environmental Regulations. Environ. Toxicol. Chem. 2024, 43, 1697–1716. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A. Causes and Ecological Effects of Resuspended Contaminated Sediments (RCS) in Marine Environments. Environ. Int. 2012, 40, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Andrade, H.; Glüge, J.; Herzke, D.; Ashta, N.M.; Nayagar, S.M.; Scheringer, M. Oceanic Long—Range Transport of Organic Additives Present in Plastic Products: An Overview. Environ. Sci. Eur. 2021, 33, 85. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Xie, Z.; Ma, J.; Li, Y.-F.; Cai, M.; Ren, Q.; Kallenborn, R. Exploring Global Oceanic Persistence and Ecological Effects of Legacy Persistent Organic Pollutants Across Five Decades. Sci. Adv. 2024, 10, eado5534. [Google Scholar] [CrossRef]
- Ding, Y.; Zheng, H.; Chen, Z.; Gao, Y.; Xiao, K.; Gao, Z. Ocean Current Redistributed the Currently Using Organoamine Pesticides in Arctic Summer Water. Sci. Total Environ. 2023, 886, 163979. [Google Scholar] [CrossRef]
- Lemaître, J.F.; Ronget, V.; Gaillard, J.M. Female Reproductive Senescence across Mammals: A High Diversity of Patterns Modulated by Life History and Mating Traits. Mech. Ageing Dev. 2020, 192, 111377. [Google Scholar] [CrossRef]
- Smiley, K.O.; Munley, K.M.; Aghi, K.; Lipshutz, S.E.; Patton, T.M.; Pradhan, D.S.; Solomon-Lane, T.K.; Sun, S.D. Sex Diversity in the 21st Century: Concepts, Frameworks, and Approaches for the Future of Neuroendocrinology. Horm. Behav. 2024, 157, 105445. [Google Scholar] [CrossRef] [PubMed]
- Holub, A.M.; Shackelford, T.K. Gonochorism. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T.K., Eds.; Springer: Berlin, Germany, 2022; pp. 2985–2986. [Google Scholar]
- Kobayashi, K. Sexual Reproduction and Diversity: Connection Between Sexual Selection and Biological Communities via Population Dynamics. Popul. Ecol. 2019, 61, 135–140. [Google Scholar] [CrossRef]
- Kumar, R.; Meena, M.; Swapnil, P. Anisogamy. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T.K., Eds.; Springer: Berlin, Germany, 2022; pp. 332–336. [Google Scholar]
- Siljestam, M.; Martinossi-Allibert, I. Anisogamy Does Not Always Promote the Evolution of Mating Competition Traits in Males. Am. Nat. 2024, 203, 230–253. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Parte, P. Revisiting the Characteristics of Testicular Germ Cell Lines GC-1(Spg) and GC-2(Spd)Ts. Mol. Biotechnol. 2021, 63, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Baroiller, J.-F.; D’Cotta, H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex. Dev. 2016, 10, 242–266. [Google Scholar] [CrossRef]
- Schärer, L. The Varied Ways of Being Male and Female. Mol. Reprod. Dev. 2017, 84, 94–104. [Google Scholar] [CrossRef]
- Subramoniam, T. Origin and Occurrence of Sexual and Mating Systems in Crustacea: A Progression towards Communal Living and Eusociality. J. Biosci. 2013, 38, 951–969. [Google Scholar] [CrossRef]
- Okuthe, G.E.; Fabian, B.C. Spectrin Labeling during Oogenesis in Zebrafish (Danio rerio). Acta Histochem. 2012, 114, 177–181. [Google Scholar] [CrossRef]
- Okuthe, G.E. DNA and RNA Pattern of Staining During Oogenesis in Zebrafish (Danio rerio): A Confocal Microscopy Study. Acta Histochem. 2013, 115, 178–184. [Google Scholar] [CrossRef]
- Casas, L.; Parker, C.G.; Rhodes, J.S. Sex Change from Male to Female, Active Feminization of the Brain, Behavior, and Gonads in Anemonefish. In Evolution, Development and Ecology of Anemonefishes; CRC Press: Boca Raton, FL, USA, 2022; pp. 117–128. ISBN 9781003125365. [Google Scholar]
- Grace, E.O.; Shirley, H.; Barry, C.F. Early Gonad Development in Zebrafish (Danio rerio). Afr. J. Biotechnol. 2014, 13, 3433–3442. [Google Scholar] [CrossRef]
- Adreani, M.; Allen, L. Mating System and Reproductive Biology of a Temperate Wrasse, Halichoeres Semicinctus. Copeia 2008, 2008, 467–475. [Google Scholar] [CrossRef]
- Browne, R.K.; Kaurova, S.A.; Uteshev, V.K.; Shishova, N.V.; McGinnity, D.; Figiel, C.R.; Mansour, N.; Agnew, D.; Wu, M.; Gakhova, E.N.; et al. Sperm Motility of Externally Fertilizing Fish and Amphibians. Theriogenology 2015, 83, 1–13.e8. [Google Scholar] [CrossRef] [PubMed]
- van der Horst, G. Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates. Animals 2021, 11, 1491. [Google Scholar] [CrossRef]
- Boyer, J.K.; Guy, C.S.; Webb, M.A.H.; Horton, T.B.; McMahon, T.E. Reproductive Ecology, Spawning Behavior, and Juvenile Distribution of Mountain Whitefish in the Madison River, Montana. Trans. Am. Fish. Soc. 2017, 146, 939–954. [Google Scholar] [CrossRef]
- Chemello, G.; De Santis, L.J.; Trotta, E.; Zarantoniello, M.; Santoni, C.; Maradonna, F.; Olivotto, I.; Giorgini, E.; Gioacchini, G. Revealing Spermatogenesis in Smooth-Hound Sharks Mustelus Mustelus: Insights into the Morphological and Macromolecular Composition of Spermatogenic Cells. Int. J. Mol. Sci. 2024, 25, 6230. [Google Scholar] [CrossRef]
- García Salinas, P. Development and Application of Techniques for the Control of Captive Breeding in Elasmobranchs. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, 2023. [Google Scholar]
- Muñoz-Baquero, M.; Lorenzo-Rebenaque, L.; García-Domínguez, X.; Valdés-Hernández, J.; García-Párraga, D.; Lorenzo-Rebenaque, L.; García-Domínguez, X.; Valdés-Hernández, J.; Marin, C.; García-Vázquez, F.A.; et al. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals 2024, 14, 1281. [Google Scholar] [CrossRef]
- Vági, B.; Katona, G.; Miranda, O.G.; Mándi, M.G.; Hofmann, H.A.; Plagányi, É.; Végvári, Z.; Liker, A.; Freckleton, R.P.; Székely, T. The Evolution of Exceptional Diversity in Parental Care and Fertilization Modes in Ray-Finned Fishes. Evolution 2024, 78, 1673–1684. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhao, N.; Liu, Q.; Song, Z.; Li, J. Morphology of the Urogenital Papilla of the Male Marine Teleost Black Rockfish, Sebastes schlegelii (Hilgendorf, 1880), and Its Role in Internal Fertilization. J. Morphol. 2022, 284, e21534. [Google Scholar] [CrossRef] [PubMed]
- Mafunda, P.S.; Maree, L.; Ganswindt, A.; Kotze, A.; van der Horst, G.v. Seasonal Changes in Reproductive Anatomy and Gonadal Hormone Concentrations of African Penguins (Spheniscus demersus). Anim. Reprod. Sci. 2021, 224, 106664. [Google Scholar] [CrossRef]
- Bhagarathi, L.K.; Dasilva, P.N.B.; Maharaj, G.; Balkarran, R.; Kalika-singh, S.; Pestano, F.; Cossiah, C. The Impact of Climate Change on the Ecology, Reproduction and Distribution of Marine Mammals and the Possible Legislation, Conservation and Management Approaches to Protect These Marine Mammal Species: A Systematic Review. Magna Sci. Adv. Biol. Pharm. 2024, 13, 45–84. [Google Scholar] [CrossRef]
- Legacki, E.L.; Robeck, T.R.; Steinman, K.J.; Conley, A.J. Comparative Analysis of Steroids in Cyclic and Pregnant Killer Whales, Beluga Whales and Bottlenose Dolphins by Liquid Chromatography Tandem Mass Spectrometry. Gen. Comp. Endocrinol. 2020, 285, 113273. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Z.; Wang, X.; Jia, G.; Zhang, P. From Land to Sea: Unique Evolution in Reproductive Strategies of Marine Mammals. Innov. Life 2024, 2, 100090. [Google Scholar] [CrossRef]
- Mychajliw, A.M.; Thomas, A.J. Marine Mammals: Exploited for Millennia, but Still Holding On. In The Living Planet: The State of the World’s Wildlife; Maclean, N., Ed.; Cambridge University Press: Cambridge, UK, 2023; p. 87. [Google Scholar]
- van Aswegen, M.; Szabo, A.; Currie, J.J.; Stack, S.H.; West, K.L.; Hofmann, N.; Christiansen, F.; Bejder, L. Energetic Cost of Gestation and Prenatal Growth in Humpback Whales. J. Physiol. 2025, 603, 529–550. [Google Scholar] [CrossRef]
- Tokunaga, S.; Watanabe, Y.Y.; Kawano, M.; Kawabata, Y. Factors Affecting Gestation Periods in Elasmobranch Fishes. Biol. Open 2022, 11, bio059270. [Google Scholar] [CrossRef] [PubMed]
- Orbach, D.N.; Sperou, E.S.; Guinn, M.; Charapata, P. Hormones and Reproductive Cycles in Marine Mammals. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 377–413. [Google Scholar]
- Kloas, W.; Stöck, M.; Lutz, I.; Ziková-Kloas, A. Endocrine Disruption in Teleosts and Amphibians Is Mediated by Anthropogenic and Natural Environmental Factors: Implications for Risk Assessment. Philos. Trans. R. Soc. B Biol. Sci. 2024, 379, 20220505. [Google Scholar] [CrossRef]
- Norris, D.O. Environmental Influences on Hormones and Reproduction in Amphibians. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 257–289. [Google Scholar]
- Zhang, Y.; Tu, L.; Chen, J.; Zhou, L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics—In Vitro Studies. Int. J. Endocrinol. 2024, 2024, 2564389. [Google Scholar] [CrossRef]
- Barouki, R.; Coumoul, X.; Blanc, E.B. What Have We Learned from Endocrine Disruption and Its Impact on Metabolism and Reproduction. In Toxicology of Biological Communication: Lessons from Endocrine Disruptors and the Exposome; Springer Nature: Cham, Switzerland, 2025; pp. 7–29. [Google Scholar]
- Mohajer, N.; Culty, M. Impact of Real-Life Environmental Exposures on Reproduction: Impact of Human-Relevant Doses of Endocrine-Disrupting Chemical and Drug Mixtures on Testis Development and Function. Reproduction 2025, 169, e240155. [Google Scholar] [CrossRef]
- Zaidi, N.; Mir, M.A.; Chang, S.K.; Abdelli, N.; Hasnain, S.M.; Ali Khan, M.A.; Andrews, K. Pharmaceuticals and Personal Care Products as Emerging Contaminants: Environmental Fate, Detection, and Mitigation Strategies. Int. J. Environ. Anal. Chem. 2025, 1–29. [Google Scholar] [CrossRef]
- Kadhim, H.M. Impact of Anti-Müllerian Hormone, Oxidative Stress and Lipid Profile Levels on Female Fertility. Med. Sci. J. Adv. Res. 2024, 5, 1–8. [Google Scholar] [CrossRef]
- Lahimer, M.; Abou Diwan, M.; Montjean, D.; Cabry, R.; Bach, V.; Ajina, M.; Ben Ali, H.; Benkhalifa, M.; Khorsi-Cauet, H. Endocrine Disrupting Chemicals and Male Fertility: From Physiological to Molecular Effects. Front. Public Health 2023, 11, 1232646. [Google Scholar] [CrossRef]
- Rocco, L.; Durairajanayagam, D.; Mottola, F. Endocrine-Disrupting Chemicals (EDCs) and Male Infertility. In Current and Future Advances in Male Infertility: A Compendium for Clinicians and Researcher; Agarwal, A., Saleh, R., Boitrelle, F., Shah, R., Eds.; Springer: Berlin, Germany, 2024; pp. 17–42. [Google Scholar]
- Gupta, P.; Mahapatra, A.; Suman, A.; Singh, R.K. Effect of Endocrine Disrupting Chemicals on HPG Axis: A Reproductive Endocrine Homeostasis. In Hot Topics in Endocrinology and Metabolism; Heshmati, H.M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Norris, D.O. Environmental Influences on Hormones and Reproduction in Fishes. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 1, pp. 389–404. [Google Scholar]
- Stanojlović, O.; Hrnčić, D.; Vojnović-Milutinović, D.; Mladenović, D.; Šutulović, N. Environmental Impact on the Hypothalamus-Pituitary-Ovary Axis. In Environmental Endocrinology and Endocrine Disruptors: Endocrine and Endocrine-Targeted Actions and Related Human Diseases; Pivonello, R., Diamanti-Kandarakis, E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 129–153. [Google Scholar]
- Mbiydzenyuy, N.E.; Qulu, L.-A. Stress, Hypothalamic-Pituitary-Adrenal Axis, Hypothalamic-Pituitary-Gonadal Axis, and Aggression. Metab. Brain Dis. 2024, 39, 1613–1636. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Jia, X.; Hoskins, T.D.; Lu, L.; Han, Y.; Zhang, X.; Lin, H.; Shen, L.; Feng, Y.; et al. Microcystin-LR Induces Estrogenic Effects at Environmentally Relevant Concentration in Black-Spotted Pond Frogs (Pelophylax nigromaculatus): In Situ, In Vivo, In Vitro, and In Silico Investigations. Environ. Sci. Technol. 2024, 58, 9559–9569. [Google Scholar] [CrossRef]
- Corpuz-Hilsabeck, M.; Mohajer, N.; Culty, M. Dysregulation of Immature Sertoli Cell Functions by Exposure to Acetaminophen and Genistein in Rodent Cell Models. Cells 2023, 12, 1804. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Ruan, H.; Cheng, H.; Xu, Z.; Wu, C.; Liang, D.; Xiang, H.; Cao, Y.; Ding, Z. Triphenyltin Chloride Exposure Inhibits Meiotic Maturation of Mouse Oocytes by Disrupting Cytoskeleton Assembly and Cell Cycle Progression. Toxicol. Vitr. 2024, 98, 105834. [Google Scholar] [CrossRef] [PubMed]
- Tricotteaux-Zarqaoui, S.; Lahimer, M.; Abou Diwan, M.; Corona, A.; Candela, P.; Cabry, R.; Bach, V.; Khorsi-Cauet, H.; Benkhalifa, M. Endocrine Disruptor Chemicals Exposure and Female Fertility Declining: From Pathophysiology to Epigenetic Risks. Front. Public Heal. 2024, 12, 1466967. [Google Scholar] [CrossRef]
- Carter, G.; Ward, J. Independent and Synergistic Effects of Microplastics and Endocrine-Disrupting Chemicals on the Reproductive Social Behavior of Fathead Minnows (Pimephales promelas). Ecol. Evol. 2024, 14, e10846. [Google Scholar] [CrossRef]
- Delbes, G.; Blázquez, M.; Fernandino, J.I.; Grigorova, P.; Hales, B.F.; Metcalfe, C.; Navarro-Martín, L.; Parent, L.; Robaire, B.; Rwigemera, A.; et al. Effects of Endocrine Disrupting Chemicals on Gonad Development: Mechanistic Insights from Fish and Mammals. Environ. Res. 2022, 204, 112040. [Google Scholar] [CrossRef]
- Moreira, R.G.; Branco, G.S.; Nostro, F.L. Lo Effects of Aquatic Contaminants in Female Fish Reproduction. In Environmental Contaminants and Endocrine Health; Carnevali, O., Hardiman, G., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 257–268. [Google Scholar]
- Kadhim, S.J.; Sahib, M.A.; Khlaif, S.M.; Al-azzawi, M.K.; Zubaidi, N.A. Evaluating the Impact of Endocrine-Disrupting-Chemicals on Fertility in Wildlife: From Amphibians to Mammals. J. Med. Genet. Clin. Biol. 2024, 1, 216–228. [Google Scholar] [CrossRef]
- Saaristo, M.; Craft, J.A.; Tyagi, S.; Johnstone, C.P.; Allinson, M.; Ibrahim, K.S.; Wong, B.B.M. Transcriptome-Wide Changes Associated with the Reproductive Behaviour of Male Guppies Exposed to 17α-Ethinyl Estradiol. Environ. Pollut. 2021, 270, 116286. [Google Scholar] [CrossRef]
- Stow, C. Behavioral Effects of Nitrate on Siamese Fighting Fish (Betta splendens): Female Mate Preference and Anxiety. Honors Thesis, The Honors College University of Maine, Orono, ME, USA, 2024. [Google Scholar]
- Wu, B.; Yu, H.; Yi, J.; Lei, P.; He, J.; Ruan, J.; Xu, P.; Tao, R.; Jin, L.; Wu, W.; et al. Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics. Toxics 2024, 12, 178. [Google Scholar] [CrossRef]
- Kotsur, D.A.; Novoselov, A.P.; Sorokina, T.Y.; Aksenov, A.S.; Chashchin, V.P. Toxic Effects in Subsequent Generations from Sex-Dependent Exposure to 2,3′,4,4′,5-Pentachlorobiphenyl (PCB 118) on Danio rerio. Inl. Water Biol. 2024, 17, 682–689. [Google Scholar] [CrossRef]
- Tam, N.; Kong, R.Y.C.; Lai, K.P. Reproductive Toxicity in Marine Medaka (Oryzias melastigma) Due to Embryonic Exposure to PCB 28 or 4′-OH-PCB 65. Sci. Total Environ. 2023, 874, 162401. [Google Scholar] [CrossRef]
- Wu, C.; Du, X.; Liu, H.; Chen, X.; Ge, K.; Meng, R.; Zhang, Z.; Zhang, H. Advances in Polychlorinated Biphenyls-Induced Female Reproductive Toxicity. Sci. Total Environ. 2024, 918, 170543. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Stephens, A.E.A.; Jepson, P.D.; Jobling, S.; Johnson, A.C.; Matthiessen, P.; Sumpter, J.P.; Tyler, C.R.; McLean, A.R. A Restatement of the Natural Science Evidence Base on the Effects of Endocrine Disrupting Chemicals on Wildlife. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182416. [Google Scholar] [CrossRef] [PubMed]
- Beduk, F.; Aydin, S.; Ulvi, A.; Aydin, M.E. Fingerprint of Persistent Organic Pollutants (POPs) in the Environment: Ecological Assessment and Human Health Effects. In Water and Wastewater Management. Water and Wastewater Management; Bahadir, M., Haarstrick, A., Eds.; Springer: Berlin, Germany, 2022; pp. 153–161. [Google Scholar]
- Liu, F.; Xie, Q.; Yu, R.Q.; Xie, Z.; Wu, J.; Zhang, X.; Wu, Y. Fatty Acids as Bioindicators of Organohalogen Exposure in Marine Fish from a Highly Polluted Estuary: First Insight into Small-Scale Regional Differences. J. Hazard. Mater. 2023, 452, 131337. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, P.J.H. Reproductive and Developmental Effects of Endocrine-Disrupting Chemicals on Marine Mammals. In Proceedings of the Marine Mammals and Persistent Ocean Contaminants: Proceedings of the Marine Mammal Commission Workshop; O’Shea, T.J., Reeves, R.R., Long, A.K., Eds.; Institute for Forestry and Nature Research Department of Ecosystem Health: Den Burg, The Netherlands, 1999; pp. 93–100. [Google Scholar]
- Troisi, G.M.; Barton, S.J.; Liori, O.; Nyman, M. Polychlorinated Biphenyls (PCBs) and Sex Hormone Concentrations in Ringed and Grey Seals: A Possible Link to Endocrine Disruption? Arch. Environ. Contam. Toxicol. 2020, 78, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.C.; Gulland, F.M.D.; Greig, D.J.; Hunter, M.; Jaakola, J.; Leger, J.S.; Leighfield, T.A.; Van Dolah, F.M. Domoic Acid Causes Reproductive Failure in California Sea Lions (Zalophus californianus). Mar. Mammal Sci. 2006, 22, 700–707. [Google Scholar] [CrossRef]
- Guinn, M.A.; Elliott, J.Y.; Wittmaack, C.S.; Sinclair, C.; Abdulla, H.A.; Orbach, D.N. Stress and Reproductive Hormones of Free-Ranging Dolphins Across a Natural Salinity Gradient. ACS Omega 2024, 9, 45068–45079. [Google Scholar] [CrossRef]
- Luo, D.; Guo, Y.; Liu, Z.; Guo, L.; Wang, H.; Tang, X.; Xu, Z.; Wu, Y.; Sun, X. Endocrine-Disrupting Chemical Exposure Induces Adverse Effects on the Population Dynamics of the Indo-Pacific Humpback Dolphin. Environ. Sci. Technol. 2024, 58, 9102–9112. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C. Marine Mammal Ecotoxicology: Impacts of Multiple Stressors on Population Health; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Siracusa, J.S.; Yin, L.; Measel, E.; Liang, S.; Yu, X. Effects of Bisphenol A and Its Analogs on Reproductive Health: A Mini Review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [CrossRef]
- Giesy, J.P.; Feyk, L.A.; Jones, P.D.; Kannan, K.; Sanderson, T. Review of the Effects of Endocrine-Disrupting Chemicals in Birds. Pure Appl. Chem. 2003, 75, 2287–2303. [Google Scholar] [CrossRef]
- Bargagli, R.; Rota, E. Environmental Contamination and Climate Change in Antarctic Ecosystems: An Updated Overview. Environ. Sci. Adv. 2024, 3, 543–560. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.; Liu, X.; Kim, C.; Jung, D.; Yim, U.H.; Shim, W.J.; Khim, J.S.; Giesy, J.P.; Choi, K. Endocrine Disrupting Potential of PAHs and Their Alkylated Analogues Associated with Oil Spills. Environ. Sci. Process. Impacts 2017, 19, 1117–1125. [Google Scholar] [CrossRef]
- Fowler, G.S.; Wingfield, J.C.; Boersma, P.D. Hormonal and Reproductive Effects of Low Levels of Petroleum Fouling in Magellanic Penguins (Spheniscus magellanicus). Auk 1995, 112, 382–389. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A Review of the Endocrine Disrupting Effects of Micro and Nano Plastic and Their Associated Chemicals in Mammals. Front. Endocrinol. 2023, 13, 1084236. [Google Scholar] [CrossRef]
- Matos, D.M.; Ramos, J.A.; Brandão, A.L.C.; Baeta, A.; Rodrigues, I.; dos Santos, I.; Coentro, J.; Fernandes, J.O.; Batista de Carvalho, L.A.E.; Marques, M.P.M.; et al. Microplastics Ingestion and Endocrine Disrupting Chemicals (EDCs) by Breeding Seabirds in the East Tropical Atlantic: Associations with Trophic and Foraging Proxies (δ15N and δ13C). Sci. Total Environ. 2024, 912, 168664. [Google Scholar] [CrossRef]
- Ellenberg, U.; Setiawan, A.N.; Cree, A.; Houston, D.M.; Seddon, P.J. Elevated Hormonal Stress Response and Reduced Reproductive Output in Yellow-Eyed Penguins Exposed to Unregulated Tourism. Gen. Comp. Endocrinol. 2007, 152, 54–63. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Engineered Nanoparticles in Aquatic Systems: Toxicity and Mechanism of Toxicity in Fish. Emerg. Contam. 2023, 9, 100212. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2023, 20, 6667. [Google Scholar] [CrossRef]
- Wu, X.; Chen, A.; Yuan, Z.; Kang, H.; Xie, Z. Atmospheric Organochlorine Pesticides (OCPs) and Polychlorinated Biphenyls (PCBs) in the Antarctic Marginal Seas: Distribution, Sources and Transportation. Chemosphere 2020, 258, 127359. [Google Scholar] [CrossRef]
- Jara-Carrasco, S.; Barra, R.; Espejo, W.; Celis, J.E.; González-Acunã, D.; Chiang, G.; Sánchez-Hernández, J. Persistent Organic Pollutants and Porphyrin Levels in Excreta of Penguin Colonies from the Antarctic Peninsula Area. Polar Rec. 2017, 53, 79–87. [Google Scholar] [CrossRef]
- Vudamala, K.; Chakraborty, P.; Priyanka; Gummalla, A.; Qureshi, A. Polychlorinated Biphenyls in the Surface and Deep Waters of the Southern Indian Ocean and Coastal Antarctica. Chemosphere 2024, 364, 143241. [Google Scholar] [CrossRef] [PubMed]
- Gerald, A.C.; Ganapathy, S.; Zhu, J.; Wei, Y. Exposure to Endocrine-Disrupting Metals and Serum Estrogen Levels Among US Women. Reprod. Toxicol. 2023, 118, 108392. [Google Scholar] [CrossRef]
- Dreyer, S.; Marcu, D.; Keyser, S.; Bennett, M.; Maree, L.; Koeppel, K.; Abernethy, D.; Petrik, L. Factors in the Decline of the African Penguin: Are Contaminants of Emerging Concern (CECs) a Potential New Age Stressor? Mar. Pollut. Bull. 2024, 206, 116688. [Google Scholar] [CrossRef]
- Puasa, N.A.; Zulkharnain, A.; Verasoundarapandian, G.; Wong, C.; Nabilah, K.; Zahri, M.; Merican, F.; Shaharuddin, N.A.; Gomez-fuentes, C.; Ahmad, S.A. Effects of Diesel, Heavy Metals and Plastics Pollution on Penguins in Antarctica: A Review. Animals 2021, 11, 2505. [Google Scholar] [CrossRef] [PubMed]
- Celino-Brady, F.T.; Lerner, D.T.; Seale, A.P. Experimental Approaches for Characterizing the Endocrine-Disrupting Effects of Environmental Chemicals in Fish. Front. Endocrinol. 2021, 11, 619361. [Google Scholar] [CrossRef]
- Windsor, F.M.; Ormerod, S.J.; Tyler, C.R. Endocrine Disruption in Aquatic Systems: Up-Scaling Research to Address Ecological Consequences. Biol. Rev. 2018, 93, 626–641. [Google Scholar] [CrossRef]
- Lopes, D.G.; Duarte, I.A.; Antunes, M.; Fonseca, V.F. Effects of Antidepressants in the Reproduction of Aquatic Organisms: A Meta-Analysis. Aquat. Toxicol. 2020, 227, 105569. [Google Scholar] [CrossRef]
- Lorenzi, V.; Mehinto, A.C.; Denslow, N.D.; Schlenk, D. Effects of Exposure to the β-Blocker Propranolol on the Reproductive Behavior and Gene Expression of the Fathead Minnow, Pimephales Promelas. Aquat. Toxicol. 2012, 116–117, 8–15. [Google Scholar] [CrossRef]
- Jenssen, B.M. Endocrine-Disrupting Chemicals and Climate Change: A Worst-Case Combination for Arctic Marine Mammals and Seabirds? Environ. Health Perspect. 2006, 114, 76–80. [Google Scholar] [CrossRef]
- Kataoka, C.; Kashiwada, S. Ecological Risks Due to Immunotoxicological Effects on Aquatic Organisms. Int. J. Mol. Sci. 2021, 22, 8305. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.D. Potential Upstream Strategies for the Mitigation of Pharmaceuticals in the Aquatic Environment: A Brief Review. Curr. Environ. Health Rep. 2016, 3, 153–160. [Google Scholar] [CrossRef]
- An, S.; Nam, S.N.; Choi, J.S.; Park, C.M.; Jang, M.; Lee, J.Y.; Jun, B.M.; Yoon, Y. Ultrasonic Treatment of Endocrine Disrupting Compounds, Pharmaceuticals, and Personal Care Products in Water: An Updated Review. J. Hazard. Mater. 2024, 474, 134852. [Google Scholar] [CrossRef]
- Ismail, N.; Ahmad, H. Green Technologies for Treatment of Endocrine Disruptors, Pharmaceutical Compounds, and Personal Care Products. In Bioremediation Technologies: For Wastewater and Sustainable Circular Bioeconomy; Kapoor, R.T., Rafatullah, M., Eds.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2023; p. 177. [Google Scholar]
- Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Ngole-Jeme, V.M.; Benteke Momba, M.N. Endocrine-Disruptive Chemicals as Contaminants of Emerging Concern in Wastewater and Surface Water: A Review. J. Environ. Manag. 2021, 277, 111485. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, J.A.; Araújo, R.G.; López-Pacheco, I.Y.; Rodas-Zuluaga, L.I.; González-González, R.B.; Parra-Arroyo, L.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Martínez-Ruiz, M.; Barceló, D.; et al. Environmental Persistence, Detection, and Mitigation of Endocrine Disrupting Contaminants in Wastewater Treatment Plants—A Review with a Focus on Tertiary Treatment Technologies. Environ. Sci. Adv. 2022, 1, 680–704. [Google Scholar] [CrossRef]
- Werkneh, A.A.; Gebru, S.B.; Redae, G.H.; Tsige, A.G. Removal of Endocrine Disrupters from the Contaminated Environment: Public Health Concerns, Treatment Strategies and Future Perspectives—A Review. Heliyon 2022, 8, e09206. [Google Scholar] [CrossRef] [PubMed]
- Love, D.; Slovisky, M.; Costa, K.A.; Megarani, D.; Mehdi, Q.; Colombo, V.; Ivantsova, E.; Subramaniam, K.; Bowden, J.A.; Bisesi, J.H.; et al. Toxicity Risks Associated with the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review: Toxicity of Metoprolol. Environ. Toxicol. Chem. 2024, 13, 2530–2544. [Google Scholar] [CrossRef]
- Kingsbury, J.W.; Hartman, K.J. The Potential Impacts of Statins and Beta-Blockers on West Virginia Ichthyofauna. Water 2023, 15, 3536. [Google Scholar] [CrossRef]
- Smith, R. Understanding the Diversity of Maternal Microbiota Species Bifidobacterium Using Culturing and Genomic Approaches. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2023. [Google Scholar]
- Cusset, F.; Bustamante, P.; Carravieri, A.; Bertin, C.; Brasso, R.; Corsi, I.; Dunn, M.; Emmerson, L.; Guillou, G.; Hart, T.; et al. Circumpolar Assessment of Mercury Contamination: The Adélie Penguin as a Bioindicator of Antarctic Marine Ecosystems. Ecotoxicology 2023, 32, 1024–1049. [Google Scholar] [CrossRef]
- Gimeno, M.; Rossell, L.; Julià, L.; Giménez, J.; Sanpera, C.; Coll, M.; Bustamante, P.; Ramírez, F. Assessing Mercury Contamination in Southern Hemisphere Marine Ecosystems: The Role of Penguins as Effective Bioindicators. Environ. Pollut. 2024, 343, 123159. [Google Scholar] [CrossRef]
- Jerez, S.; Motas, M.; Benzal, J.; Diaz, J.; Vidal, V.; D’Amico, V.; Barbosa, A. Distribution of Metals and Trace Elements in Adult and Juvenile Penguins from the Antarctic Peninsula Area. Environ. Sci. Pollut. Res. 2013, 20, 3300–3311. [Google Scholar] [CrossRef]
- Matias, R.S.; Guímaro, H.R.; Bustamante, P.; Seco, J.; Chipev, N.; Fragão, J.; Tavares, S.; Ceia, F.R.; Pereira, M.E.; Barbosa, A.; et al. Mercury Biomagnification in an Antarctic Food Web of the Antarctic Peninsula. Environ. Pollut. 2022, 304, 119199. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T. Knowledge and Attitudes of South African Stakeholders Regarding Conservation of the African Penguin (Spheniscus demersus). Ph.D. Thesis, University of Pretoria (South Africa), Pretoria, South Africa, 2023. [Google Scholar]
- Sherley, R.B.; Makhado, A.B.; Crawford, R.J.M.; Hagen, C.; Kemper, J.; Ludynia, K.; Masotla, M.J.; McInnes, A.; Pichegru, L.; Tom, D.; et al. The African Penguin Spheniscus demersus Should Be Considered Critically Endangered. Ostrich 2024, 95, 181–187. [Google Scholar] [CrossRef]
- Trumpp, K.; Sander, S.; Sander, W.; Zimmerman, D.; Bronson, E. Retrospective Study of Morbidity and Mortality of African Penguins (Spheniscus demersus) Under Managed Care in North America: 2007–2018. J. Zoo Wildl. Med. 2021, 52, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Kappes, P.J.; Dugger, K.M.; Lescroël, A.; Ainley, D.G.; Ballard, G.; Barton, K.J.; Lyver, P.O.B.; Wilson, P.R. Age-Related Reproductive Performance of the Adélie Penguin, a Long-Lived Seabird Exhibiting Similar Outcomes Regardless of Individual Life-History Strategy. J. Anim. Ecol. 2021, 90, 931–942. [Google Scholar] [CrossRef]
- Morandini, V.; Dugger, K.M.; Schmidt, A.E.; Varsani, A.; Lescroël, A.; Ballard, G.; Lyver, P.O.B.; Barton, K.; Ainley, D.G. Sex-Specific Recruitment Rates Contribute to Male-Biased Sex Ratio in Adélie Penguins. Ecol. Evol. 2024, 14, e10859. [Google Scholar] [CrossRef]
- Saraux, C.; Chiaradia, A. Age-Related Breeding Success in Little Penguins: A Result of Selection and Ontogenetic Changes in Foraging and Phenology. Ecol. Monogr. 2022, 92, e01495. [Google Scholar] [CrossRef]
- Froehlich, F.; Forbes, N.; Carrasco, D.C.; Ludynia, K.; Parsons, N.J.; Worsfold, R.D.; Dutton, T. The Effects of Critical Care Nutrition on Weight Gain in African Penguin (Spheniscus demersus) Chicks. J. Avian Med. Surg. 2023, 37, 217–225. [Google Scholar] [CrossRef]
- Jafari, V.; Maccapan, D.; Careddu, G.; Sporta Caputi, S.; Calizza, E.; Rossi, L.; Costantini, M.L. Spatial and Temporal Diet Variability of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguin: A Multi Tissue Stable Isotope Analysis. Polar Biol. 2021, 44, 1869–1881. [Google Scholar] [CrossRef]
- Ratcliffe, N.; Deagle, B.; Love, K.; Polanowski, A.; Fielding, S.; Wood, A.G.; Hill, S.; Grant, S.; Belchier, M.; Fleming, A.; et al. Changes in Prey Fields Increase the Potential for Spatial Overlap between Gentoo Penguins and a Krill Fishery within a Marine Protected Area. Divers. Distrib. 2021, 27, 552–563. [Google Scholar] [CrossRef]
- Rohrer, S.D.; Jiménez-Uzcátegui, G.; Parker, P.G.; Chubiz, L.M. Composition and Function of the Galapagos Penguin Gut Microbiome Vary with Age, Location, and a Putative Bacterial Pathogen. Sci. Rep. 2023, 13, 5358. [Google Scholar] [CrossRef] [PubMed]
- Quinete, N.; Hauser-davis, R.A.; Lemos, L.S.; Moura, J.F.; Siciliano, S.; Gardinali, P.R. Occurrence and Tissue Distribution of Organochlorinated Compounds and Polycyclic Aromatic Hydrocarbons in Magellanic Penguins (Spheniscus magellanicus) from the Southeastern Coast of Brazil. Sci. Total Environ. 2020, 749, 141473. [Google Scholar] [CrossRef]
- Terajima, T.; Shibahara, A.; Nakano, Y.; Kobayashi, S.; Godwin, J.R.; Nagaoka, K.; Watanabe, G.; Takada, H.; Mizukawa, K. Age-Related Accumulation of Persistent Organic Chemicals in Captive King Penguins (Aptenodytes patagonicus). J. Vet. Med. Sci. 2022, 84, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Celis, J.E.; Espejo, W.; Groffen, T.; Bervoets, L.; Padilha, J.; Mello, F.V.; Sandoval, M.; Chiang, G. Per- and Polyfluoroalkylated Substances (PFAS) in the Feathers and Excreta of Gentoo Penguins (Pygoscelis papua) from the Antarctic Peninsula. Sci. Total Environ. 2025, 959, 178333. [Google Scholar] [CrossRef]
- Morales, P.; Roscales, J.L.; Muñoz-Arnanz, J.; Barbosa, A.; Jiménez, B. Evaluation of PCDD/Fs, PCBs and PBDEs in Two Penguin Species from Antarctica. Chemosphere 2022, 286, 131871. [Google Scholar] [CrossRef] [PubMed]
- Carravieri, A.; Bustamante, P.; Labadie, P.; Budzinski, H.; Chastel, O.; Cherel, Y. Trace Elements and Persistent Organic Pollutants in Chicks of 13 Seabird Species from Antarctica to the Subtropics. Environ. Int. 2020, 134, 105225. [Google Scholar] [CrossRef]
- Lewis, P.J.; McGrath, T.J.; Chiaradia, A.; McMahon, C.R.; Emmerson, L.; Allinson, G.; Shimeta, J. A Baseline for POPs Contamination in Australian Seabirds: Little Penguins vs. Short-Tailed Shearwaters. Mar. Pollut. Bull. 2020, 159, 111488. [Google Scholar] [CrossRef]
- Alygizakis, N.; Ng, K.; Gkotsis, G.; Nika, M.C.; Vasilatos, K.; Kostakis, M.; Oswald, P.; Savenko, O.; Utevsky, A.; Dykyi, E.; et al. Contaminants of Emerging Concern in Antarctica. J. Environ. Expo. Assess. 2025, 4, 16. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Rathore, C.; Naik, A.; Saha, M.; Tudu, P.; Dastidar, P.G.; Bhattacharyya, S.; de Boer, J.; Chaudhuri, P. Science of the Total Environment Do Microplastics Accumulate in Penguin Internal Organs? Evidence from Svenner Island, Antarctica. Sci. Total Environ. 2024, 951, 175361. [Google Scholar] [CrossRef]
- Buckingham, J. The Ecological Fate of Microplastic in the Nearshore Environment of South Georgia, a Sub-Antarctic Island. Ph.D. Thesis, Energy & Environment Institute, University of Hull, Edinburgh, UK, 2023. [Google Scholar]
- Singh, A.; Upadhyay, J. Physiological and Toxicological Effects of Nano/Microplastics on Marine Birds. In Global Impacts of Micro-and Nano-Plastic Pollution; Gaur, N., Sharma, E., Nguyen, T.A., Bilal, M., Melkania, N.P., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 257–288. [Google Scholar]
- Zhang, S.Q.; Zhao, X.L.; He, S.W.; Xing, S.Y.; Cao, Z.H.; Li, P.; Li, Z.H. Effects of Long-Term Exposure of Norfloxacin on the HPG and HPT Axes in Juvenile Common Carp. Environ. Sci. Pollut. Res. 2022, 29, 44513–44522. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Tao, Y.; Guo, X.; Cui, Y.; Li, Z. Phthalates (PAEs) and Reproductive Toxicity: Hypothalamic-Pituitary-Gonadal (HPG) Axis Aspects. J. Hazard. Mater. 2023, 459, 132182. [Google Scholar] [CrossRef] [PubMed]
- Bodziach, K.; Staniszewska, M.; Falkowska, L.; Nehring, I.; Ożarowska, A.; Zaniewicz, G.; Meissner, W. Distribution Paths of Endocrine Disrupting Phenolic Compounds in Waterbirds (Mergus merganser, Alca torda, Clangula hyemalis) from the Southern Baltic. Sci. Total Environ. 2021, 793, 148556. [Google Scholar] [CrossRef] [PubMed]
- Sühring, R.; Baak, J.E.; Letcher, R.J.; Braune, B.M.; de Silva, A.; Dey, C.; Fernie, K.; Lu, Z.; Mallory, M.L.; Avery-Gomm, S.; et al. Co-Contaminants of Microplastics in Two Seabird Species from the Canadian Arctic. Environ. Sci. Ecotechnol. 2022, 12, 100189. [Google Scholar] [CrossRef] [PubMed]
Location | Chemicals (Levels) | Ref. |
---|---|---|
Vembe Rivers, South Africa | Caffeine (94 ng/L to 975 ng/L), Nevirapine (7 ng/L to 166 ng/L), Lopinavir (42 ng/L), Acetaminophen (292 ng/L to 427 ng/L), Fluconazole (outside the instrument calibration range, nq), Sulfamethoxazole (nq), Clindamycin (nq), Carbamazepine (21 ng/L) | [12] |
Isipingo River, South Africa | Caffeine (ND—3.68 µg/L), sulfamethoxazole (ND—1.28 µg/L), diclofenac (ND—2.44 µg/L), and ibuprofen (ND—1.26 µg/L) | [13] |
Rivers of Curitiba in Brazil | Azithromycin (326 to 3340 ng/L), ivermectin (130–3340 ng/L), and hydroxychloroquine (304–3314 ng/L) | [14] |
Preto, Turvo and Atibaia Rivers in Brazil | Acetaminophen (157–7449 ng L−1), caffeine (60–122,520 ng L−1), diclofenac (62–176 ng L−1), and sulfathiazole (34–40 ng L−1) | [15] |
Yangtze River, Wuhan, China | Ibuprofen, caffeine, diclofenac, paracetamol, carbamazepine, propranolol, triclosan | [16] |
Rivers across Sichuan, China | Amoxicillin, ampicillin, cephalexin, cefotaxime, enrofloxacin, levofloxacin, norfloxacin, moxifloxacin, sulfadiazine, sulfamethoxazole, oxytetracycline, tetracycline, chlortetracycline, chloramphenicol, clindamycin | [17] |
Reshape River, Beijing, China | Metformin hydrochloride, Adamantanamine and Rimantadine hydrochloride (170.9 ng/L), Amantadine (170.75 ng/L), rimantadine hydrochloride (0.15 ng/L), Acyclovir, Penciclovir, Ganciclovir, Chloroquine diphosphate, Lamivudine, Ribavirin, Arbidol hydrochloride, Memantine hydrochloride (0.21 ng/L), Oseltamivir, Moroxydine hydrochloride (30.25 ng/L), Imiquimod | [18] |
Kamphuan Stream, Thailand | Diclofenac (249 ng/L), Gemfibrozil (265 ng/L), Metformin (6247 ng/L), Naproxen (103 ng/L), Fexofenadine (5107 ng/L), Gabapentin (3063 ng/L), Ibuprofen (174 ng/L) | [19] |
Istanbul Strait, Türkiye | Fluoxetine (4.05 to 69.8 ng/L), Serotonin (1.42 to 32.84 ng/L) | [20] |
Buriganga River, Bangladesh | Metronidazole (970 ng/L), Sulfadiazine (790 ng/L), Levofloxacin (710 ng/L), Ciprofloxacin, Amoxicillin, Doxycycline (190 ng/L), Azithromycin (120 ng/L), Lincomycin | [21] |
Lempa River Basin, El Salvador | Sulfamethoxazole (23 μg/L) | [22] |
Location | Chemicals (Levels) | Ref. |
---|---|---|
Urban rivers of Southern Mexico | 17β-estradiol (1.36 ng/L), estriol (3.11 ng/L), 17α-ethinylestradiol (0.66 ng/L), bisphenol A (30.49 ng/L), 4-nonylphenol (5.95 ng/L), 4-tert-octylphenol (3.58 ng/L) | [23] |
Selangor River Basin, Malaysia | Bisphenol A, bisphenol S, bisphenol F, perfluorooctanesulfonate, perfluorooctanoic acid, 17α-ethynylestradiol, and 17β-estradiol | [24] |
Yangtze River, Wuhan, China | 4-nonylphenol (5.20–49.59 ng/L), Bisphenol-A (<90.44 ng/L) | [16] |
Fangchenggang Bay, South China Sea | Androstenedione (3.5 ng/L), Methyltestosterone (3.25 ng/L), Nandrolone (0.05 ng/L), 17α-Hydroxyprogesterone (1.05 ng/L), Norethindrone (0.35 ng/L), Hydrocortisone (19.75 ng/L), Prednisone (5.20 ng/L), Triamcinolone Acetonide (0.45 ng/L), Estriol (5.20 ng/L), Ethynyl Estradiol (3.75 ng/L), Estrone (0.05 ng/L), 17α-Estradiol (0.05 ng/L) | [25] |
Rivers of Wuhan, China | 4-n-nonylphenol (22–109 ng/L), Octylphenol (25.9–73.7 ng/L), Bisphenol A (93.3–258 ng/L), Bisphenol S (0.42–3.30 ng/L) | [26] |
Lempa River Basin, El Salvador | Bisphenol A (2 μg/L) | [22] |
Feature | Aquatic Animals (Excluding Mammals and Penguins) | Aquatic Mammals | Penguins |
---|---|---|---|
Fertilization | Both internal and external. External fertilization (spawning) is common in many bony fish, amphibians, and marine invertebrates. Internal fertilization occurs in some fish (e.g., sharks, and some bony fish like guppies and Tilapia), crustaceans, and molluscs | Internal. | Internal. |
Mode of Development | Oviparity is common, with external development in many species. Viviparity and ovoviviparity occur in some fish and a few amphibians. Parthenogenesis is observed in some aquatic invertebrates. | Viviparity. Embryonic diapause occurs in some pinnipeds. | Oviparity, laying one or two eggs depending on the species. |
Parental Care | Ranges from absent (common in broadcast spawners) to elaborate care (nest building, guarding eggs, mouth brooding in some fish like Tilapia). | Extensive maternal care is typical, with prolonged nursing. Cooperative care in some species (e.g., dolphins). Paternal care is generally limited or absent. | Extensive biparental care is common, with both parents involved in incubation and feeding chicks. Chicks often form crèches. |
Mating Strategies | Highly diverse, including monogamy in some fish, polygamy in others, and broadcast spawning with no pair bonds in many invertebrates and some fish. Sequential hermaphroditism in some fish. | Vary widely, including monogamy in some smaller cetaceans, polygyny in many pinnipeds and some whales, and promiscuity in others. Competition among males is common. | Most species are monogamous during a breeding season, often with mate fidelity in subsequent years. Serial monogamy in King Penguins. |
Key Examples and Specific Strategies | Fish: Wide range (e.g., external fertilization in salmon, internal fertilization in sharks, mouth brooding in Tilapia). Amphibians: Primarily external fertilization (e.g., frogs). Marine Invertebrates: Diverse (e.g., broadcast spawning in corals, budding in sponges, internal fertilization in cephalopods). Micropyle in fish eggs for sperm entry. | Whales: Long migrations, complex songs, intense male competition, single calf with extensive maternal care. Dolphins: Year-round mating, cooperative mating, strong mother-calf bonds. Seals: Seasonal breeding, diverse mating systems, embryonic diapause. Sea Otters: Year-round breeding, polygynous, delayed implantation, maternal care. | Emperor Penguin: Single egg incubated by male on ice. King Penguin: Single egg in a brood pouch, serial monogamy. Adélie Penguin: Stone nests, biparental care. |
Parameter | Aquatic Animals (Examples) | Aquatic Mammals (Examples) | Penguins (Examples) |
Gestation Period/Incubation Period | Bony Fish (General): Days to weeks. Amphibians (General): Days to weeks | Humpback Whale: Gestation: 11–11.5 months; Bottlenose Dolphin: Gestation: 12 months; Harbor Seal: Gestation: ~11 months; Sea Otter: Gestation: 4–12 months | Emperor Penguin: Incubation: ~64 days; King Penguin: 50–60 days. Adélie Penguin: Incubation: ~36 days. |
Clutch/Litter Size | Bony Fish (General): Hundreds to millions; Amphibians (General): Hundreds to thousands | Humpback Whale: 1; Bottlenose Dolphin: 1; Harbor Seal: 1; Sea Otter: 1 (rarely 2) | Emperor Penguin: 1. King Penguin: 1. Adélie Penguin: 2. |
Age at Sexual Maturity | Bony Fish (General): Months to years; Amphibians (General): Months to years | Humpback Whale: 4–10 years; Bottlenose Dolphin: 5–13 years. Harbor Seal: 3–7 years. Sea Otter: 2–6 years. | Emperor Penguin: 5–6 years. King Penguin: 3–6 years. Adélie Penguin: 3–6 years. |
Frequency of Reproduction | Bony Fish (General): Annual or multiple times; Amphibians (General): Annual | Humpback Whale: Every 2–3 years. Bottlenose Dolphin: Every 3–5 years. Harbor Seal: Annual. Sea Otter: ~Annual | Emperor Penguin: Annual. King Penguin: Twice every 3 years. Adélie Penguin: Annual. |
Strategy Category | Specific Mitigation Strategy | Brief Description | Ref. |
---|---|---|---|
Upstream | Pharmaceutical Take-Back Programs | Collection of unused medications to prevent improper disposal | [160] |
Upstream | Green Pharmaceuticals | Designing drugs with lower environmental impact and better biodegradability | [160] |
Upstream | Sustainable Prescribing | Optimizing dosage and drug selection to minimize environmental release | [160] |
Downstream | Advanced Wastewater Treatment | Technologies like adsorption, oxidation, bioremediation for removing contaminants | [62] |
Downstream | Bioremediation | Using biological agents like fungi and algae to degrade pollutants | [62] |
Policy/Awareness | Stricter Regulations | Limiting industrial discharges of EDCs and pharmaceuticals | [161,162,163] |
Policy/Awareness | Public Education | Raising awareness about responsible use and disposal of medications and EDC-containing products | [161,162,163] |
Penguin Species | EDC | Concentration | Ref. |
---|---|---|---|
Magellanic penguins (Spheniscus magellanicus) from the southeastern coast of Brazil | 4,4′-Dichlorodiphenyldichloroethylene (DDE) | 83 ng/g dry weight in muscle and 160 ng/g dry weight in liver. | [183] |
Dichlorodiphenyltrichloroethane (DDT)-related compounds | 27.0 ± 41.4 ng/g dry weight in muscle and 50.3 ± 82.6 ng/g dry weight in liver | ||
Hexachlorocyclohexanes (HCH) | 7.75 ± 6.30 ng/g dry weight in muscle and 17.9 ± 21.2 ng/g dry weight in liver | ||
β-endosulfan | 110 ng/g dry weight | ||
Endosulfan sulfate | 155 ng/g dry weight in muscle | ||
Polychlorinated Biphenyls (PCBs) | 57.7 ± 95.6 ng/g dry weight in muscle and 133 ± 221 ng/g dry weight in liver | ||
Polycyclic Aromatic Hydrocarbons (PAHs) | 142 ng/g dry weight in muscle and 1711 ng/g dry weight in liver | ||
King penguins (Aptenodytes patagonicus) | Benzotriazole-based ultraviolet stabilizers (UV-BTs) | 0.057 ng/mL in the blood | [184] |
DDE | 12.7 ng/mL in the blood | ||
PCBs | 19.1 ng/mL in the blood | ||
Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula | perfluorooctanoic acid (PFOA) | 0.70 ± 0.28 ng/g dry weight in feathers | [185] |
perfluoro pentanoic acid (PFPeS) | 0.84 ± 0.01 ng/g dry weight in feathers | ||
sodium dodecafluoro-3H-4,8-dioxa-nonane-1-sulfonate (NaDONA) | 0.36 ± 0.11 ng/g dry weight in feathers | ||
Gentoo penguin from the South Shetland Islands, Antarctica | Polychlorodibenzo-p-dioxins and furans (PCDD/Fs) | 3.87 pg/g lipid weight in eggs | [186] |
PCBs | 4710 pg/g lipid weight in eggs | ||
Polybrominated diphenyl ethers (PBDEs) | 123 pg/g lipid weight in eggs | ||
Chinstrap penguin (Pygoscelis antarticus) from South Shetland Islands, Antarctica | Polychlorodibenzo-p-dioxins and furans (PCDD/Fs) | 3.89 pg/g lipid weight in eggs | |
PCBs | 3200 pg/g lipid weight in eggs | ||
Polybrominated diphenyl ethers (PBDEs) | 48.8 pg/g lipid weight in eggs | ||
Gentoo penguin from Crozet archipelago (subantarctic) | Hexachlorobenzene (HCB) | 0.12 ± 0.02 µg/g wet weight in plasma | [187] |
King penguin from Crozet archipelago (subantarctic) | HCB | 0.42 ± 0.29 µg/g wet weight in plasma | |
Adélie penguin from Adélie Land, Antarctica | HCB | 0.16 ± 0.03 µg/g wet weight in plasma | |
Emperor penguin (Aptenodytes forsteri) from Adélie Land, Antarctica | HCB | 0.22 ± 0.07 µg/g wet weight in plasma | |
Southern rockhopper penguin (Eudyptes chrysocome) from Crozet archipelago (subantarctic) | HCB | 0.14 ± 0.06 µg/g wet weight in plasma | |
Macaroni penguin (Eudyptes chrysolophus) from Crozet archipelago (subantarctic) | HCB | 0.29 ± 0.08 µg/g wet weight in plasma | |
Little Penguins (Eudyptula minor) from Phillip Island, Victoria, Australia | PCBs | 12.9 ± 11.3 ng/g wet weight in blood | [188] |
DDTs | 3.5 ± 2.7 ng/g wet weight in blood |
Penguin Species | Pharmaceutical/Drug Metabolite | Concentration | Ref |
---|---|---|---|
Gentoo Penguin | Methylparaben | 4.46 to 11.6 ng/g wet weight in muscles | [189] |
4-Formyl antipyrine | 4.76 to 12 ng/g wet weight in eggs | ||
Adélie Penguin (Pygoscelis adeliae) from West Antarctic Peninsula | 4-Formyl antipyrine | 4.57 to 6.0 ng/g wet weight in eggs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuthe, G.E.; Dube, E.; Mafunda, P.S. Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species. J. Xenobiot. 2025, 15, 110. https://doi.org/10.3390/jox15040110
Okuthe GE, Dube E, Mafunda PS. Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species. Journal of Xenobiotics. 2025; 15(4):110. https://doi.org/10.3390/jox15040110
Chicago/Turabian StyleOkuthe, Grace Emily, Edith Dube, and Patrick Siyambulela Mafunda. 2025. "Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species" Journal of Xenobiotics 15, no. 4: 110. https://doi.org/10.3390/jox15040110
APA StyleOkuthe, G. E., Dube, E., & Mafunda, P. S. (2025). Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species. Journal of Xenobiotics, 15(4), 110. https://doi.org/10.3390/jox15040110