Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Phthalate/Phthalate Metabolite miRNA Dysregulation and Associated Health Effects
3.1. Reproductive Effects
3.1.1. Placental Development and Function
3.1.2. Ovarian/Uterine Development and Function
3.1.3. Prostate Development and Function
3.1.4. Testicular Development and Function
3.1.5. Steroidogenesis and Gametogenesis
3.2. Cancer
3.2.1. Prostate Cancer
3.2.2. Breast Cancer
3.2.3. Respiratory Cancers
3.2.4. Blood Cancers
3.3. Metabolic Effects
3.3.1. Liver Function
3.3.2. Obesity
3.3.3. Diabetes
3.3.4. Cardiovascular Disease
3.4. Neurodevelopmental
3.4.1. Brain Morphology, Memory, and Learning
3.4.2. Embryonic and Foetal Development
3.5. Other Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDCs | Endocrine-disrupting chemicals |
PCPs | Personal care products |
LMWP | Low-molecular-weight phthalates |
HMWP | High-molecular-weight phthalates |
DEHP | Di-2-ethylhexyl-phthalate |
DBP | Di-n-butyl phthalate |
BzBP | Benzyl butyl phthalate |
DiBP | Di-isobutyl phthalate |
EV-miRNA | Extracellular vesicle microRNA |
pri-miRNA | Primary-miRNA |
pre-miRNA | Precursor-miRNA |
miRISC | miRNA-induced silencing complex |
miRNAs | MicroRNAs |
mRNA | Messenger RNA |
MBzP | Monobenzyl phthalate |
MEP | Monoethyl phthalate |
MCOMOP | Mono(3-carboxypropyl) phthalate |
MCOMHP | Mono(3-carboxy-2-hydroxypropyl) phthalate |
MECPP | Mono(2-ethyl-5-carboxypentyl) phthalate |
MEHP | Mono(2-ethylhexyl) phthalate |
MHBP | Mono-3-hydroxybutyl phthalate |
MEHHP | Mono-2-ethyl-5-hydroxyhexyl phthalate |
MEOHP | Mono-2-ethyl-5-oxohexyl phthalate |
cAMP | Cyclic adenosine monophosphate |
PKA | Protein kinase A |
PPARG | Peroxisome proliferator-activated receptor gamma |
TGF-β | Transforming growth factor-beta |
HTR 8/Svneo | Human trophoblast cell line |
PI3K | Phosphoinositide 3-kinase |
AKT | Protein kinase B |
PTEN | Phosphatase and tensin homolog |
SOD | Superoxide dismutase |
BCL-2 | B-cell lymphoma 2 |
BAX | Bcl-2-associated X protein |
RNO | Rat |
Star | Steroidogenic acute regulatory protein |
mTOR | Mechanistic target of rapamycin |
FoxO | Forkhead box O transcription factor |
Hippo | Hippo signalling pathway |
KEGG | Kyoto Encyclopaedia of Genes and Genomes |
IPAGOSP | Ingenuity Pathway AnalysisGene ontologySeminal plasma |
MBP | Mono-n-butyl phthalate |
SCs | Sertoli cells |
qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
Rasd1 | Ras-related protein 1 |
DNMT3b | DNA methyltransferase 3 beta |
GC | Germ cells |
PDK4 | Pyruvate dehydrogenase lipoamide kinase isozyme 4 |
ER(+) | Oestrogen receptor-positive |
PCNA | Proliferating cell nuclear antigen |
FZD7 | Frizzled class receptor 7 |
Wnt | Wingless-related integration site |
FXYD6 | FXYD domain containing ion transport regulator 6 |
OSCC | Oral squamous cell carcinoma |
sEV | Small extracellular vesicle |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
iNOS | Inducible nitric oxide synthase |
Notch1 | Notch receptor 1 |
BaP | Benzo[a]pyrene |
DiDP | Diisodecyl phthalate |
elovl6 | Elongation of very long chain fatty acids protein 6 |
abhd6a | Alpha/beta hydrolase domain-containing protein 6A |
cel | Cysteinyl leukotriene receptor 1 |
pla2g12b | Phospholipase A2 group 12B |
pxr | Pregnane X receptor |
pla2g6 | Phospholipase A2 group 6 |
SOCS1 | Suppressor of cytokine signalling 1 |
STAT3 | Signal transducer and activator of transcription 3 |
SIRT1 | Sirtuin 1 |
Nampt | Nicotinamide phosphoribosyltransferase |
IRS1 | Insulin receptor substrate 1 |
GLUT4 | Glucose transporter type 4 |
lncRNA | Long non-coding RNA |
Keap1 | Kelch-like ECH-associated protein 1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
GAS5 | Growth arrest-specific 5 |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
VSMC | Vascular smooth muscle cell |
MCP-1 | Monocyte chemoattractant protein-1 |
SP1 | Specificity protein 1 |
MYOCD | Myocardin |
THP-1 | Human monocytic cell line |
hpf | Hours post-fertilization |
PRPF3 | Pre-mRNA processing factor 3 |
UTR | Untranslated region |
OVA | Ovalbumin |
Th1 | T-helper 1 cells |
Th2 | T-helper 2 cells |
Treg | Regulatory T cells |
SD rats | Sprague Dawley rats |
C-MYC | Cellular myelocytomatosis oncogene |
AML | Acute myeloid leukaemia |
References
- Saravanabhavan, G.; Murray, J. Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: A review. J. Environ. Public Health 2012, 2012, 810501. [Google Scholar] [CrossRef]
- Bu, S.; Wang, Y.; Wang, H.; Wang, F.; Tan, Y. Analysis of global commonly-used phthalates and non-dietary exposure assessment in indoor environment. Build. Environ. 2020, 177, 106853. [Google Scholar] [CrossRef]
- Gao, D.; Li, Z.; Wang, H.; Liang, H. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Sci. Total Environ. 2018, 645, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, J.; Chen, D.; Xiao, Y. Detection of phthalates migration from disposable tablewares to drinking water using hexafluoroisopropanol-induced catanionic surfactant coacervate extraction. J. Pharm. Anal. 2016, 6, 292–299. [Google Scholar] [CrossRef]
- Tuan Tran, H.; Lin, C.; Bui, X.-T.; Ky Nguyen, M.; Dan Thanh Cao, N.; Mukhtar, H.; Giang Hoang, H.; Varjani, S.; Hao Ngo, H.; Nghiem, L.D. Phthalates in the environment: Characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresour. Technol. 2022, 344, 126249. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, J.L.; Xue, J.C.; Bai, C.L.; Guo, Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. Environ. Pollut. 2021, 291, 118106. [Google Scholar] [CrossRef]
- National Research Council. National Research Council Committee on the Health Risks of Phthalates; National Academies Press: Washington, DC, USA, 2008.
- Cao, X.L. Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 21–43. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Angerer, J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch. Toxicol. 2004, 78, 123–130. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Preuss, R.; Angerer, J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch. Toxicol. 2005, 79, 367–376. [Google Scholar] [CrossRef]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mortensen, A.; et al. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. Efsa J. 2019, 17, e05838. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [PubMed]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qian, H. Phthalates and Their Impacts on Human Health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Commission Regulation (EU) 2018/2005; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004, 14, 1902–1910. [Google Scholar] [CrossRef]
- Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 2014, 51, 759–774. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Ruby, J.G.; Jan, C.H.; Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 2007, 448, 83–86. [Google Scholar] [CrossRef]
- Cheloufi, S.; Dos Santos, C.O.; Chong, M.M.; Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010, 465, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [Google Scholar] [CrossRef]
- Lytle, J.R.; Yario, T.A.; Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA 2007, 104, 9667–9672. [Google Scholar] [CrossRef]
- Dharap, A.; Pokrzywa, C.; Murali, S.; Pandi, G.; Vemuganti, R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE 2013, 8, e79467. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 2010, 285, 17442–17452. [Google Scholar] [CrossRef]
- Gjorgjieva, M.; Sobolewski, C.; Dolicka, D.; Correia de Sousa, M.; Foti, M. miRNAs and NAFLD: From pathophysiology to therapy. Gut 2019, 68, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Baumert, B.O.; Costello, E.; Chen, J.C.; Rock, S.; Stratakis, N.; Goodrich, J.A.; Zhao, Y.; Eckel, S.P.; Walker, D.I.; et al. Per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers and dysregulation of MicroRNA expression in humans and animals—A systematic review. Environ. Res. 2024, 244, 117832. [Google Scholar] [CrossRef]
- Mozzoni, P.; Poli, D.; Pinelli, S.; Tagliaferri, S.; Corradi, M.; Cavallo, D.; Ursini, C.L.; Pigini, D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. Int. J. Environ. Res. Public Health 2023, 20, 1920. [Google Scholar] [CrossRef]
- Tumolo, M.R.; Panico, A.; De Donno, A.; Mincarone, P.; Leo, C.G.; Guarino, R.; Bagordo, F.; Serio, F.; Idolo, A.; Grassi, T.; et al. The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int. J. Environ. Health Res. 2022, 32, 332–354. [Google Scholar] [CrossRef]
- Arrigo, F.; Impellitteri, F.; Piccione, G.; Faggio, C. Phthalates and their effects on human health: Focus on erythrocytes and the reproductive system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 270, 109645. [Google Scholar] [CrossRef] [PubMed]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Baccarelli, A.A.; Mansur, A.; Adir, M.; Nahum, R.; Hauser, R.; Bollati, V.; Racowsky, C.; Machtinger, R. Maternal Phthalate and Personal Care Products Exposure Alters Extracellular Placental miRNA Profile in Twin Pregnancies. Reprod. Sci. 2019, 26, 289–294. [Google Scholar] [CrossRef]
- LaRocca, J.; Binder, A.M.; McElrath, T.F.; Michels, K.B. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women. Environ. Health Perspect. 2016, 124, 380–387. [Google Scholar] [CrossRef]
- Gu, X.; Liu, H.; Luo, W.; Wang, X.; Wang, H.; Li, L. Di-2-ethylhexyl phthalate-induced miR-155-5p promoted lipid metabolism via inhibiting cAMP/PKA signaling pathway in human trophoblastic HTR-8/Svneo cells. Reprod. Toxicol. 2022, 114, 22–31. [Google Scholar] [CrossRef]
- Meruvu, S.; Zhang, J.; Choudhury, M. Mono-(2-ethylhexyl) Phthalate Increases Oxidative Stress Responsive miRNAs in First Trimester Placental Cell Line HTR8/SVneo. Chem. Res. Toxicol. 2016, 29, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Meruvu, S.; Zhang, J.; Bedi, Y.S.; Choudhury, M. Mono-(2-ethylhexyl) phthalate induces apoptosis through miR-16 in human first trimester placental cell line HTR-8/SVneo. Toxicol. Vitr. 2016, 31, 35–42. [Google Scholar] [CrossRef]
- Zota, A.R.; Geller, R.J.; VanNoy, B.N.; Marfori, C.Q.; Tabbara, S.; Hu, L.Y.; Baccarelli, A.A.; Moawad, G.N. Phthalate Exposures and MicroRNA Expression in Uterine Fibroids: The FORGE Study. Epigenet. Insights 2020, 13, 2516865720904057. [Google Scholar] [CrossRef]
- Barnett-Itzhaki, Z.; Knapp, S.; Avraham, C.; Racowsky, C.; Hauser, R.; Bollati, V.; Baccarelli, A.A.; Machtinger, R. Association between follicular fluid phthalate concentrations and extracellular vesicle microRNAs expression. Hum. Reprod. 2021, 36, 1590–1599. [Google Scholar] [CrossRef]
- Martinez, R.M.; Hauser, R.; Liang, L.; Mansur, A.; Adir, M.; Dioni, L.; Racowsky, C.; Bollati, V.; Baccarelli, A.A.; Machtinger, R. Urinary concentrations of phenols and phthalate metabolites reflect extracellular vesicle microRNA expression in follicular fluid. Environ. Int. 2019, 123, 20–28. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Zhu, J.; Li, Y.; Luo, L.; Huang, Y.; Zhang, W. Di(2-ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs. Environ. Toxicol. 2018, 33, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Gonsioroski, A.V.; Aquino, A.M.; Alonso-Costa, L.G.; Barbisan, L.F.; Scarano, W.R.; Flaws, J.A. Multigenerational effects of an environmentally relevant phthalate mixture on reproductive parameters and ovarian miRNA expression in female rats. Toxicol. Sci. 2022, 189, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.N.; Zhang, R.Q.; Liu, J.C.; Li, L.; Shen, W.; Sun, X.F. Di (2-ethylhexyl) Phthalate Exposure Impairs the microRNAs Expression Profile During Primordial Follicle Assembly. Front. Endocrinol. 2019, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- Scarano, W.R.; Bedrat, A.; Alonso-Costa, L.G.; Aquino, A.M.; Fantinatti, B.; Justulin, L.A.; Barbisan, L.F.; Freire, P.P.; Flaws, J.A.; Bernardo, L. Exposure to an environmentally relevant phthalate mixture during prostate development induces microRNA upregulation and transcriptome modulation in rats. Toxicol. Sci. 2019, 171, 84–97. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.E.; Pilsner, J.R. Urinary phthalate metabolites and small non-coding RNAs from seminal plasma extracellular vesicles among men undergoing infertility treatment. Environ. Pollut. 2023, 329, 121529. [Google Scholar] [CrossRef]
- Helmy, H.S.; Senousy, M.A.; El-Sahar, A.E.; Sayed, R.H.; Saad, M.A.; Elbaz, E.M. Aberrations of miR-126-3p, miR-181a and sirtuin1 network mediate Di-(2-ethylhexyl) phthalate-induced testicular damage in rats: The protective role of hesperidin. Toxicology 2020, 433-434, 152406. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, L.; Zhu, Z.; Li, R.; Wang, S.; Wang, W.; Qin, Z.; Zhang, W. Overexpression of miR-506-3p Aggravates DBP-Induced Testicular Oxidative Stress in Rats by Downregulating ANXA5 via Nrf2/HO-1 Signaling Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 4640605. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, W.; Zhang, H.; Gu, H.; Guo, D.; Jiang, J.; Wang, X. Adenomatous polyposis coli as a predictor of environmental chemical-induced transgenerational effects related to male infertility. J. Biochem. Mol. Toxicol. 2019, 33, e22331. [Google Scholar] [CrossRef]
- Buñay, J.; Larriba, E.; Moreno, R.D.; Del Mazo, J. Chronic low-dose exposure to a mixture of environmental endocrine disruptors induces microRNAs/isomiRs deregulation in mouse concomitant with intratesticular estradiol reduction. Sci. Rep. 2017, 7, 3373. [Google Scholar] [CrossRef]
- Yin, X.; Ma, T.; Han, R.; Ding, J.; Zhang, H.; Han, X.; Li, D. MiR-301b-3p/3584-5p enhances low-dose mono-n-butyl phthalate (MBP)-induced proliferation by targeting Rasd1 in Sertoli cells. Toxicol. In Vitro 2018, 47, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xing, Q.W.; Wu, X.L.; Zhang, L.; Tang, M.; Tang, J.Y.; Wang, J.Z.; Han, P.; Wang, S.Q.; Wang, W.; et al. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway. Cell Death Dis. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Štefánik, P.; Michalec, J.; Morová, M.; Olexová, L.; Kršková, L. Prenatal and perinatal phthalate exposure is associated with sex-dependent changes in hippocampal miR-15b-5p and miR-34a-5p expression and changes in testicular morphology in rat offspring. Arh. Hig. Rada Toksikol. 2022, 73, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, C.; Hu, Y.; Qin, H.; Gu, A.; Li, Y.; Zhang, L.; Li, Z.; Wang, Y. miRNA-200c mediates mono-butyl phthalate-disrupted steroidogenesis by targeting vimentin in Leydig tumor cells and murine adrenocortical tumor cells. Toxicol. Lett. 2016, 241, 95–102. [Google Scholar] [CrossRef]
- Vashukova, E.S.; Glotov, A.S.; Fedotov, P.V.; Efimova, O.A.; Pakin, V.S.; Mozgovaya, E.V.; Pendina, A.A.; Tikhonov, A.V.; Koltsova, A.S.; Baranov, V.S. Placental microRNA expression in pregnancies complicated by superimposed pre-eclampsia on chronic hypertension. Mol. Med. Rep. 2016, 14, 22–32. [Google Scholar] [CrossRef]
- Ishibashi, O.; Ohkuchi, A.; Ali, M.M.; Kurashina, R.; Luo, S.S.; Ishikawa, T.; Takizawa, T.; Hirashima, C.; Takahashi, K.; Migita, M.; et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: A novel marker for predicting preeclampsia. Hypertension 2012, 59, 265–273. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, W.; Jin, Y.; Dai, J. Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ. Sci. Technol. 2012, 46, 9274–9281. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhao, F.; Chen, K.; Xu, J.; Li, P.; Xia, D.; Wu, Y. Association between urinary phthalate metabolites and risk of breast cancer and uterine leiomyoma. Reprod. Toxicol. 2017, 74, 134–142. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, X.; Lu, J.; Zou, R.; Ding, R.; Hua, X. Assessment of five typical environmental endocrine disruptors and thyroid cancer risk: A meta-analysis. Front. Endocrinol. 2023, 14, 1283087. [Google Scholar] [CrossRef]
- Chuang, S.-C.; Chen, H.-C.; Sun, C.-W.; Chen, Y.-A.; Wang, Y.-H.; Chiang, C.-J.; Chen, C.-C.; Wang, S.-L.; Chen, C.-J.; Hsiung, C.A. Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ. Res. 2020, 181, 108902. [Google Scholar] [CrossRef]
- Corti, M.; Lorenzetti, S.; Ubaldi, A.; Zilli, R.; Marcoccia, D. Endocrine Disruptors and Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 1216. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Meng, X.; Liu, X.; Wang, J.; Yan, S.; Zhang, X.; Wang, M.; Ren, S.; Huang, Y. Associations of phthalates with prostate cancer among the US population. Reprod. Toxicol. 2023, 116, 108337. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H. Di(2-ethylhexyl) phthalate promotes lung cancer cell line A549 progression via Wnt/β-catenin signaling. J. Toxicol. Sci. 2019, 44, 237–244. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Hung, J.Y.; Tsai, E.M.; Wu, C.Y.; Ho, Y.W.; Jian, S.F.; Yen, M.C.; Chang, W.A.; Hou, M.F.; Kuo, P.L. Benzyl butyl phthalate increases the chemoresistance to doxorubicin/cyclophosphamide by increasing breast cancer-associated dendritic cell-derived CXCL1/GROα and S100A8/A9. Oncol. Rep. 2015, 34, 2889–2900. [Google Scholar] [CrossRef]
- Wang, Y.C.; Tsai, C.F.; Chuang, H.L.; Chang, Y.C.; Chen, H.S.; Lee, J.N.; Tsai, E.M. Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget 2016, 7, 29563–29576. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wu, J.; Ma, X.; Huang, C.; Wu, R.; Zhu, W.; Li, X.; Liang, Z.; Deng, F.; Zhu, J.; et al. Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation. Toxicol. In Vitro 2019, 54, 82–88. [Google Scholar] [CrossRef]
- Cavalca, A.M.B.; Aquino, A.M.; Mosele, F.C.; Justulin, L.A.; Delella, F.K.; Flaws, J.A.; Scarano, W.R. Effects of a phthalate metabolite mixture on both normal and tumoral human prostate cells. Environ. Toxicol. 2022, 37, 2566–2578. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Y.; Cao, W.; Li, X.; Xie, C.; Geng, S.; Zhu, M.; Liang, Z.; Zhu, J.; Zhu, W.; et al. miR-19 targeting of PTEN mediates butyl benzyl phthalate-induced proliferation in both ER(+) and ER(-) breast cancer cells. Toxicol. Lett. 2018, 295, 124–133. [Google Scholar] [CrossRef]
- Cao, W.; Lu, X.; Zhong, C.; Wu, J. Sulforaphane Suppresses MCF-7 Breast Cancer Cells Growth via miR-19/PTEN Axis to Antagonize the Effect of Butyl Benzyl Phthalate. Nutr. Cancer 2023, 75, 980–991. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, Y.; Zhang, R.; Gao, L.; Wang, X.; Bi, L.; Wang, Y. MEHP promotes the proliferation of oral cancer cells via down regulation of miR-27b-5p and miR-372-5p. Toxicol. In Vitro 2019, 58, 35–41. [Google Scholar] [CrossRef]
- Liu, B.; Chen, W.; Cao, G.; Dong, Z.; Xu, J.; Luo, T.; Zhang, S. MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Arch. Oral Biol. 2017, 83, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.Y.; Xu, P.F.; Gao, T.T. MiR-372-3p inhibits the growth and metastasis of osteosarcoma cells by targeting FXYD6. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, J.; Avellán-Llaguno, R.D.; Zhang, X.; Huang, Q. DEHP-elicited small extracellular vesicles miR-26a-5p promoted metastasis in nearby normal A549 cells. Environ. Pollut. 2021, 272, 116005. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.L.; Ma, C.C.; Hua, J.; Xiao, T.W.; Luan, J. Benzyl butyl phthalate (BBP) triggers the malignancy of acute myeloid leukemia cells via upregulation of PDK4. Toxicol. In Vitro 2020, 62, 104693. [Google Scholar] [CrossRef]
- Cui, L.; Cheng, Z.; Liu, Y.; Dai, Y.; Pang, Y.; Jiao, Y.; Ke, X.; Cui, W.; Zhang, Q.; Shi, J.; et al. Overexpression of PDK2 and PDK3 reflects poor prognosis in acute myeloid leukemia. Cancer Gene Ther. 2020, 27, 15–21. [Google Scholar] [CrossRef]
- Weng, Y.; Shen, Y.; He, Y.; Pan, X.; Xu, J.; Jiang, Y.; Zhang, Q.; Wang, S.; Kong, F.; Zhao, S.; et al. The miR-15b-5p/PDK4 axis regulates osteosarcoma proliferation through modulation of the Warburg effect. Biochem. Biophys. Res. Commun. 2018, 503, 2749–2757. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Q.; Chen, F.; Wang, J.; Gong, R.; He, B. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 1449–1457. [Google Scholar] [CrossRef]
- Chung, G.E.; Yoon, J.H.; Myung, S.J.; Lee, J.H.; Lee, S.H.; Lee, S.M.; Kim, S.J.; Hwang, S.Y.; Lee, H.S.; Kim, C.Y. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol. Rep. 2010, 23, 113–119. [Google Scholar]
- Grün, F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 453–459. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Minireview: The case for obesogens. Mol. Endocrinol. 2009, 23, 1127–1134. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Disord. 2007, 8, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Grün, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. 2009, 304, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Grün, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006, 147, S50–S55. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Zhang, X.; Liu, L.; Martin, F.L.; Wang, H.; Zhang, J.; Huang, Q.; Wang, X.; Shen, H. Phthalate side-chain structures and hydrolysis metabolism associated with steroidogenic effects in MLTC-1 Leydig cells. Toxicol. Lett. 2019, 308, 56–64. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.A.; Park, B.; Han, H.; Hong, Y.S.; Ha, E.H.; Park, H. Prospective association between phthalate exposure in childhood and liver function in adolescence: The Ewha Birth and Growth Cohort Study. Environ. Health 2023, 22, 3. [Google Scholar] [CrossRef]
- Radke, E.G.; Galizia, A.; Thayer, K.A.; Cooper, G.S. Phthalate exposure and metabolic effects: A systematic review of the human epidemiological evidence. Environ. Int. 2019, 132, 104768. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; Cairrao, E. Phthalates Implications in the Cardiovascular System. J. Cardiovasc. Dev. Dis. 2020, 7, 26. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Chen, J.; Song, Y.; You, M.; Yang, G. Long-term co-exposure DBP and BaP causes imbalance in liver macrophages polarization via activation of Notch signaling regulated by miR-34a-5p in rats. Chem. Biol. Interact. 2022, 359, 109919. [Google Scholar] [CrossRef]
- Chorley, B.N.; Carswell, G.K.; Nelson, G.; Bhat, V.S.; Wood, C.E. Early microRNA indicators of PPARα pathway activation in the liver. Toxicol. Rep. 2020, 7, 805–815. [Google Scholar] [CrossRef]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants. Aquat. Toxicol. 2019, 209, 81–90. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, J.; Ma, Y.; Cen, Y.; Wang, S.; He, X.; You, M.; Yang, G. miR-122-5p regulates hepatocytes damage caused by BaP and DBP co-exposure through SOCS1/STAT3 signaling in vitro. Ecotoxicol. Environ. Saf. 2021, 223, 112570. [Google Scholar] [CrossRef] [PubMed]
- Meruvu, S.; Zhang, J.; Choudhury, M. Butyl Benzyl Phthalate Promotes Adipogenesis in 3T3-L1 Cells via the miRNA-34a-5p Signaling Pathway in the Absence of Exogenous Adipogenic Stimuli. Chem. Res. Toxicol. 2021, 34, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Choudhury, M. Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line. Chem. Res. Toxicol. 2021, 34, 54–62. [Google Scholar] [CrossRef]
- Wei, J.; Hao, Q.; Chen, C.; Li, J.; Han, X.; Lei, Z.; Wang, T.; Wang, Y.; You, X.; Chen, X.; et al. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle. Theranostics 2020, 10, 9230–9248. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qin, Q.; Xu, J.; Li, X.; Cong, H. Phthalate promotes atherosclerosis through interacting with long-non coding RNA and induces macrophage foam cell formation and vascular smooth muscle damage. Chemosphere 2022, 308, 136383. [Google Scholar] [CrossRef]
- Wen, Y.; Kong, Y.; Cao, G.; Xu, Y.; Zhang, C.; Zhang, J.; Xiao, P.; Wang, Y. Di-n-butyl phthalate regulates vascular smooth muscle cells phenotypic switching by MiR-139-5p-MYOCD pathways. Toxicology 2022, 477, 153279. [Google Scholar] [CrossRef]
- Kong, Y.; Wen, Y.; Cao, G.; Xu, Y.; Zhang, C.; Tang, C.; Zhang, J.; Wang, Y. Di-n-butyl phthalate promotes monocyte recruitment via miR-137-3p-SP1-MCP-1 pathway. Ecotoxicol. Environ. Saf. 2022, 236, 113491. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Xiao, P.; Sun, J.; Chen, M.; Gu, C.; Kong, Y.; Gu, A.; Zhang, J.; Wang, Y. Di-n-butyl phthalate promotes lipid accumulation via the miR200c-5p-ABCA1 pathway in THP-1 macrophages. Environ. Pollut. 2020, 264, 114723. [Google Scholar] [CrossRef]
- Mai, E.H.; Lei, T.; Li, S.Q.; Hu, P.G.; Xu, T.; Jia, F.X.; Zha, Z.M.; Zhang, S.J.; Ding, F.H. MiR-34a affects hepatocyte proliferation during hepatocyte regeneration through regulating Notch/HIF-1α signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3503–3511. [Google Scholar] [CrossRef]
- Ortega, F.J.; Moreno-Navarrete, J.M.; Pardo, G.; Sabater, M.; Hummel, M.; Ferrer, A.; Rodriguez-Hermosa, J.I.; Ruiz, B.; Ricart, W.; Peral, B.; et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010, 5, e9022. [Google Scholar] [CrossRef]
- Wylie, A.C.; Short, S.J. Environmental Toxicants and the Developing Brain. Biol. Psychiatry 2023, 93, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Loch-Caruso, R.; Meeker, J.D. Exploration of Oxidative Stress and Inflammatory Markers in Relation to Urinary Phthalate Metabolites: NHANES 1999–2006. Environ. Sci. Technol. 2012, 46, 477–485. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Chen, Y.H.; VanderWeele, T.J.; McElrath, T.F.; Meeker, J.D.; Mukherjee, B. Mediation of the Relationship between Maternal Phthalate Exposure and Preterm Birth by Oxidative Stress with Repeated Measurements across Pregnancy. Environ. Health Perspect. 2017, 125, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Ejaredar, M.; Nyanza, E.C.; Ten Eycke, K.; Dewey, D. Phthalate exposure and childrens neurodevelopment: A systematic review. Environ. Res. 2015, 142, 51–60. [Google Scholar] [CrossRef]
- Lee, D.-W.; Kim, M.-S.; Lim, Y.-H.; Lee, N.; Hong, Y.-C. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: A systematic review and meta-analysis. Environ. Res. 2018, 167, 558–566. [Google Scholar] [CrossRef]
- Radke, E.G.; Braun, J.M.; Nachman, R.M.; Cooper, G.S. Phthalate exposure and neurodevelopment: A systematic review and meta-analysis of human epidemiological evidence. Environ. Int. 2020, 137, 105408. [Google Scholar] [CrossRef] [PubMed]
- Niermann, S.; Rattan, S.; Brehm, E.; Flaws, J.A. Prenatal exposure to di-(2-ethylhexyl) phthalate (DEHP) affects reproductive outcomes in female mice. Reprod. Toxicol. 2015, 53, 23–32. [Google Scholar] [CrossRef]
- Luu, B.E.; Green, S.R.; Childers, C.L.; Holahan, M.R.; Storey, K.B. The roles of hippocampal microRNAs in response to acute postnatal exposure to di(2-ethylhexyl) phthalate in female and male rats. Neurotoxicology 2017, 59, 98–104. [Google Scholar] [CrossRef]
- Qiu, F.; He, S.; Zhang, Z.; Dai, S.; Wang, J.; Liu, N.; Li, Z.; Hu, X.; Xiang, S.; Wei, C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem. Toxicol. 2023, 178, 113888. [Google Scholar] [CrossRef]
- Du, Y.T.; Yu, J.J.; Huang, G.; Zhang, K.; Abdelhafez, H.E.H.; Yin, X.H.; Qiao, J.K.; Guo, J.F. Regulation of TRAF6 by MicroRNA-146a in Zebrafish Embryos after Exposure to Di(2-Ethylhexyl) Phthalate at Different Concentrations. Chem. Res. Toxicol. 2021, 34, 2261–2272. [Google Scholar] [CrossRef]
- Yu, J.; Huang, G.; Gong, Q.; Zhang, K.; Abdelhafez, H.; Du, Y.; Guo, J. MicroRNA-375 Mediated Regulation on Pre-mRNA Processing Factor 3 in Zebrafish Embryos Exposed to Di-(2-ethylhexyl)phthalate at Low Concentrations. Chem. Res. Toxicol. 2023, 36, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Bølling, A.K.; Sripada, K.; Becher, R.; Bekö, G. Phthalate exposure and allergic diseases: Review of epidemiological and experimental evidence. Environ. Int. 2020, 139, 105706. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Quan, X.; Zhang, Q.; Chen, Y.; Wang, X.; Xu, C.; Li, N. Multi-omics reveals the mechanisms of DEHP driven pulmonary toxicity in ovalbumin-sensitized mice. Ecotoxicol. Environ. Saf. 2023, 249, 114355. [Google Scholar] [CrossRef]
- Hunt, E.A.; Broyles, D.; Head, T.; Deo, S.K. MicroRNA Detection: Current Technology and Research Strategies. Annu. Rev. Anal. Chem. 2015, 8, 217–237. [Google Scholar] [CrossRef]
- Chua, C.E.L.; Tang, B.L. miR-34a in Neurophysiology and Neuropathology. J. Mol. Neurosci. 2019, 67, 235–246. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q. MiR-34a and endothelial biology. Life Sci. 2023, 330, 121976. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; Walch-Rückheim, B.; Friedmann, K.S.; Rheinheimer, S.; Tänzer, T.; Glombitza, B.; Sester, M.; Lenhof, H.P.; Hoth, M.; Schwarz, E.C.; et al. miR-34a: A new player in the regulation of T cell function by modulation of NF-κB signaling. Cell Death Dis. 2019, 10, 46. [Google Scholar] [CrossRef]
- Doridot, L.; Houry, D.; Gaillard, H.; Chelbi, S.T.; Barbaux, S.; Vaiman, D. miR-34a expression, epigenetic regulation, and function in human placental diseases. Epigenetics 2014, 9, 142–151. [Google Scholar] [CrossRef]
- Gagnon, J.D.; Kageyama, R.; Shehata, H.M.; Fassett, M.S.; Mar, D.J.; Wigton, E.J.; Johansson, K.; Litterman, A.J.; Odorizzi, P.; Simeonov, D.; et al. miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. Cell Rep. 2019, 28, 2169–2181.E4. [Google Scholar] [CrossRef]
- Xia, H.; Qi, Y.; Ng, S.S.; Chen, X.; Chen, S.; Fang, M.; Li, D.; Zhao, Y.; Ge, R.; Li, G.; et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem. Biophys. Res. Commun. 2009, 380, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Yan, S.; Shi, L.; Wan, Z.; Jiang, N.; Li, M.; Guo, J. Decreased Expression of miR-15b in Human Gliomas is Associated with Poor Prognosis. Cancer Biother. Radiopharm. 2015, 30, 169–173. [Google Scholar] [CrossRef]
- Qi, L.Q.; Sun, B.; Yang, B.B.; Lu, S. MiR-15b facilitates breast cancer progression via repressing tumor suppressor PAQR3. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 740–748. [Google Scholar] [CrossRef]
- Martino, E.; D’Onofrio, N.; Balestrieri, A.; Mele, L.; Sardu, C.; Marfella, R.; Campanile, G.; Balestrieri, M.L. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol. Biol. Lett. 2023, 28, 66. [Google Scholar] [CrossRef]
- Li, W.; Cui, Y.; Wang, D.; Wang, Y.; Wang, L. MiR-141-3p functions as a tumor suppressor through directly targeting ZFR in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2019, 509, 647–656. [Google Scholar] [CrossRef]
- Bao, J.; Li, X.; Li, Y.; Huang, C.; Meng, X.; Li, J. MicroRNA-141-5p Acts as a Tumor Suppressor via Targeting RAB32 in Chronic Myeloid Leukemia. Front. Pharmacol. 2019, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Abedi, N.; Mohammadi-Yeganeh, S.; Koochaki, A.; Karami, F.; Paryan, M. miR-141 as potential suppressor of β-catenin in breast cancer. Tumour Biol. 2015, 36, 9895–9901. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, M.; Li, Z.; Qian, D.; Wang, B.; Liu, D.X. miR-141-3p functions as a tumor suppressor modulating activating transcription factor 5 in glioma. Biochem. Biophys. Res. Commun. 2017, 490, 1260–1267. [Google Scholar] [CrossRef]
- Liu, S.; Wen, C. miR-141-3p promotes retinoblastoma progression via inhibiting sushi domain-containing protein 2. Bioengineered 2022, 13, 7410–7424. [Google Scholar] [CrossRef]
- Luo, Q.; Tian, Y.; Qu, G.; Huang, K.; Hu, P.; Li, L.; Luo, S. MiR-141-3p promotes hypoxia-induced autophagy in human placental trophoblast cells. Reprod. Biol. 2023, 23, 100712. [Google Scholar] [CrossRef]
- Yang, G.; Lu, Z.; Meng, F.; Wan, Y.; Zhang, L.; Xu, Q.; Wang, Z. Circulating miR-141 as a potential biomarker for diagnosis, prognosis and therapeutic targets in gallbladder cancer. Sci. Rep. 2022, 12, 10072. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, F.; Lin, X. The role of miR-141/ Sirt1 in colon cancer. J. Buon 2020, 25, 2665–2671. [Google Scholar]
- Jafari, M.; Ghadami, E.; Dadkhah, T.; Akhavan-Niaki, H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J. Cell. Physiol. 2019, 234, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Karami Fath, M.; Ebrahimi, M.; Nourbakhsh, E.; Zia Hazara, A.; Mirzaei, A.; Shafieyari, S.; Salehi, A.; Hoseinzadeh, M.; Payandeh, Z.; Barati, G. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol. Res. Pract. 2022, 237, 154010. [Google Scholar] [CrossRef]
- Liu, L.; Yan, M.; Yang, R.; Qin, X.; Chen, L.; Li, L.; Si, J.; Li, X.; Ma, K. Adiponectin Attenuates Lipopolysaccharide-induced Apoptosis by Regulating the Cx43/PI3K/AKT Pathway. Front. Pharmacol. 2021, 12, 644225. [Google Scholar] [CrossRef]
- Xu, Y.; Sui, L.; Qiu, B.; Yin, X.; Liu, J.; Zhang, X. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am. J. Physiol. Cell Physiol. 2019, 316, C481–C491. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Luo, H.; Meng, X.; Chen, M.; Zhu, D. Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 2022, 525, 84–96. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, N.; Fu, Z.; Zhang, Q. Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023, 13, 483. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J. Cell. Biochem. 2018, 119, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Mushinski, J.F. c-Myc-induced genomic instability. J. Environ. Pathol. Toxicol. Oncol. 2003, 22, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018, 9, 338. [Google Scholar] [CrossRef]
- Sawe, N.; Steinberg, G.; Zhao, H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J. Neurosci. Res. 2008, 86, 1659–1669. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, X.; Tian, X.; Zhang, J.; Xue, S.; Jiang, Y.; Liu, T.; Wang, X.; Sun, Q.; Hong, Y.; et al. Tanshinone I inhibits doxorubicin-induced cardiotoxicity by regulating Nrf2 signaling pathway. Phytomedicine 2022, 106, 154439. [Google Scholar] [CrossRef]
- Lin, L.; Wu, Q.; Lu, F.; Lei, J.; Zhou, Y.; Liu, Y.; Zhu, N.; Yu, Y.; Ning, Z.; She, T.; et al. Nrf2 signaling pathway: Current status and potential therapeutic targetable role in human cancers. Front. Oncol. 2023, 13, 1184079. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xiong, X.; Zhu, H.; Chen, R.; Zhang, S.; Chen, G.; Jian, Z. Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants 2022, 11, 2377. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. 2012, 5, 492–497. [Google Scholar] [CrossRef]
- Razak, S.R.; Ueno, K.; Takayama, N.; Nariai, N.; Nagasaki, M.; Saito, R.; Koso, H.; Lai, C.Y.; Murakami, M.; Tsuji, K.; et al. Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns. PLoS ONE 2013, 8, e73532. [Google Scholar] [CrossRef]
Parent Phthalate | Metabolites | TDI [13] (mg/kg/Day) |
---|---|---|
High molecular weight | ||
DEHP (Di(2-ethylhexyl) phthalate) | Mono(2-ethylhexyl) Phthalate (MEHP) Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) Mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) | 0.05 |
DnOP (Di-n-octyl phthalate) | Mono-n-octyl phthalate (MnOP) | NA |
DiNP (Di-isononyl phthalate) | Mono-isononyl phthalate (MiNP) | 0.15 |
DiDP (Di-isodecyl phthalate) | Mono-isodecyl phthalate (MiDP) | 0.15 |
Low molecular weight | ||
DMP (Di-methyl phthalate) | Mono-methyl phthalate (MMP) | 0.05 |
DEP | Mono-ethyl phthalate (MEP) | |
BzBP (Benzylbutyl phthalate) | Mono-benzyl phthalate (MBzP) | 0.5 |
DBP (Di-n-butyl phthalate) | Mono-n-butyl phthalate (MnBP) Mono-3-hydroxybutyl phthalate (MHBP) Mono-(3-carboxypropyl) phthalate (MCPP) | 0.01 |
DiBP (Di-isobutyl phthalate) | Mono-isobutyl phthalate (MiBP) | NA |
Phthalate a Level/b Dose | Study Design; c Sample (n) | miRNA | miRNA Expression | Methodology | miRNA Target Analysis | Signalling Pathways; Target Genes | Ref. |
---|---|---|---|---|---|---|---|
MBzP (2.5 ng/mL) | Pilot study; maternal blood plasma (n = 10) | miR-518e | ↑ | Microarray | Bioinformatic analysis, DIANA-miRPath | TGF-β, proteoglycans in cancer and transcriptional misregulation in cancer | [36] |
DEHP, DOP, DiNP, DiDP, BzBP, DiBP, DnBP, DEP (dose N/S) | Cohort study; placenta samples (n = 48) | miR-185 | ↓ | qRT-PCR | Bioinformatic analysis, miRWALK, miRanda, miRDB, TargetScan, RNA22, Gene ontology (GO), genome-wide expression | Protein serine/threonine kinase, apoptotic signalling, insulin signalling, regulation of metencephalon development, and embryonic epithelial tube formation, iron ion homeostasis and small molecule metabolic process | [37] |
DEHP (9 days × 100, 500, and 1000 mg/kg/day) DEHP (24 h × 25, 50, or 100 µmol/L) | In vivo; Sprague Dawley (SD) rats; placentae (n = 8), in vitro; Trophoblasts HTR-8/Svneo cells (N/S) | miR-155–5p | ↑ | qRT-PCR | Western blot, ELISA, qRT-PCR | cAMP/PKA signalling; SREBP1, PPARG, FASN, ACC, ACLY, SCD1 | [38] |
MEHP (48 h × 25, 50, 100, and 180 μM) | In vitro; HTR-8/SVneo cell line (n = 3) | miR-17-5p | ↑ | qRT-PCR | qRT-PCR, bioinformatic analysis, Ingenuity Pathway Analysis (IPA) | I3K/AKT, PTEN, and NRF2-mediated oxidative stress response signalling; PIK3R1, PTEN, CDKN2A, DHCR24, SOD2 | [39] |
miR-126-3p | ↑ | ||||||
miR-155-5p | ↑ | ||||||
MEHP (48 h × 180 μM) | In vitro; HTR-8/SVneo cell line (n = 3) | miR-16 | ↑ | qRT-PCR | qRT-PCR, Western blot | BCL-2, BAX | [40] |
MHBP, MEHHP, MEHP, MnBP (1.06, 6.39, 1.7, 8.65 ng/mL) | Cross-sectional study; fibroid tumour (n =19) | miR-10a-5p | ↓ | TaqMan OpenArray, qRT-PCR | Bioinformatic analysis, IPA, TarBase, Target Scan, miRecords | Fibroid-related processes; BMI1, E2F3, HMO1, KIT, KLF4, NF1, NTRK3, PTEN, SNAP25, TGFBR1, TXNIP, WEE1, ADORA2B, DBI, FGF16, KMT2A, AGO1, HOA1 LDLR, VSNL1, WEE1, HOD10, USF2, AFF1, DC, RELN, SCN3A | [41] |
miR-577 | ↑ | ||||||
miR-128-3p | ND | ||||||
miR-494-3p | ND | ||||||
MEP, MnBP, MiBP, MBzP MCPP, MEHP, MEHHP MEOHP, mECPP, MiNP MCOMHP, MCOMOP (median 0–1.7 ng/mL) | Prospective study; follicular fluid EV-miRNA (n = 101) | 39 EV-miRNA | N/S | Microarray | Bioinformatic analysis, miRWalk, DAVID, and Kyoto Encyclopaedia of Genes and Genomes (KEGG) | Ovary, oocyte development, oocyte maturation, and fertilization; NRG1, ABI2 | [42] |
MEHP, MEHHP, MEOHP MECPP, DEHP, MBP (3.69, 13.49, 9.71, 20.16, 0.16, 19.01 μg/L) | Cross-sectional, nested case–control design; follicular fluid EV-miRNA (n = 130) | miR-125b | ↓ | Microarray | Bioinformatics analysis, DIANAmT, miRanda, miRDB, miRWalk, PICTAR5, RNA22, Targetscan | Follicular development and oocyte maturation and function: TGF-beta, endocrine resistance, PI3K-Akt, focal adhesion, FoxO, cell cycle, MAPK, EGFR tyrosine kinase inhibitor resistance, prolactin, p53, HIF-1, ErbB, cAMP, oocyte meiosis, progesterone-mediated oocyte maturation, ubiquitin mediated proteolysis, and Jak-STAT; mapk1, akt3, map2k1, pik3r3, and raf1 | [43] |
miR-106b | ↓ | ||||||
miR-374a | ↓ | ||||||
miR-15b | ↓ | ||||||
miR-let-7c | ↓ | ||||||
miR-24 | ↓ | ||||||
DEHP (6 weeks × 100, 400, 1600 mg/kg/d) | ICR mice; ovarian tissue (n = 6) | let-7b | ↑ | qRT-PCR | qRT-PCR, Western blot | kitl, c-kit, Gdf9, Atm, Bax, Bcl2 | [44] |
miR-17-5p | ↑ | ||||||
miR-181a | ↑ | ||||||
miR-151 | ↑ | ||||||
DEP, DEHP, DBP, DiNP, DiBP, and BzBP (20 μg/kg/day, 200 μg/kg/day, 200 mg/kg/day) | Pregnant SD rats; ovarian tissue (n = 4–8) | miR-184 | ↑ | qRT-PCR | qRT-PCR, ELISA, bioinformatic analysis, miRWalk, KOBAs, KEGG, GO | Oocyte meiosis and progesterone-mediated maturation pathways; Bcl2, Cdk4, Cdkn1a, Star, Hsd3b1 | [45] |
DEHP (72 h × 10, and 100 μM) | In vitro; CD1 mice ovary (n = N/S/3) | miR-19a-3p | ↓ | miRNA Sequencing, qRT-PCR | Western blot, TUNEL Staining, miRWalk, GO | PI3K/AKT1/mTOR signalling pathways; PTEN, Bax/Bcl2, pAKT | [46] |
miR-141-3p | ↓ | ||||||
miR-32-5p | ↓ | ||||||
DEHP (DG10—DPN21 × 20, 200 μg/kg/day, 200 mg/kg/day) | SD rats; prostate tissue (n = 3) | miR-30d-5p | ↑ | miRNA sequencing | mRNA sequencing, bioinformatic analysis, miRWalk, GO | Prostate development and oncogenesis; Cited1, Crmp1, Fabp5, Fez1, Hoxd3, Lcn2, Ngfr, Pcp4, Ptgr1, Qsox1, Rtn1, Tmeff2, Trpc6, Tubb3, Wnt9b, Wt1 | [47] |
miR-30b-5p | ↑ | ||||||
miR-141-3p | ↑ | ||||||
miR-30d-3p | ↑ | ||||||
miR-184 | ↑ | ||||||
MEOHP, MECPP, MHBP, MHiNCH, ƩDEHP (3.94, 8.84, 0.72, 1.14, 0.07 μg/L) | Cohort study; seminal plasma (n = 96) | miR-1246 | ↑ | miRNA sequencing | TargetScan, miRTarBase, PITA-MINER, miRWalk, multiMiR, tRFTars, BEDTools, metascape, STRING | MAPK1, BMPR1A/2, PTEN, TGFBR2, TP53, and APP | [48] |
miR-574 | ↑ | ||||||
miR-3176 | ↑ | ||||||
miR-7704 | ↑ | ||||||
miR-511 | ↓ | ||||||
DEHP (30 days × 500 mg/kg) | Male Wistar albino rats; testicular tissue (n = 8) | miR-126-3p | ↓ | qRT-PCR | qRT-PCR, ELISA, Western blot | SIRT1, Nrf2, HO-1, 3-HSD, GSH-Px, SOD, CAT, 3β-HSD, FABP9, MDA, Bax/Bcl2 | [49] |
miR-181a | ↑ | ||||||
DBP (2 weeks × 800 mg/kg/day) (10 mg/L) | SD rats; testicular cells (n = 3), in vitro; mouse Leydig TM3 cells (n = 3) | miR-506-3p | ↑ | Microarray, qRT-PCR | Microarray Assay, Dual-Luciferase Reporter Assay, bioinformatic analysis, Western blot, immunohistochemistry | ANXA5, Nrf2, HO-1, NQO1, GST, MDA, CAT, T-AOC, SOD, T-GSH, reduced GSH | [50] |
DBP (7 days × 500 mg/kg) | F3 males of maternal exposed SD rats; testicular tissue (n = 3) | miR-30 | ↓ | Microarray | RNA sequencing, Western blot, bioinformatics analysis, GO, KEGG | Wnt, colorectal cancer, endometrial cancer, regulation of actin cytoskeleton, cellular morphogenesis, cytoskeleton organization, basal cell carcinoma, cytoskeletal protein binding, and biogenesis signalling pathway; APC gene | [51] |
DEHP, DBP, BzBP (60 days × 0.3 mg/kgday) | C57BL/6J mice; testicular tissue (n = 3) | miR-7686-5p | ↑ | miRNA sequencing, qRT-PCR | qRT-PCR, immunohistochemistry, Western blot, bioinformatic analysis, miRWalk database, DIANA-TarBas, IPA, GO | Hormonal signalling, genitalia development, cell proliferation, programmed cell death, histone H3-K4 trimethylation, protein folding, RNA polymerase transcription factor activity, and phosphatidylinositol phosphatase activity; Nr1h2, Star, Cyp17a1, Sp1, Cyp11a1, and Cyp19a1 | [52] |
miR-34b-5p | ↑ | ||||||
miR-18a-5p | ↓ | ||||||
miR-15b-5p | ↓ | ||||||
miR-1981-5p | ↓ | ||||||
miR-382-5p | ↓ | ||||||
miR-20b-5p | ↓ | ||||||
miR-1291 | ↓ | ||||||
miR-378b | ↓ | ||||||
miR-3085-3p | ↓ | ||||||
MBP (24 h × 0.1, 1, 10 mM) | SD rats; Sertoli cells (n = 6) | miR-301b-3p | ↑ | Microarray, qRT-PCR | Microarray, qRT-PCR, Western blot, Luciferase reporter assay, bioinformatic analysis, GO, KEGG | MEK signalling; p-MEK, Rasd1 | [53] |
miR-3584-5p | ↑ | ||||||
DBP (500 mg/kg/day) (24 h × 10 mg/L) | Male 8-week-old C57BL/6J mice; testicular tissue (n = 6), in vitro; GC-1 and GC-2 cells (N/S) | miR-29b | ↑ | miRNA sequencing | qRT-PCR, Western blot, Luciferase reporter assay | p-AKT, p-PI3K, mTOR, and Bcl-2, cleaved caspase-3, Bax, Bax/Bcl-2, γ-H2AX, Cfap43, Cfap44, Dnah1, Ddx4, Mne8, Akap4, Ccdc39, Eno4, Fsip2, DNMT3b, Ddx39a, Wnt16, and Ebf | [54] |
DEHP, DINP, and DBP (29 days × 4.5 mg/kg/day) | Wistar rats; hippocampal tissue (n = 6) | miR-15b-5p | ↑♂ ↓♀ | FISH | N/A | N/P | [55] |
miR-34a-5p | ↓♂ ↑♀ | ||||||
MBP (24 or 48 h × 10−7 M) | In vitro; MLTC-1 and Y1 cells (n = 3) | miR-200c | ↓ | qRT-PCR | qRT-PCR, Western blot | StAR, vimentin | [56] |
Phthalate a Level/b Dose | Study Design; c Sample (n) | miRNA | miRNA Expression | Methodology | miRNA Target Analysis | Signalling Pathways; Target Genes | Ref. |
---|---|---|---|---|---|---|---|
DBP (2 weeks × 800 mg/kg/day) (10 mg/L) | SD rats; testicular cells (n = 3), in vitro; mouse Leydig TM3 cells (n = 3) | miR-506-3p | ↑ | Microarray, qRT-PCR | Microarray Assay, Dual-Luciferase Reporter Assay, bioinformatic analysis, Western blot, immunohistochemistry | ANXA5, Nrf2, HO-1, NQO1, GST, MDA, CAT, T-AOC, SOD, T-GSH, reduced GSH | [50] |
DBP (7 days × 500 mg/kg) | F3 males of maternal exposed SD rats; testicular tissue (n = 3) | miR-30 | ↓ | Microarray | RNA sequencing, Western blot, bioinformatics analysis, GO, KEGG | Wnt, colorectal cancer, endometrial cancer, regulation of actin cytoskeleton, cellular morphogenesis, cytoskeleton organization, basal cell carcinoma, cytoskeletal protein binding and biogenesis signalling pathway; APC gene | [51] |
DEHP, DBP, BzBP (60 days × 0.3 mg/kgday) | C57BL/6J mice; testicular tissue (n = 3) | miR-7686-5p | ↑ | miRNA sequencing, qRT-PCR | qRT-PCR, immunohistochemistry, Western blot, bioinformatic analysis, miRWalk database, DIANA-TarBas, IPA, GO | Hormonal signalling, genitalia development, cell proliferation, programmed cell death, histone H3-K4 trimethylation, protein folding, RNA polymerase transcription factor activity, and phosphatidylinositol phosphatase activity; Nr1h2, Star, Cyp17a1, Sp1, Cyp11a1, and Cyp19a1 | [52] |
miR-34b-5p | ↑ | ||||||
miR-18a-5p | ↓ | ||||||
miR-15b-5p | ↓ | ||||||
miR-1981-5p | ↓ | ||||||
miR-382-5p | ↓ | ||||||
miR-20b-5p | ↓ | ||||||
miR-1291 | ↓ | ||||||
miR-378b | ↓ | ||||||
miR-3085-3p | ↓ | ||||||
MBP (24 h × 0.1, 1, 10 mM) | SD rats; Sertoli cells (n = 6) | miR-301b-3p | ↑ | Microarray, qRT-PCR | Microarray, qRT-PCR, Western blot, Luciferase reporter assay, bioinformatic analysis, GO, KEGG | MEK signalling; p-MEK, Rasd1 | [53] |
miR-3584-5p | ↑ | ||||||
DBP (500 mg/kg/day) (24 h × 10 mg/L) | Male 8-week-old C57BL/6J mice; testicular tissue (n = 6), in vitro; GC-1 and GC-2 cells (N/S) | miR-29b | ↑ | miRNA sequencing | qRT-PCR, Western blot, Luciferase reporter assay | p-AKT, p-PI3K, mTOR and Bcl-2, cleaved caspase-3, Bax, Bax/Bcl-2, γ-H2AX, Cfap43, Cfap44, Dnah1, Ddx4, Mne8, Akap4, Ccdc39, Eno4, Fsip2, DNMT3b, Ddx39a, Wnt16, and Ebf | [54] |
DEHP, DINP, and DBP (29 days × 4.5 mg/kg/day) | Wistar rats; hippocampal tissue (n = 6) | miR-15b-5p | ↑♂ ↓♀ | FISH | N/A | N/P | [55] |
miR-34a-5p | ↓♂ ↑♀ | ||||||
MBP (24 or 48 h × 10−7 M) | In vitro; MLTC-1 and Y1 cells (n = 3) | miR-200c | ↓ | qRT-PCR | qRT-PCR, Western Blot | StAR, vimentin | [56] |
Phthalate a Level/b Dose | Study Design; c Sample (n) | miRNA | miRNA Expression | Methodology | miRNA Target Analysis | Signalling Pathways; Target Genes | Ref. |
---|---|---|---|---|---|---|---|
DBP (90 days × 50, 250 mg/kg) | SD rats; liver tissue (n = 6) | miR-34a-5p | ↓ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay, ELISA, FISH | Notch1; ALT, AST, CHE, GLDH, IL-1β, iNOS, TGF-β, CCL22, Arg, Notch1, Jagged1, RBP-J and Hes1 | [90] |
DEHP (7 days × 750, 1500, 3000, and 6000 ppm), DNOP (7 days × 1250, 2500, 5000, and 10,000 ppm), or BzBP (7 days × 1500, 3000, 6000, and 12,000 ppm) | B6C3F1 mice; serum and liver tissue (n = 6–8) | miR-182−5p miR-378a−3p miR-125a−5p miR-194−2-3p miR-20a-5p miR-320−3p miR-339−5p miR-423−5p miR-455−3p miR-98−5p | ↑ ↑ ↑↓ N/S | miRNA sequencing, ddPCR (serum) | Bioinformatic analysis, IPA, TargetScan, TarBase | PPARα, Nrf2, CAR/PXR pathway; Acot1, Cyp4a12b, Cyp4a14, Gstm1, Abcc3 | [91] |
DiDP (48 h × 0.1, 1.0 and 10 μM) | In vitro; Sparus aurata hepatocytes (n = 3) | miR-133 | ↓ | qRT-PCR | qRT-PCR, Bioinformatic analysis, TargetScan Fish | Hepatic fatty acid synthesis, glycerolipid/glycerophospholipid metabolism, phospholipid remodelling signalling pathways; cel, elovl6, pla2g6, pla2g12b, abhd6a, and pxr | [92] |
miR-199a | ↓ | ||||||
miR-29 | ↓ | ||||||
BaP (12.5 mmol/L) and/or DBP (25 mmol/L) | In vitro; human normal liver cell line (L02 cell line) (n = 3) | miR-122–5p | ↓ | qRT-PCR | qRT- PCR, Western blot, ELISA, Luciferase reporter assay | SOCS1/STAT3 signalling; AST, ALT, IL-2, IL-6, TNF-α, IL-10, SOCS1, STAT3 | [93] |
BzBP (50 μM) | In vitro; 3T3-L1 cells (n = 3) | miR-34a-5p | ↑ | qRT-PCR | qRT-PCR, Western blot | PPARγ2, Sirt, Sirt3, Nampt, NAD+ | [94] |
BzBP (8 days × 0.1 μM, 50 μM) | In vitro; C3H10T1/2 cell line (n = 3) | miR-103 | ↑ | qRT-PCR | Western blot, Bioinformatic analysis, IPA, TargetScan | Phospho-Akt and insulin signalling pathway; H19, IRS-1, IRS-2, Akt, aP2, FoxO1, PPARγ | [95] |
miR-107 | ↑ | ||||||
miR-let-7(a-d, g-f) | ↑ | ||||||
DEHP (15 weeks × 2 mg/kg/day) ((0, 1, 5, and 25 µM)) | Male C57BL/6 mice; skeletal muscle (n = 4), in vitro; C2C12 myoblast cells (n = 4) | miR-200a | ↑ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay | Insulin signalling; Insr, Irs1, Akt, Keap1, Nrf2, Dnmt3a, Malat1, Txnip, Glut4 | [96] |
miR-141 | ↑ | ||||||
miR-17 | ↓ | ||||||
DEHP (6 weeks × 5%w/w) (100 μg/mL) | C57BL/6 mice; aortic tissue (n = 3), in vitro; VSMCs (n = 3) | miR-145-5p | ↓ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay | LDLR, ABCA1, ABCG5, ABCG8, SR-B1, PCSK9, ApoA2, GAS5 | [97] |
DBP (24 h × 10−7 M) | In vitro; rat aortic smooth muscle (A7r5) cells (n = 3) | miR-139–5p | ↑ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay | SM-22α, α-SMA, CNN1, MYOCD | [98] |
DBP (24 h × 10− 9–10− 5 mol/L) | In vitro; EA.hy926 (n = N/S) | miR-137-3p | ↓ | qRT-PCR | qRT-PCR, Western blot, ELISA, Luciferase reporter assay | SP1, MCP-1 | [99] |
DBP (24 h × 10−7 mol/L) | In vitro; THP-1 macrophages (n = N/S) | miR-200c-5p | ↑ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay, Bioinformatic analysis, Targetscan, RNAhybrid | ABCA1, ABCG1, and SR-BI | [100] |
Phthalate a Level/b Dose | Study Design; c Sample (n) | miRNA | miRNA Expression | Methodology | miRNA Target Analysis | Signalling Pathways; Target Genes | Ref. |
---|---|---|---|---|---|---|---|
DEHP (males (20 mg/kg), females (10 mg/kg)) | Long Evans rat; hippocampal tissue (n = 4) | miR-132-3p | ↓♂ ↑♀ | qRT-PCR | N/P | Brain-derived neurotrophic factor (BDNF), cAMP response element binding protein (CREB) signalling pathway | [110] |
miR-132-5p | ↓♂ ↑♀ | ||||||
miR-212-3p | ↓♂ ↑(♀ | ||||||
miR-212-5p | ↓♂ | ||||||
miR-191a-5p | ↓♂ ↑♀ | ||||||
DEHP (28 days × 0.5, 5, and 50 mg/kg/day) (100 μM) | C57BL/6 mice; hippocampal tissue (n = 9), in vitro; N2a cells (n = 9) | miR-93 | ↓ | qRT-PCR | ELISA, immunohistochemistry, Luciferase reporter assay, Western blot | TNFAIP1, CK2β, Akt, CREB, Bcl-2, BDNF, synapsin-1, PSD95 | [111] |
DEHP (8, 24, and 72 hpf × 500 μg/L) | In vitro; Zebrafish; embryos (n = 3) | MiR-146a | ↓ | miRNA sequencing, qRT-PCR | Luciferase reporter assay, Western blot, bioinformatic analysis, TargetScanFish, DIANA-microT-CDS, miRanda, GO, KEGG | Hedgehog pathway; HHIP, PKA, β-TrCP, Smurf1/2, TRAF6 | [112] |
DEHP (9 days × 100, 500, and 1000 mg/kg/day) DEHP (24 h × 25, 50, or 100 µmol/L) | In vivo; SD rats; placentae (n = 8), in vitro; Trophoblasts HTR-8/Svneo cells (N/S) | miR-155–5p | ↑ | qRT-PCR | Western blot, ELISA, qRT-PCR | cAMP/PKA signalling; SREBP1, PPARG, FASN, ACC, ACLY, SCD1 | [38] |
DEHP (24 h × 2, 10, 50, 100, and 200 μg/L) | In vitro; Zebrafish embryos (ZF4) cells (n = 3) | miR-375 | ↓ | qRT-PCR | qRT-PCR, Western blot, Luciferase reporter assay, bioinformatic analysis, DAVID, Metascape, WebGestalt, GO, KEGG, DIANA-mi-croT-CDS, miRanda, miRwalk | Vascular smooth muscle contraction, TGF-β, biosynthesis of valine, leucine, and isoleucine, MAPK signalling pathway; PRPF3 | [113] |
Phthalate a Level/b Dose | Study Design; c Sample (n) | miRNA | miRNA Expression | Methodology | miRNA Target Analysis | Signalling Pathways; Target Genes | Ref. |
---|---|---|---|---|---|---|---|
DEHP (11 days × 500 mg/kg/d) | BALB/c mice; lung epithelial cells (n = N/S) | miR-146b-5p | ↑ | MicroRNA sequencing, qRT-PCR | ELISA, Bioinformatic analysis, miRanda, RNAhybrid, DAVID, GO, KEGG | PI3K/AKT pathway | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, A.; Atkin, S.L.; Brennan, E. Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. J. Xenobiot. 2025, 15, 72. https://doi.org/10.3390/jox15030072
Mohammed A, Atkin SL, Brennan E. Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. Journal of Xenobiotics. 2025; 15(3):72. https://doi.org/10.3390/jox15030072
Chicago/Turabian StyleMohammed, Aamer, Stephen L. Atkin, and Edwina Brennan. 2025. "Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review" Journal of Xenobiotics 15, no. 3: 72. https://doi.org/10.3390/jox15030072
APA StyleMohammed, A., Atkin, S. L., & Brennan, E. (2025). Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. Journal of Xenobiotics, 15(3), 72. https://doi.org/10.3390/jox15030072