Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation
2.3. 1H-NMR Spectroscopy for Urinary Metabolomics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oktavilia, S.; Hapsari, M.; Firmansyah; Setyadharma, A.; Wahyuningsum, I.F.S. Plastic Industry and World Environmental Problems. E3S Web Conf. 2020, 202, 05020. [Google Scholar] [CrossRef]
- OECD Global Plastics Outlook: Policy Scenarios to 2060; Organisation for Economic Co-operation and Development: Paris, France, 2022.
- Hazardous Exposures to Plastics in the World of Work: Research Report—International Labour Organization. Available online: https://researchrepository.ilo.org/esploro/outputs/report/Hazardous-exposures-to-plastics-in-the/995331818702676 (accessed on 4 December 2024).
- UN Environment. Chemicals in Plastics—A Technical Report|UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/report/chemicals-plastics-technical-report (accessed on 4 December 2024).
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philos. Trans. R Soc. Lond. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of Known Plastic Packaging-Associated Chemicals and Their Hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Lusher, A.; Hollman, P.C.H.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; FAO Fisheries and Aquaculture Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109882-0. [Google Scholar]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous Hitchhikers? Evidence for Potentially Pathogenic Vibrio Spp. on Microplastic Particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef]
- Rai, P.K.; Sonne, C.; Brown, R.J.C.; Younis, S.A.; Kim, K.-H. Adsorption of Environmental Contaminants on Micro- and Nano-Scale Plastic Polymers and the Influence of Weathering Processes on Their Adsorptive Attributes. J. Hazard Mater. 2022, 427, 127903. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, Q.; Wang, J. Mini-Review of Microplastics in the Atmosphere and Their Risks to Humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Murashov, V.; Geraci, C.L.; Schulte, P.A.; Howard, J. Nano- and Microplastics in the Workplace. J. Occup. Environ. Hyg. 2021, 18, 489–494. [Google Scholar] [CrossRef]
- Poikkimäki, M.; Koljonen, V.; Leskinen, N.; Närhi, M.; Kangasniemi, O.; Kausiala, O.; Dal Maso, M. Nanocluster Aerosol Emissions of a 3D Printer. Environ. Sci. Technol. 2019, 53, 13618–13628. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. “Metabonomics”: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- NMR-Based Metabolomics for Biomarker Discovery. Available online: http://ouci.dntb.gov.ua/en/works/4kjbwB67/ (accessed on 4 December 2024).
- Gowda, G.A.N.; Raftery, D. (Eds.) NMR-Based Metabolomics: Methods and Protocols; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 2037, ISBN 978-1-4939-9689-6. [Google Scholar]
- Dehghani, F.; Yousefinejad, S.; Walker, D.I.; Omidi, F. Metabolomics for Exposure Assessment and Toxicity Effects of Occupational Pollutants: Current Status and Future Perspectives. Metabolomics 2022, 18, 73. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692. [Google Scholar] [CrossRef]
- De Rosa, M.; Giampaoli, O.; Sciubba, F.; Marini, F.; Tranfo, G.; Sisto, R.; Miccheli, A.; Tricarico, L.; Fetoni, A.R.; Spagnoli, M. NMR-Based Metabolomics for Investigating Urinary Profiles of Metal Carpentry Workers Exposed to Welding Fumes and Volatile Organic Compounds. Front. Public Health 2024, 12, 1386441. [Google Scholar] [CrossRef]
- Tomassini, A.; Sciubba, F.; Di Cocco, M.E.; Capuani, G.; Delfini, M.; Aureli, W.; Miccheli, A. 1H NMR-Based Metabolomics Reveals a Pedoclimatic Metabolic Imprinting in Ready-to-Drink Carrot Juices. J. Agric. Food Chem. 2016, 64, 5284–5291. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- BMRB—Biological Magnetic Resonance Bank. Available online: https://bmrb.io/ (accessed on 4 December 2024).
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-Check: Validation of Diagnostic Statistics for PLS-DA Models in Metabolomics Studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Chong, I.-G.; Jun, C.-H. Performance of Some Variable Selection Methods When Multicollinearity Is Present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Miyazaki, T.; Honda, A.; Ikegami, T.; Iwamoto, J.; Monma, T.; Hirayama, T.; Saito, Y.; Yamashita, K.; Matsuzaki, Y. Simultaneous Quantification of Salivary 3-Hydroxybutyrate, 3-Hydroxyisobutyrate, 3-Hydroxy-3-Methylbutyrate, and 2-Hydroxybutyrate as Possible Markers of Amino Acid and Fatty Acid Catabolic Pathways by LC–ESI–MS/MS. SpringerPlus 2015, 4, 494. [Google Scholar] [CrossRef]
- Holeček, M. Branched-Chain Amino Acids in Health and Disease: Metabolism, Alterations in Blood Plasma, and as Supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef]
- PubChem Alanine Metabolism. Available online: https://pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000055 (accessed on 4 December 2024).
- Matthews, D.E. An Overview of Phenylalanine and Tyrosine Kinetics in Humans123. J. Nutr. 2007, 137, 1549S–1555S. [Google Scholar] [CrossRef]
- Moss, A.R.; Schoenheimer, R. The conversion of phenylalanine to tyrosine in normal rats. J. Biol. Chem. 1940, 135, 415–429. [Google Scholar] [CrossRef]
- Tizianello, A.; De Ferrari, G.; Garibotto, G.; Gurreri, G.; Robaudo, C. Renal Metabolism of Amino Acids and Ammonia in Subjects with Normal Renal Function and in Patients with Chronic Renal Insufficiency. J. Clin. Investig. 1980, 65, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.G.E.; Wulfmeyer, V.C.; Müller, R.-U.; Rinschen, M.M. Amino Acid Metabolism in Kidney Health and Disease. Nat. Rev. Nephrol. 2024, 20, 771–788. [Google Scholar] [CrossRef] [PubMed]
- Fleck, C.; Schwertfeger, M.; Taylor, P.M. Regulation of Renal Amino Acid (AA) Transport by Hormones, Drugs and Xenobiotics—A Review. Amino Acids 2003, 24, 347–374. [Google Scholar] [CrossRef]
- Niblett, S.H.; King, K.E.; Dunstan, R.H.; Clifton-Bligh, P.; Hoskin, L.A.; Roberts, T.K.; Fulcher, G.R.; McGregor, N.R.; Dunsmore, J.C.; Butt, H.L.; et al. Hematologic and Urinary Excretion Anomalies in Patients with Chronic Fatigue Syndrome. Exp. Biol. Med. 2007, 232, 1041–1049. [Google Scholar] [CrossRef]
- Lai, P.S.; Christiani, D.C. Impact of Occupational Exposure on Human Microbiota. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Life Sciences; Board on Environmental Studies and Toxicology; Committee on Advancing Understanding of the Implications of Environmental-Chemical Interactions with the Human Microbiome. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2017; ISBN 978-0-309-46869-5. [Google Scholar]
- Sen, P.; Fan, Y.; Schlezinger, J.J.; Ehrlich, S.D.; Webster, T.F.; Hyötyläinen, T.; Pedersen, O.; Orešič, M. Exposure to Environmental Toxicants Is Associated with Gut Microbiome Dysbiosis, Insulin Resistance and Obesity. Environ. Int. 2024, 186, 108569. [Google Scholar] [CrossRef]
- Teffera, M.; Veith, A.C.; Ronnekleiv-Kelly, S.; Bradfield, C.A.; Nikodemova, M.; Tussing-Humphreys, L.; Malecki, K. Diverse Mechanisms by Which Chemical Pollutant Exposure Alters Gut Microbiota Metabolism and Inflammation. Environ. Int. 2024, 190, 108805. [Google Scholar] [CrossRef]
- De Souza-Silva, T.G.; Oliveira, I.A.; da Silva, G.G.; Giusti, F.C.V.; Novaes, R.D.; de Almeida Paula, H.A. Impact of Microplastics on the Intestinal Microbiota: A Systematic Review of Preclinical Evidence. Life Sci. 2022, 294, 120366. [Google Scholar] [CrossRef] [PubMed]
- Demarquoy, J. Microplastics and Microbiota: Unraveling the Hidden Environmental Challenge. World J. Gastroenterol. 2024, 30, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Watanabe, E.; Kawashima, Y.; Plichta, D.R.; Wang, Z.; Ujike, M.; Ang, Q.Y.; Wu, R.; Furuichi, M.; Takeshita, K.; et al. Identification of Trypsin-Degrading Commensals in the Large Intestine. Nature 2022, 609, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Crommen, S.; Simon, M.-C. Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes 2018, 9, 10. [Google Scholar] [CrossRef]
- Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef]
- Gojda, J.; Cahova, M. Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules 2021, 11, 1414. [Google Scholar] [CrossRef]
- Mardinoglu, A.; Shoaie, S.; Bergentall, M.; Ghaffari, P.; Zhang, C.; Larsson, E.; Bäckhed, F.; Nielsen, J. The Gut Microbiota Modulates Host Amino Acid and Glutathione Metabolism in Mice. Mol. Syst. Biol. 2015, 11, 834. [Google Scholar] [CrossRef]
- Li, T.-T.; Chen, X.; Huo, D.; Arifuzzaman, M.; Qiao, S.; Jin, W.-B.; Shi, H.; Li, X.V.; Iliev, I.D.; Artis, D.; et al. Microbiota Metabolism of Intestinal Amino Acids Impacts Host Nutrient Homeostasis and Physiology. Cell Host Microbe 2024, 32, 661–675.e10. [Google Scholar] [CrossRef]
- Yap, I.K.S.; Brown, I.J.; Chan, Q.; Wijeyesekera, A.; Garcia-Perez, I.; Bictash, M.; Loo, R.L.; Chadeau-Hyam, M.; Ebbels, T.; Iorio, M.D.; et al. Metabolome-Wide Association Study Identifies Multiple Biomarkers That Discriminate North and South Chinese Populations at Differing Risks of Cardiovascular Disease: INTERMAP Study. J. Proteome Res. 2010, 9, 6647–6654. [Google Scholar] [CrossRef]
- Kałużna-Czaplińska, J.; Gątarek, P. Trimethylamine N-Oxide (TMAO) in Human Health. EXCLI J. 2021, 20, 301–319. [Google Scholar] [CrossRef]
- Pietzke, M.; Meiser, J.; Vazquez, A. Formate Metabolism in Health and Disease. Mol. Metab. 2020, 33, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.A.; Badaloo, A.V.; Forrester, T.; Hibbert, J.M.; Persaud, C. Urinary Excretion of 5-Oxoproline (Pyroglutamic Aciduria) as an Index of Glycine Insufficiency in Normal Man. Br. J. Nutr. 1987, 58, 207–214. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection. Ochsner J. 2018, 18, 81–87. [Google Scholar]
- Sipes, I.G.; Wiersma, D.A.; Armstrong, D.J. The Role of Glutathione in the Toxicity of Xenobiotic Compounds: Metabolic Activation of 1,2-Dibromoethane by Glutathione. In Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Disease; Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R., Eds.; Springer: Boston, MA, USA, 1986; pp. 457–467. ISBN 978-1-4684-5134-4. [Google Scholar]
- Giampaoli, O.; Sciubba, F.; Tranfo, G.; Sisto, R.; Pigini, D.; De Rosa, M.; Patriarca, A.; Miccheli, A.; Fetoni, A.R.; Tricarico, L.; et al. NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers. Toxics 2024, 12, 182. [Google Scholar] [CrossRef]
- Okamoto, H.; Ishikawa, A.; Yoshitake, Y.; Kodama, N.; Nishimuta, M.; Fukuwatari, T.; Shibata, K. Diurnal Variations in Human Urinary Excretion of Nicotinamide Catabolites: Effects of Stress on the Metabolism of Nicotinamide. Am. J. Clin. Nutr. 2003, 77, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, J.E.; Jellum, E. The Identification and Metabolic Origin of 2-Furoylglycine and 2,5-Furandicarboxylic Acid in Human Urine. Clin. Chim. Acta 1972, 41, 199–207. [Google Scholar] [CrossRef]
- Laugwitz, L.; Zizmare, L.; Santhanakumaran, V.; Cannet, C.; Böhringer, J.; Okun, J.G.; Spraul, M.; Krägeloh-Mann, I.; Groeschel, S.; Trautwein, C. Identification of Neurodegeneration Indicators and Disease Progression in Metachromatic Leukodystrophy Using Quantitative NMR-based Urinary Metabolomics Laugwitz. JIMD Rep. 2022, 63, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Heinzmann, S.S.; Holmes, E.; Kochhar, S.; Nicholson, J.K.; Schmitt-Kopplin, P. 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. J. Agric. Food Chem. 2015, 63, 8615–8621. [Google Scholar] [CrossRef]
- Brydson, J.A. Plastics Materials; Butterworth-Heinemann: Oxford, UK, 1999; ISBN 978-0-7506-4132-6. [Google Scholar]
- Morimoto, Y.; Hori, H.; Higashi, T.; Nagatomo, H.; Hino, Y.; Ohsato, A.; Uchino, B. Biological Marker of Furfural, Chemicals without Administrative Control Level. J. UOEH 2007, 29, 141–148. [Google Scholar] [CrossRef]
- Flek, J.; Sedivěc, V. The Absorption, Metabolism and Excretion of Furfural in Man. Int. Arch. Occup. Env. Heath 1978, 41, 159–168. [Google Scholar] [CrossRef]
- Pfäffli, P.; Tossavainen, A.; Savolainen, H. Comparison of Inhaled Furfuryl Alcohol Vapour with Urinary Furoic Acid Excretion in Exposed Foundry Workers by Chromatographic Techniques. Analyst 1985, 110, 377–379. [Google Scholar] [CrossRef]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Iavicoli, S.; Pelliccioni, A. Measurement of airborne ultrafine particles in work and life environments: study design and preliminary trends in an Italian university site. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
Age (Mean ± SD) | Gender (Male/Female) | Alcohol Intake (n) | Smoking (n) | |
---|---|---|---|---|
Workers | 45.2 ± 12.9 | 12/0 | 0 | 0 |
CTRL | 55.9 ± 4.5 | 13/0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosa, M.; Giampaoli, O.; Patriarca, A.; Marini, F.; Pietroiusti, A.; Ippoliti, L.; Paolino, A.; Militello, A.; Fetoni, A.R.; Sisto, R.; et al. Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study. J. Xenobiot. 2025, 15, 39. https://doi.org/10.3390/jox15020039
De Rosa M, Giampaoli O, Patriarca A, Marini F, Pietroiusti A, Ippoliti L, Paolino A, Militello A, Fetoni AR, Sisto R, et al. Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study. Journal of Xenobiotics. 2025; 15(2):39. https://doi.org/10.3390/jox15020039
Chicago/Turabian StyleDe Rosa, Michele, Ottavia Giampaoli, Adriano Patriarca, Federico Marini, Antonio Pietroiusti, Lorenzo Ippoliti, Agostino Paolino, Andrea Militello, Anna Rita Fetoni, Renata Sisto, and et al. 2025. "Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study" Journal of Xenobiotics 15, no. 2: 39. https://doi.org/10.3390/jox15020039
APA StyleDe Rosa, M., Giampaoli, O., Patriarca, A., Marini, F., Pietroiusti, A., Ippoliti, L., Paolino, A., Militello, A., Fetoni, A. R., Sisto, R., Tranfo, G., Spagnoli, M., & Sciubba, F. (2025). Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study. Journal of Xenobiotics, 15(2), 39. https://doi.org/10.3390/jox15020039