GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing Insects Callosobruchus maculatus and C. chinensis
2.2. Bursera graveolens Essential Extraction Oil
2.3. Bioassays Toxicity Against Callosobruchus maculatus and Callosobruchus chinensis
2.4. Molecular Docking Between Essential Oil Biomolecules of Bursera graveolens and Gamma-Aminobutyric Acid (GABA) and Octopamine Receptors of Callosobruchus maculatus
2.5. Repellency Bioassay of Essential Oil Against Callosobruchus spp.
2.6. Tests Effect Ovicidal and Emergency Adults Callosobruchus spp.
2.7. Statistical Analysis
3. Results
3.1. Essential Oil Toxicity Bioassays to Callosobruchus maculatus and Callosobruchus chinensis
3.2. Interactions Between Bursera graveolens Essential Oil and the Site’s Target of Callosobruchus spp.
3.2.1. Bursera graveolens Essential Oil Interaction with Gamma-Aminobutyric Acid (GABA)
3.2.2. Bursera graveolens Essential Oil Interaction with Octopamine Receptors
3.3. Repellency of Bursera graveolens Essential Oil to Adult Callosobruchus maculatus and Callosobruchus chinensis
3.4. Ovicidal Effect of Bursera graveolens Essential Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, S.P.; Nelson Silva, G.; de Sousa, A.H.; e Silva Barbosa, D.R.; da Silva, R.A.; Ducatti, K.R.; Donegá, M.A.; dos Santos, E.F.; Carvalho, M.S.; de Queiroz, M.V.B.M. Cowpea storage: Can small farmers use polyethylene terephthalate bottles and wood ash as an alternative to avoid damage caused by Callosobruchus maculatus? J. Stored Prod. Res. 2024, 106, 102301. [Google Scholar] [CrossRef]
- Nounagnon, M.; Roko, G.; Agbodjato, N.A.; Dah-Nouvlessounon, D.; Babalola, O.O.; Baba-Moussa, L. Cowpea (Vigna unguiculata). In Potential Pulses: Genetic and Genomic Resources; CABI: Wallingford, UK, 2024; pp. 58–77. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products; FAOSTAT: Rome, Italy, 2022. [Google Scholar]
- Kébé, K.; Alvarez, N.; Tuda, M.; Arnqvist, G.; Fox, C.W.; Sembène, M.; Espíndola, A. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J. Biogeogr. 2017, 44, 2515–2526. [Google Scholar] [CrossRef]
- Gad, H.A.; Abo Laban, G.F.; Metwaly, K.H.; Al-Anany, F.S.; Abdelgaleil, S.A.M. Efficacy of ozone for Callosobruchus maculatus and Callosobruchus chinensis control in cowpea seeds and its impact on seed quality. J. Stored Prod. Res. 2021, 92, 101786. [Google Scholar] [CrossRef]
- Beck, C.W.; Blumer, L.S. A Handbook on Bean Beetles, Callosobruchus maculatus; National Science Foundation: Alexandria, VA, USA, 2014; pp. 1–17. [Google Scholar]
- Hosamani, G.B.; Jagginavar, S.; Karabhantanal, S. Biology of pulse beetle Callosobruchus chinensis on different pulses. J. Entomol. Zool. Stud. 2018, 6, 1898–1900. [Google Scholar]
- Kang, J.K.; Pittendrigh, B.R.; Onstad, D.W. Insect resistance management for stored product pests: A case study of cowpea weevil (Coleoptera: Bruchidae). J. Econ. Entomol. 2013, 106, 2473–2490. [Google Scholar] [CrossRef]
- Hasan, M.M.; Reichmuth, C. Relative toxicity of phosphine against the bean bruchid Acanthoscelides obtectus (Say) (Col., Bruchidae). J. Appl. Entomol. 2004, 128, 332–336. [Google Scholar] [CrossRef]
- Aidbhavi, R.; Muralimohan, K.; Bandi, S.M. The status of resistance to phosphine in common bruchid species infesting edible stored pulses in India. J. Stored Prod. Res. 2023, 103, 102164. [Google Scholar] [CrossRef]
- Zongo, S.; Coulibaly, A.Y.; Drabo, S.F.; Gnankiné, O.; Kiendrebeogo, M.; Doumma, A.; Sembène, M.; Sanon, A. Metabolic resistance to pyrethroids (Py) and organophosphates (Op) in Callosobruchus maculatus (fab.) (Coleoptera: Chrysomelidae: Bruchinae) a major pest of stored cowpeas in West Africa. Int. J. Pest Manag. 2020, 67, 338–345. [Google Scholar] [CrossRef]
- Machuca-Mesa, L.M.; Turchen, L.M.; Guedes, R.N.C. Phosphine resistance among stored product insect pests: A global meta-analysis-based perspective. J. Pest Sci. 2023, 97, 1485–1498. [Google Scholar] [CrossRef]
- Krzyżowski, M.; Baran, B.; Łozowski, B.; Francikowski, J. The effect of Rosmarinus officinalis essential oil fumigation on biochemical, behavioral, and physiological parameters of Callosobruchus maculatus. Insects 2020, 11, 344. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Faroni, L.R.; Oliveira, E.E.; Pimentel, M.A.; Silva, G.N. Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Ind. Crops Prod. 2014, 56, 27–34. [Google Scholar] [CrossRef]
- Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kenne Kemene, T.; Martin, H.; Fauconnier, M.-L.; Hance, T. Insecticidal activity of 25 essential oils on the stored product pest, Sitophilus granarius. Foods 2021, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Jumbo, L.O.V.; Corrêa, M.J.M.; Gomes, J.M.; Armijos, M.J.G.; Valarezo, E.; Mantilla-Afanador, J.G.; Machado, F.P.; Rocha, L.; Aguiar, R.W.S.; Oliveira, E.E. Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Ind. Crops Prod. 2022, 178, 114611. [Google Scholar] [CrossRef]
- Hategekimana, A.; Erler, F. Fecundity and fertility inhibition effects of some plant essential oils and their major components against Acanthoscelides obtectus Say (Coleoptera: Bruchidae). J. Plant Dis. Prot. 2020, 127, 615–623. [Google Scholar] [CrossRef]
- Kanda, D.; Kaur, S.; Koul, O. A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: Acute toxins or feeding deterrents. J. Pest Sci. 2017, 90, 531–545. [Google Scholar] [CrossRef]
- Viteri Jumbo, L.O.; Haddi, K.; Faroni, L.R.D.; Heleno, F.F.; Pinto, F.G.; Oliveira, E.E. Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE 2018, 13, e0207618. [Google Scholar] [CrossRef]
- Massango, H.G.L.L.; Faroni, L.R.A.; Haddi, K.; Heleno, F.F.; Viteri Jumbo, L.O.; Oliveira, E.E. Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus. J. Pest Sci. 2017, 90, 723–733. [Google Scholar] [CrossRef]
- Costa, L.T.M.; Smagghe, G.; Viteri Jumbo, L.O.; Santos, G.R.; Aguiar, R.W.S.; Oliveira, E.E. Selective Actions of Plant-Based Biorational Insecticides: Molecular Mechanisms and Reduced Risks to Non-Target Organisms. Curr. Opin. Environ. Sci. Health. 2025, 44, 100601. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.; Pereira, E.J.; Aguiar, R.W.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef]
- Corrêa, E.J.A.; Carvalho, F.C.; de Castro Oliveira, J.A.; Bertolucci, S.K.V.; Scotti, M.T.; Silveira, C.H.; Guedes, F.C.; Melo, J.O.F.; de Melo-Minardi, R.C.; de Lima, L.H.F. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Sci. Rep. 2023, 13, 4598. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; Viteri Jumbo, L.O.; Rezende, S.M.; Haddi, K.; Silva, B.A.; Mello, T.S.; Della Lucia, T.M.C.; Aguiar, R.W.S.; Smagghe, G.; Oliveira, E.E. Disentangling the ecotoxicological selectivity of clove essential oil against aphids and non-target ladybeetles. Sci. Total Environ. 2020, 718, 137328. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Araujo, S.H.; Mantilla-Afanador, J.G.; Svacina, T.; Nascimento, T.F.; Da Silva Lima, A.; Camara, M.B.P.; Viteri Jumbo, L.O.; Dos Santos, G.R.; Da Rocha, C.Q.; De Oliveira, E.E. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the activities of Pectis brevipedunculata essential oil against Drosophila suzukii and pollinator bees. Plants 2024, 13, 1392. [Google Scholar] [CrossRef] [PubMed]
- Toledo, P.F.S.; Ferreira, T.P.; Bastos, I.M.A.S.; Rezende, S.M.; Viteri Jumbo, L.O.; Didonet, J.; Andrade, B.S.; Melo, T.S.; Smagghe, G.; Oliveira, E.E.; et al. Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles. Environ. Pollut. 2019, 255, 113153. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, C.; Imayoshi, Y.; Iwabuchi, H.; Komemushi, S.; Sawabe, A. Chemical composition of three extracts of Bursera graveolens. Flavour Fragr. J. 2006, 21, 234–238. [Google Scholar] [CrossRef]
- Young, D.G.; Chao, S.; Casablanca, H.; Bertrand, M.-C.; Minga, D. Essential oil of Bursera graveolens (Kunth) triana et planch from Ecuador. J. Essent. Oil Res. 2007, 19, 525–526. [Google Scholar] [CrossRef]
- Rey-Valeirón, C.; Guzmán, L.; Saa, L.R.; López-Vargas, J.; Valarezo, E. Acaricidal activity of essential oils of Bursera graveolens (Kunth) Triana & Planch and Schinus molle L. on unengorged larvae of cattle tick Rhipicephalus (Boophilus) microplus (Acari:Ixodidae). J. Essent. Oil Res. 2017, 29, 344–350. [Google Scholar] [CrossRef]
- Monzote, L.; Hill, G.M.; Cuellar, A.; Scull, R.; Setzer, W.N. Chemical composition and anti-proliferative properties of Bursera graveolens essential oil. Nat. Prod. Commun. 2012, 7, 1934578X1200701130. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; Yepes-Fuentes, L.; Tirado-Ballestas, I.; Orozco, M. Actividad Repelente del aceite esencial de Bursera graveolens Jacq. ex L., frente Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae). An. Biol. 2018, 40, 87–93. [Google Scholar] [CrossRef]
- Leyva, M.; del Carmen Marquetti, M.; Montada, D.; Payroll, J.; Scull, R.; Morejón, G.; Pino, O. Aceites esenciales de Eucalyptus globulus (Labill) y Bursera graveolens (Kunth) Triana & Planch para el control de mosquitos de importancia médica. Biologist 2020, 18, 239–250. [Google Scholar] [CrossRef]
- Jaramillo-Colorado, B.E.; Suarez-López, S.; Marrugo-Santander, V. Volatile chemical composition of essential oil from Bursera graveolens (Kunth) Triana & Planch and their fumigant and repellent activities. Acta Sci. Biol. Sci. 2019, 41, 46822. [Google Scholar] [CrossRef]
- Ndomo, A.; Tapondjou, L.; Ngamo, L.; Hance, T. Insecticidal activities of essential oil of Callistemon viminalis applied as fumigant and powder against two bruchids. J. Appl. Entomol. 2010, 134, 333–341. [Google Scholar] [CrossRef]
- Zapata, N.; Smagghe, G. Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind. Crops Prod. 2010, 32, 405–410. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Haas, J.; Barbato, A.; Behringer, D.; Studer, G.; Roth, S.; Bertoni, M.; Mostaguir, K.; Gumienny, R.; Schwede, T. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins Struct. Funct. Bioinf. 2018, 86, 387–398. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinf. 2009, 77, 114–122. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Freitas, R.C.P.; Faroni, L.R.D.A.; Haddi, K.; Jumbo, L.O.V.; Oliveira, E.E. Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: Toxicity, emergence inhibition and repellency. J. Stored Prod. Res. 2016, 69, 257–264. [Google Scholar] [CrossRef]
- Mazzonetto, F.; Vendramim, J.D. Efeito de pós de origem vegetal sobre Acanthoscelides obtectus (Say)(Coleoptera: Bruchidae) em feijão armazenado. Neotrop. Entomol. 2003, 32, 145–149. [Google Scholar] [CrossRef]
- Nattudurai, G.; Baskar, K.; Paulraj, M.G.; Islam, V.I.H.; Ignacimuthu, S.; Duraipandiyan, V. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environ. Sci. Pollut. Res. 2017, 24, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- SAS; Version 9.1; SAS Institute Inc.: Cary, NC, USA, 2003.
- Robertson, J.L.; Jones, M.M.; Olguin, E.; Alberts, B. Bioassays with Arthropods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- El-Sawaha, M.H.; Raddyb, H.M.; Gadb, H.A.; Fahmya, H.H. Chemical composition and insecticidal activities of Origanum majorana L. essential oil nanoemulsion against Callosobruchus maculatus and Callosobruchus chinensis. Egypt. J. Chem. 2024, 67, 371–381. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Gad, H.A.; Hamza, A.F.; Al-Anany, M.S. Insecticidal efficacy of two inert dusts and Trichoderma harzianum, applied alone or in combination, against Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. Crop Prot. 2021, 146, 105656. [Google Scholar] [CrossRef]
- Hasan, M.; Reichmuth, C. Phosphine tolerance in two bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) (Coleoptera: Bruchidae). In Advances in Stored Product Protection, Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK, 22–26 July 2002; CABI: Wallingford, UK, 2003; pp. 656–661. [Google Scholar]
- Gupta, H.; Deeksha; Urvashi; Reddy, S.G.E. Insecticidal and detoxification enzyme inhibition activities of essential oils for the control of pulse beetle, Callosobruchus maculatus (F.) and Callosobruchus chinensis (L.) (Coleoptera: Bruchidae). Molecules 2023, 28, 492. [Google Scholar] [CrossRef]
- Parichanon, P.; Ascrizzi, R.; Tani, C.; Echeverria, M.C.; Andrade, S.O.; Paredes, H.; Taglieri, I.; Flamini, G.; Venturi, F.; Conti, B. Chemical Profiling, Sensory Qualities, and Bioactivities of Essential Oils Obtained from Aloysia citrodora and Bursera graveolens Ecuadorian Plants Against the Mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). Insects 2025, 16, 202. [Google Scholar] [CrossRef]
- Liang, J.-Y.; An, Y.; Hou, Z.-B.; Wang, X.-D.; Zhou, F.; Zhang, J.; Wang, J.-L. Acute toxicity of Zanthoxylum bungeanum against two stored product insects and synergistic interactions between two major compounds limonene and linalool. J. Environ. Sci. Health B 2022, 57, 739–744. [Google Scholar] [CrossRef]
- Cao, J.-Q.; Pang, X.; Guo, S.-S.; Wang, Y.; Geng, Z.-F.; Sang, Y.-L.; Guo, P.-J.; Du, S.-S. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int. Biodeterior. Biodegrad. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, J.; Yang, X.; Chu, H.; Jin, M.; Li, Y.; Tao, X.; Wang, S.; Huang, Y.; Shang, L.; et al. The research of genetic toxicity of β-phellandrene. Environ. Toxicol. Pharmacol. 2017, 54, 28–33. [Google Scholar] [CrossRef]
- Podlewska, S.; Bojarski, A.J. Chapter 3—Post-processing of Docking Results: Tools and Strategies. In Molecular Docking for Computer-Aided Drug Design, Coumar, M.S., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 57–74. [Google Scholar]
- Farooqui, T. Review of octopamine in insect nervous systems. Open Access Insect Physiol. 2012, 4, 1–17. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Ma, H.; Zheng, W.; Liu, J.; Zhou, Y.; Man, Y.; Zhou, X.; Zeng, A. Pharmacological Properties and Function of the PxOctβ3 Octopamine Receptor in Plutella xylostella (L.). Insects 2022, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V. BASF Insecticide Mode of Action Technical Training Manual; BASF Corporation: Ludwigshafen, Germany, 2013. [Google Scholar]
- Zhou, T.; Wu, W.; Ma, S.; Chen, J.; Huang, J.; Qiao, X. Effects of RDL GABA Receptor Point Mutants on Susceptibility to Meta-Diamide and Isoxazoline Insecticides in Drosophila melanogaster. Insects 2024, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Zhou, T.; Zhang, J.; Zhang, L.; Lu, Y.; Huang, J. Functional validation of A2′N mutation of the RDL GABA receptor against fipronil via molecular modeling and genome engineering in Drosophila. Pest Manag. Sci. 2024, 80, 1924–1929. [Google Scholar] [CrossRef]
- Kita, T.; Hayashi, T.; Ohtani, T.; Takao, H.; Takasu, H.; Liu, G.; Ohta, H.; Ozoe, F.; Ozoe, Y. Amitraz and its metabolite differentially activate α- and β-adrenergic-like octopamine receptors. Pest Manag. Sci. 2017, 73, 984–990. [Google Scholar] [CrossRef]
- Guo, L.; Fan, X.-y.; Qiao, X.; Montell, C.; Huang, J. An octopamine receptor confers selective toxicity of amitraz on honeybees and Varroa mites. eLife 2021, 10, e68268. [Google Scholar] [CrossRef]
- Deng, X.-L.; Guo, L.; Ma, H.-H.; Hu, X.-P.; Zhou, X.-M. Phenyl imidazolidin-2-ones antagonize a β-adrenergic-like octopamine receptor in diamondback moth (Plutella xylostella). Pest Manag. Sci. 2021, 77, 3224–3232. [Google Scholar] [CrossRef]
- Ahmed, M.A.I.; Vogel, C.F.A. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling dengue vector Aedes aegypti (Diptera: Culicidae) mosquito. Acta Trop. 2016, 155, 1–5. [Google Scholar] [CrossRef]
- Xie, N.; Gross, A.D. Muscarinic acetylcholine receptor activation synergizes the knockdown and toxicity of GABA-gated chloride channel insecticides. Pest Manag. Sci. 2022, 78, 4599–4607. [Google Scholar] [CrossRef]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Ohta, H.; Ozoe, Y. Chapter Two—Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptors as Potential Insect Pest Control Targets. In Advances in Insect Physiology; Cohen, E., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 46, pp. 73–166. [Google Scholar]
- Pavela, R.; Govindarajan, M. The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J. Pest Sci. 2017, 90, 369–378. [Google Scholar] [CrossRef]
- Vaglica, A.; Peri, E.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Guarino, S. Chemical composition and evaluation of insecticidal activity of Seseli bocconei essential oils against stored products pests. Plants 2022, 11, 3047. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.N.d.L.; Da Silva, M.F.R.; Da Silva, P.C.B.; De Lira Pimentel, C.S.; Lino Da Rocha, S.K.; Farias De Aguiar, J.C.R.d.O.; Neto, A.C.A.; Paiva, P.M.G.; Gomes, M.G.M.; Da Silva-Júnior, E.F.; et al. Oviposition deterrence, larvicidal activity and docking of β-germacrene-D-4-ol obtained from leaves of Piper corcovadensis (Piperaceae) against Aedes aegypti. Ind. Crops Prod. 2022, 182, 114830. [Google Scholar] [CrossRef]
- Durán Aguirre, C.E.; Pratissoli, D.; Damascena, A.P.; Romário de Carvalho, J.; de Araujo Junior, L.M. Lethal and sublethal effects of Citrus aurantium and Citrus sinensis essential oils and their major component limonene on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J. Essent. Oil-Bear. Plants 2024, 27, 838–848. [Google Scholar] [CrossRef]
- Gupta, H.; Singh, P.P.; Reddy, S.G.E. Exploring the chemical profiling and insecticidal properties of essential oils from fresh and discarded lemon peels, Citrus limon against pulse beetle. Int. Biodeter. Biodegr. 2025, 196, 105924. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Badawy, M.E.I.; Mahmoud, N.F.; Marei, A.E.-S.M. Acaricidal activity, biochemical effects and molecular docking of some monoterpenes against two-spotted spider mite (Tetranychus urticae Koch). Pestic. Biochem. Physiol. 2019, 156, 105–115. [Google Scholar] [CrossRef]
- Nenaah, G.E.; Almadiy, A.A.; Al-Assiuty, B.A.; Mahnashi, M.H. The essential oil of and its nanoemulsion and isolated monoterpenes: Investigation of their activity against with insights into the adverse effects on non-target organisms. Pest Manag. Sci. 2022, 78, 1035–1047. [Google Scholar] [CrossRef]
- Kiran, S.; Kujur, A.; Patel, L.; Ramalakshmi, K.; Prakash, B. Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oil against insect pest of legume seeds. Pestic. Biochem. Physiol. 2017, 139, 17–23. [Google Scholar] [CrossRef]
- Chaaban, A.; Richardi, V.S.; Carrer, A.R.; Brum, J.S.; Cipriano, R.R.; Martins, C.E.N.; Silva, M.A.N.; Deschamps, C.; Molento, M.B. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pestic. Biochem. Physiol. 2019, 153, 17–27. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal Activity and Mode of Action of Monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef]
- Jayaram, C.S.; Chauhan, N.; Dolma, S.K.; Reddy, S.G.E. Chemical composition and insecticidal activities of essential oils against the pulse beetle. Molecules 2022, 27, 568. [Google Scholar] [CrossRef]
- González Armijos, M.J.; Viteri Jumbo, L.; D’Antonino Faroni, L.R.; Oliveira, E.E.; Flores, A.F.; Haddi, K. Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L. Rev. Cienc. Agric. 2019, 36, 5–15. [Google Scholar] [CrossRef]
- Bleeker, P.M.; Diergaarde, P.J.; Ament, K.; Guerra, J.; Weidner, M.; Schütz, S.; de Both, M.T.J.; Haring, M.A.; Schuurink, R.C. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009, 151, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Peng, Y.; Zhao, X.; Yue, S.; Huang, Y.; Cao, H. Identification of odorant receptors of Tribolium confusum in response to limonene repellent activity. Pestic. Biochem. Physiol. 2023, 195, 105555. [Google Scholar] [CrossRef] [PubMed]
- Ashitani, T.; Garboui, S.S.; Schubert, F.; Vongsombath, C.; Liblikas, I.; Pålsson, K.; Borg-Karlson, A.K. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2015, 67, 595–606. [Google Scholar] [CrossRef]
- Liakakou, A.; Angelis, A.; Papachristos, D.P.; Fokialakis, N.; Michaelakis, A.; Skaltsounis, L.A. Isolation of Volatile Compounds with Repellent Properties against Aedes albopictus (Diptera: Culicidae) Using CPC Technology. Molecules 2021, 26, 3072. [Google Scholar] [CrossRef]
- Vojoudi, S.; Esmaili, M.; Farrokhi, M.; Saber, M. Acute toxicity of kaolin and essential oils from Mentha pulegium and Zingiber officinale against different stages of Callosobruchus maculatus under laboratory conditions. Arch. Phytopathol. Plant Prot. 2014, 47, 285–291. [Google Scholar] [CrossRef]
- Kéı̈ta, S.M.; Vincent, C.; Schmit, J.-P.; Ramaswamy, S.; Bélanger, A. Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2000, 36, 355–364. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelbagi, O.; Ishag, A.; Hammad, A. Effects of garlic oils on the fecundity and hatchability of Callosobruchus maculatus L. (Coleoptera: Bruchidae). Univers. J. Agric. Res. 2019, 7, 63–68. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Stamopoulos, D.C. Fumigant toxicity of three essential oils on the eggs of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2004, 40, 517–525. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. J. Sci. Food Agric. 2011, 91, 2277–2283. [Google Scholar] [CrossRef]
Essential Oil | Weevil Species | N° | Slope ± SD | Estimated LC (µL/L) 95% CI | χ2 | p-Value | SR (95%CI) |
---|---|---|---|---|---|---|---|
Bursera graveolens | Callosobruchus maculatus | 620 | 6.38 ± 1.04 | LC10 = 50.96 (46.35–54.93) | 7.50 | 0.11 | 1.27 (1.24–1.29) a |
LC50 = 80.90 (76.91–85.10) | |||||||
LC75 = 103.16 (97.42–110.41) | |||||||
LC95 = 146.35 (133.84–164.25) | |||||||
Callosobruchus Chinensis | 402 | 8.23 ± 0.78 | LC10 = 44.63 (40.54–47.51) | 0.90 | 0.64 | 1.00 (0.98–1.02) b | |
LC50 = 63.90 (60.95–66.99) | |||||||
LC75 = 77.17 (73.20–82.47) | |||||||
LC95 = 101.25 (93.10–113.81) |
Concentration (µL) | Callosobruchus maculatus | Callosobruchus chinensis |
---|---|---|
Control | 71.24 ± 5.16 a | 63.47 ± 11.64 a |
LC25 | 68.80 ± 3.41 a | 69.70 ± 3.40 a |
LC50 | 65.28 ± 1.92 a | 59.29 ± 3.17 a |
LC75 | 67.89 ± 6.69 a | 59.62 ± 5.30 a |
LC95 | 57.11 ± 13.88 a | 57.43 ± 5.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viteri, L.O.; González, M.J.; Silva, P.B.; Gomes, J.M.; Svacina, T.; Costa, L.T.M.; Valarezo, E.; Mantilla-Afanador, J.G.; Herrera, O.M.; Aguiar, R.W.S.; et al. GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis. J. Xenobiot. 2025, 15, 91. https://doi.org/10.3390/jox15030091
Viteri LO, González MJ, Silva PB, Gomes JM, Svacina T, Costa LTM, Valarezo E, Mantilla-Afanador JG, Herrera OM, Aguiar RWS, et al. GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis. Journal of Xenobiotics. 2025; 15(3):91. https://doi.org/10.3390/jox15030091
Chicago/Turabian StyleViteri, Luis O., Maria José González, Pedro B. Silva, Jonatas M. Gomes, Thiago Svacina, Lara T. M. Costa, Eduardo Valarezo, Javier G. Mantilla-Afanador, Osmany M. Herrera, Raimundo W. S. Aguiar, and et al. 2025. "GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis" Journal of Xenobiotics 15, no. 3: 91. https://doi.org/10.3390/jox15030091
APA StyleViteri, L. O., González, M. J., Silva, P. B., Gomes, J. M., Svacina, T., Costa, L. T. M., Valarezo, E., Mantilla-Afanador, J. G., Herrera, O. M., Aguiar, R. W. S., Santos, G. R., & Oliveira, E. E. (2025). GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis. Journal of Xenobiotics, 15(3), 91. https://doi.org/10.3390/jox15030091