Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health
Abstract
:1. Introduction
2. The Cervicovaginal Microbiota Impacts on Reproduction
3. Microbiota in the Uterus
4. Uterine Microbiota in Gynecological Diseases
5. Uterine Microbiota and Reproduction
Ref. | Patient Profile and Treatment Approach for Correcting the NLDM (the Latter, When Indicated) | Detected Microbiota Composition | Positive Outcomes (Ongoing Pregnancy Included) | Negative Outcomes (Non-Pregnant or Decreased Clinical Pregnancy Rate) |
---|---|---|---|---|
[26] | 35 infertile subjects undergoing IVF 35 fertile women at pre-receptive (LH+2) and receptive phases (LH+7) LDM (>90% Lactobacillus spp.) NLDM (<90% Lactobacillus spp. with >10% other bacteria) | 166 different OTUs Lactobacillus 71.7%, Gardnerella 12.6%, Bifidobacterium 3.7%, Streptococcus 3.2%, Prevotella 0.866%. Others: Bacillus, Bacteroides, Bifidobacterium, Blautia, Clostridiales, Clostridium, Escherichia, Faecalibacterium, Gardnerella, Lachnospiraceae, Propionibacterium, Pseudomonas, Roseburia, Ruminococcus, Veillonella. EM was not hormonally regulated during the acquisition of endometrial receptivity. | LDM was associated with significant increases in implantation rate: 60.7% *; pregnancy rate: 70.6% *; ongoing pregnancy rate: 58.8% *; and live birth rate: 58.8% *. | NLDM was linked to significant reductions in implantation rate: 23.1%; pregnancy rate: 33.3%; ongoing pregnancy rate: 13.3%; and live birth rate: 6.7%. |
[60] | 33 IVF patients 26 (79%) Caucasian 5 (15%) Asian 1 (3%) African American 1 (3%) Hispanic | 278 different genera Flavobacterium and Lactobacillus constitute the predominant bacterial genera observed in both groups; Other detected bacterium were Acidovorax, Acinetobacter, Bdellovibrio, Blvii28, Candidatus aquiluna, Cellvibrio, Chryseobacterium, Clostridium, Curvibacter, Delftia, Fluviicola, Janthinobacterium, Limnohabitans, Methylotenera, Microbacterium, Paucibacter, Paudibacter, Pedobacter, Polosinus, Polynucleobacter, Pseudomonas, Salinibacterium, Shuttleworthia, Spirocheta, Streptococcus, Sulfospirilum, Sulfuricurvum | 18 patients had ongoing pregnancies. | 15 non-pregnant patients. Certain major species seemed to differ based on the outcome, although these differences were not statistically significant. |
[62] | 40 reproductive-aged Chinese women, 10 infertile patients. Participants with an IUD, vaginal inflammation, acute inflammation, suspected cervical or endometrial neoplasia, or endocrine or autoimmune disorders were excluded. Additionally, participants had no recent use of hormones, antibiotics, or vaginal medications; no cervical treatment, endometrial biopsy, IUD removal, or hysteroscopy within the past week; no douching within 5 days; and no sexual intercourse within 48 h. None of the participants were pregnant, lactating, or menstruating at the time of sampling. | Genera with the highest abundance: Bacteroides, Elizabethkingia, Lactobacillus, Methylotenera, Porphyrobacter, Prevotella, Pseudochrobactrum, Rheinheimera, Streptophyta. Differences between endometrial and vaginal microbiota The uterine cavity microbiota may help to distinguish infertile patients from healthy individuals and could play a role in infertility. | L. iners and L. crispatus showed a significant reduction in the uterine cavity of 10 infertile patients. | |
[72] | A total of 342 infertile patients undergoing ART were enrolled across 13 centers on three continents, with the following demographics: Caucasian (57.3%), East Asian (14.0%), Hispanic (11.4%), and other ethnicities (17.3%). Personalized assessment of window of implantation (and optimal time frame for embryo transfer) by ERA test. No antibiotics in the last 3 months before sample collection, no uterine pathologies, no women with serious or uncontrolled bacterial, fungal, or viral infections were included. | Identified microbiota composition in EF partially reflected that in endometrial biopsy. But association with clinical outcome was consistent. | Lactobacillus was consistently enriched in patients who achieved live birth. Some commensal bacteria, including Cupriavidus, Finegoldia, Microbacterium, and Tepidimonas were positively correlated with live birth outcomes. | Reduced levels of Lactobacillus spp. accompanied by an increased presence of Anaerococcus, Atopobium, Bifidobacterium, Chryseobacterium, Escherichia, Bacillus, Gardnerella, Haemophilus, Klebsiella, Neisseria, Propionibacterium, Staphylococcus, and Streptococcus were linked to either no pregnancy or clinical miscarriage. |
[74] | 94 IVF Asian patients 25 patients with chronic endometritis (CE) 69 patients with non-chronic endometritis (NCE) | Ten most abundant phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, Fusobacteria, Gemmatimonadetes, Patescibacteria, Proteobacteria. Ten most abundant genera: Chelativorans, Gardnerella, Halomonas, Lactobacillus, Lysobacter, Mitochondria, Pelagibacterium, Pseudomonas, Sneathia, Sphingomonas. | CE group with clinical pregnancy n = 8 (32%) NCE group with clinical pregnancy n = 41 (59.4%) * Relative abundance of Proteobacteria * and Acidobacteria * significantly higher in pregnant NCE group vs. non-pregnant CE group. | CE group with pregnancy failure n = 17 (68%) NCE group with pregnancy failure n = 28 (40.6%) * Relative abundance of Actinobacteria * significantly higher in non-pregnant CE group vs. pregnant and non-pregnant NCE groups. Relative abundance of Fusobacteria * significantly higher in pregnant CE group vs. pregnant and non-pregnant NCE groups. Relative abundance of Gardnerella * significantly increased in CE group vs. NCE and was elevated in non-pregnant groups vs. pregnant group in both CE and NCE groups. |
[96] | 45 Caucasian females who underwent ART: 27 women RIF and 18 women without RIF (control). | Most frequent genera in control patients: Anaerobacillus (0.22%), Bacillus (0.02%), Bifidobacterium (0.11%), Burkholderia (0.11%), Citrobacter (0.01%), Delftia (0.05%), Dialister (0.06%), Gardnerella (1.07%), Lactobacillus (97.96%), Lysinibacillus (0.03%), Prevotella (0.00%), Ralstonia (0.45%), Streptococcus (0.05%). | Most frequent genera in RIF patients: Anaerobacillus (0.63%), Bacillus (0.03%), Bifidobacterium (0.00%) *, Burkholderia (0.45%), Citrobacter (0.07%), Delftia (0.23%), Dialister (0.15%) *, Gardnerella (2.18%), Lactobacillus (92.27%) *, Lysinibacillus (0.03%), Prevotella (2.19%) *, Ralstonia (1.16%), Streptococcus (0.18%) *. | |
[102] | 102 Japanese infertile patients (79 IVF and 23 non-IVF) 7 healthy volunteers | Major taxonomies present in samples: Aerococcus, Atopobium, Bifidobacterium, Enterococcus, Escherichia, Gardnerella, Lactobacillus, Prevotella, Sneathia, Staphylococcus, Streptococcus, Ureaplasma. Endometrial microbiome of the healthy women exhibited high stability both between and within cycles. Percentage of patients with LDM (>90% Lactobacillus spp.): IVF 38% (30/79) * Non-IVF 73.9% (17/23) Healthy 85.7% (6/7) Median percentage of the endometrial Lactobacilli in patients: IVF 63.90 ± 41.43% of Lactobacilli * Non-IVF 96.20 ± 34.61% of Lactobacilli Healthy 99.50 ± 15.85% of Lactobacilli | 18 patients pregnant: 3 natural conception, 15 FBT. Median percentage of the endometrial Lactobacilli in pregnant individuals: 96.45% ± 33.61%. LDM endometrium might favor implantation. 7 NLDM cases pregnant (6 IVF, 1 non-IVF): 5 cases are ongoing, 1 early miscarriage, 1 was lost to follow-up. | |
[104] | 60 Chinese patients with previous failed cycles: control group (n = 30) and treatment group (n = 30). A live Lactobacillus was given intravaginally for 30 consecutive days prior to the initiation of the FET cycle. | A small percentage of Lactobacillus (2.7%). Three most dominant microbiota: Rhodococcus (23.7%), Pseudomonas (4.9%), and Achromobacter (4.1%) No significant modifications in the EM conformation were recorded among the clinical pregnant, miscarriage, and non-pregnant groups. | Clinical pregnancy rate: treated 66.7% (20/30) * Transvaginal Lactobacillus supplementation significantly increased the clinical pregnancy rate. Associated with clinical pregnancy: Achromobacter | Clinical pregnancy rate: Control 36.7% (11/30): The miscarriage frequency presented no variance amongst the two groups. Associated with miscarriage: Corynebacterium, Enterobacter, Nocardioides, Roseifexaceae. Negative correlations with clinical pregnancy: Chryseobacterium, Psychrobacter, Romboutsia, Roseifexaceae. |
[101] | 48 women undergoing IVF with FET with no antibiotic treatment in the 3 months preceding the fertility treatment. | Clear dominance of Lactobacillus genus in the endometrial microbiome. | 21 women pregnant, 5 (23.81%) women with RIF. Greater abundance of Anaerobacillus spp., Burkholderia spp., Gardnerella spp., Lactobacillus spp., although the difference was not significant. Greater abundance of L. iners, L. jensenii, and Ralstonia spp. in women without RIF. Women with NLDM, characterized by a relative abundance of over 80% Lactobacillus spp. in the endometrium, presented favorable pregnancy outcomes. | 27 women not pregnant, 18 (66.66%) women with RIF. Greater abundance of Delftia spp., Prevotella spp., Ralstonia spp., and Streptococcus spp., although the difference was not significant. Greater abundance of Prevotella spp., L. helveticus and Sneathia amnii in women with RIF. |
[100] | 93 infertile women IVF. Exclusion criteria included pelvic inflammatory disease, fibroids, endometrial polyps or septate uterus, endometrial hyperplasia or cancer, failure in oocyte recovery, poor quality blastocytes, cervicovaginal infections, sexually transmitted disease, and antimicrobial treatment in the last 4 weeks. | Microbiota phyla detected (species): 87.76% Firmicutes (Bacillus halosaccharovans, Bacillus simplex, Enterococcus faecalis, Escherichia coli, L. crispatus, L. fermentum, L. gasseri, L. iners, L. jensenii, L. jonsonii, L. paracasei, L. rhamnosus, Paenibacillus glucanolyticus, Paenibacillus spp., S. aureus, S. capitis, S.epidermidis, S. hominis, S. pasteuri, S. warneri; Se. agalactiae, Se. anginosus, Se. mitis, Se. oralis, Se. salivarius, Se. urinalis, Se. vestibularis). 27.94% Proteobacteria (Alcaligenes faecalis, Citrobacter koseri, Enterobacter kobei, Haemophilus haemolyticus, Klebsiella pneumoniae, Neisseria subflava). 10.29% Actinobacteria (Bifidobacterium scardovii, Corynebacterium coyleae, Corynebacterium spp., Gardnerella vaginalis, Microbacterium maritypicum) 8.82% Ascomycota (C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis) | 35 patients (37.6%) achieved clinical pregnancy. 27 patients (29%) presented endometrial bacterial colonization and 8 (8.6%) showed no microbial development. No differences in reproductive outcome between these two group of patients. Positive impact of Lactobacillus spp. on ongoing pregnancy rate. | 58 patients (62.4%) non-pregnant. 41 patients (44.1%) presented endometrial bacterial colonization and 17 (18.3%) showed no microbial development. Higher proportion of the following families in non-pregnant patients: Enterobacteriaceae and Staphylococcaceae. The Phylum Actinobacteria was exclusively found in non-pregnant patients. Specific species found in non-pregnant patients: Bacillus halosaccharovorans, Bacillus simplex, Bifidobacteria scardovii, Corynebacterium coyleae, Gardnerella vaginalis, Haemophilus haemolyticus, Microbacterium maritypicum, Paenibacillus glucanolyticus. |
[105] | 185 infertile Japanese patients. EMMA and ALICE evaluated 40 patients pattern 1 (Lactobacillus > 90%), 8 patients pattern 2 (Lactobacillus < 90% and negative for bacterial pathogens producing CE), 32 patients pattern 3 (Lactobacillus < 90% and positive for bacterial pathogens producing CE), 49 patients pattern 4 (minor dysbiotic microbiome profile), 56 patients pattern 5 (ultralow biomass microbiome). | Pathogens causing CE included: Chlamydia, Enterococcus, Escherichia Klebsiella, Mycoplasma, Staphylococcus, Streptococcus, Ureaplasma. | 111 patients receptive ERA group. Normal microbiome (pattern 1) was significantly associated with receptive endometrium. | 74 patients pre-receptive ERA group. Aging and ultralow biomass EM (pattern 5) were both significantly linked to a pre-receptive endometrium. |
[106] | 34 Caucasian women personalized hormonal stimulation, IVF. Infertility was attributed to tubal occlusion (7/34), endometriosis (3/34), ovulatory disorder (9/34), or idiopathic infertility (13/34) persisting for at least 1 year. | 319 bacterial species identified: Actinobacteria, Bacteroidetes, Cyanobacteria, FBP, Firmicutes, Proteobacteria, Thermi, Verrucomicrobia. | 4/34 pregnant. Predominant presence of Lachnospiraceae and Enterobacteriaceae with a significant reduction in bacterial richness. | 30/34 non-pregnant. Lactobacilli were identified only in the group with failed in vitro fertilization outcomes. Kocuria dechangensis was the only endometrial species with a significantly increased relative proportion in non-pregnant women. |
[110] | 70 IVF patients: 43 (61%) Caucasian, 12 (17%) Asian, 1 (1.4%) African American, 4 (5.6%) Hispanic, 11 (15%) unknown. | 50 different genera: Achromobacter, Acinetobacter, Actinomyces, Aerococcus, Alloscardovia, Anaerococcus, Bacillus, Bdelovrio, Bifidobacterium, Bosea, Brevundimonas, Brochothrix, Burkholderia, Caloramator, Clostridium, Comamonas, Corynebacterium, Enterococcus, Escherichia, Facklamia, Finegoldia, Fusobacterium, Gardnerella, Herbaspirilum, Hydrogenophylus, Jonquetella, Kouleothrix, Lactobacillus, Lysinbacilus, Methylobacterium, Moraxella, Moritella, Moryella, Paenibacillus, Peptoniphilus, Petrobacter, Photobacterium, Prevotella, Pseudomonas, Raistonia, Serratia, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus, Thermicanus, Varibacterium, Veillonella, Vogesella 33 patients > 90% Lactobacillus abundance 50 patients > 70% Lactobacillus abundance | Not evaluated | Not evaluated |
[111] | All Japanese population: 28 infertile patients with RIF history and 18 infertile patients undertaking their first IVF cycle (control group). CE was detected in 6 (21.4%) RIF patients and in 2 (11.1%) control. | 26,725 OTUs Aerococcus, Atopobium, Bacillus, Bifidobacterium, Burkholderia, Corynebacterium, Dialister, Enhydrobacter, Enterococcus, Exiguobacterium, Finegoldia, Fusobacterium, Gardnerella, Lactobacillus, Leucobacter, Megasphaera, Mobiluncus, Mycoplasma, Nesterenkonia, Peptoniphilus, Prevotella, Pseudoalteromonas, Shewanella, Sneathia, Staphylococcus, Streptococcus, Ureaplasma, Variovorax, Vibrio. EF microbiota significantly differed between the RIF and the control group (p = 0.0089). Percentage of patients with LDM (>90% Lactobacillus spp.): RIF 64.3% (18/28) Control 38.9% (7/18) | Burkholderia was absent from all EF microbiota samples in the control group. | Burkholderia was detected in 7 of 28 (25%) * RIF patients. |
[112] | 145 patients with RIF 21 controls RIF patients without endometrial polyps, submucosal myomas, intrauterine adhesions, thrombophilia, endocrinologic abnormalities, collagen disease, recent antibiotic treatment or parental chromosomal imbalances, or translocations. | 131 bacterial species detected in endometrial samples. Relative quantity of endometrial Lactobacillus did not change significantly between the RIF and control groups (51.2 ± 37.5% and 51.6 ± 38.3%, respectively). | Bacterial abundance: Atopobium (0.1 ± 0.2), Burkholderia (0.1 ± 0.2), Delftia (0 ± 0.1), Dietzia (0 ± 0), Enterococcus (0 ± 0), Gardnerella (0.6 ± 1.6), Hydrogenophaga (0 ± 0), Leucobacter (0.1 ± 0.2), Megasphaera (0 ± 0), Micrococcus (0 ± 0), Prevotella (0 ± 0.1), Ralstonia (0 ± 0.1), Schlegelella (0 ± 0), Sphingobacterium (0 ± 0) | Bacterial abundance: Atopobium (2.1 ± 9.4) *, Burkholderia (0.5 ± 1.3) *, Delftia (0.2 ± 0.3) *, Dietzia (0.1 ± 0.5) *, Enterococcus (0.1 ± 0.3) *, Gardnerella (5.3 ± 16.3) *, Hydrogenophaga (0.1 ± 0.3) *, Leucobacter (0.2 ± 0.6) *, Megasphaera (0.8 ± 3.2) *, Micrococcus (0.1 ± 0.7) *, Prevotella (0.7 ± 2.6) *, Ralstonia (0.3 ± 1.2) *, Schlegelella (0.4 ± 1.1) *, Sphingobacterium (0.3 ± 1.1) *. |
[113] | 130 infertile patients. Group I: 39 women with the first IVF attempt with ovarian stimulation. Group II: 27 RIF patients with ovarian stimulation and embryo transfer. Group III: 64 RIF patients with frozen-thawed embryo transfer in natural cycle. | Lactobacilli (14 species) were dominant across all groups, with L. crispatus, L. jensenii, L. vaginalis being the most prevalent. | The pregnancy rate per embryo transfer was 51.3% in group I, higher than 29.6% in group II, and 35.9% in group III, although the differences were not statistically significant. Group I showed a significantly higher isolation frequency of obligate anaerobic microorganisms and G. vaginalis than group III. | Enterobacteria and Staphylococci were more frequently observed in patients from group III compared to those in groups I and II. Streptococci were more commonly detected in patients from groups II and III than in those from group I. |
[114] | 177 Caucasian infertile patients. Participants had not used hormonal contraceptives, antibiotics, or probiotic, or prebiotic, or synbiotic formulations for at least 3 months prior to the examination. No malformations of the uterus and fallopian tubes, no endometriosis, no vaginal infections. | 105 strains of bacteria. 10 bacteria most common in patients: Bifidobacterium longum, Escherichia coli, Gardnerella vaginalis, L. gasseri, L. helveticus, L. iners, L. jensenii, L. paracasei, L. reuteri, Staphylococcus aureus. | 67 women were pregnant based on β-hCG levels 14 days after embryo implantation. In 65 patients (97%), the pregnancy ended in childbirth, while the remaining two suffered a miscarriage. | E. coli and Gardnerella vaginalis reduced the protective effect of Lactobacilli before, during, and after embryo implantation. |
[115] | 30 infertile patients undergoing IVF. No recent history of inflammatory disease, chronic endometritis, antibiotic treatment, moderate to severe endometriosis, adenomyosis, uterine hyperplasia, or endometrial polyps. | 2168 OTUs were identified. Lactobacillus genus was not significantly different between pregnant and non-pregnant groups. | Pregnant women (n = 16). 39 (14.39%) unique species found. Bosea spp. was detected frequently in more than 30% of the samples. More frequent genera: Ralstonia genus (28.89%), Lactobacillus spp. (14.44%), Pseudomonas spp. (0.77%), Delftia spp. (0.21%). | Non-pregnant women (n = 14). 62 (22.88%) unique species found. Bacteria that occur frequently: Acetomicrobium spp., Bacteroides spp., Cutibacterium granulosum, Isoptericola spp., Marivivens spp., Syntrophomonas spp. More frequent genera: Ralstonia genus (33.88%), Lactobacillus spp. (10.16%), Ureaplasma spp (1.27%), Faecalibacterium spp. (0.89%), Pseudomonas spp. (0.87%), Delftia spp. (0.72%). Significantly enriched Delftia spp., Glutamicibacter spp., Serratia marcescens, Staphyloccocus spp. |
[116] | 80 asymptomatic Chinese women with RIF: 40 patients non-CE and 40 patients CE. CE patients were treated with doxycycline (100 mg twice daily for 14 days). After treatment, the 40 CE patients were CD138-negative by immunohistochemistry. | Lactobacillus is non-predominant genera of EM Top microbiota phylum: Acinetobacter, Lactobacillus, Pseudomonas, Rhodococcus. Associated with CE: Aminicenantales, Chloroflexaceae, Proteobacteria. Associated with non-CE Acinetobacter, Herbaspirillum, Lactobacillus, Micrococcaceae, Ralstonia, Shewanela. | Clinical pregnancy rate Non-CE group 62.5% (25/40) * Associated with clinical pregnancy: Achromobacter, Acinetobacter, Lactobacillus, Proteobacteria. | Clinical pregnancy rate CE group 37.5% (15/40) There was no variation in the miscarriage rate between the two groups. Correlated with miscarriage: Enterococus, Gardnerella, Phyllobacterium, Pseudomonas. Correlated with non-pregnancy: Clostridium, Prevotella, Romboutsia, Streptococcus. |
[121] | 117 RIF women and 55 infertile women without RIF LDM (>90% Lactobacillus-dominant microbiota) and NLDM (≤90% Lactobacillus microbiota). Patients with NLDM EF treated with oral lactoferrin supplementation (700 mg/day for a minimum of 28 consecutive days). Improved EF microbiotas are patients who increased 10% or more the proportion of Lactobacillus species in EF samples after lactoferrin treatment. | No identification of single microorganisms or characterization of the local microbiota associated with NLDM. | RIF group with improved EF microbiota: Clinical pregnancy rate: 71.4%(10/14) * Live birth rate: 57.1% (8/14) * | RIF group with unimproved EF microbiota: Clinical pregnancy rate: 22.2% (2/9) Live birth rate: 11.1% (1/9) |
[124] | 92 Asian IVF patients (90 Japanese, 1 Korean, and 1 Chinese). Nine NLDM patients treated with amoxicillin or levofloxacin, followed by combination of prebiotics (lactoferrin) and/or probiotics. | Major taxonomies present in samples: Aerococcus, Atopobium, Bifidobacterium, Enterococcus, Escherichia, Gardnerella, Lactobacillus, Prevotella, Sneathia, Staphylococcus, Streptococcus, Ureaplasma. 62 patients with LDM (≥80% Lactobacillus spp.) 30 patients with NLDM (< 80% Lactobacillus spp.) | Pregnancy rate per patient: LDM 38 patients (61.3%) * NLDM 12 patients (40%) All nine NLDM patients became LDM, and five patients achieved pregnancies (three ongoing and two miscarriages). LDM endometrium might benefit implantation | Non-pregnant patients: LDM 32 patients (47.1%) NLDM 14 patients (45.2%) In these patients, the median percentage of Lactobacilli was 14.75% (range 0–78.6%), Gardnerella (11.0–98.8%), Atopobium (3.8–97.3%), Streptococcus (65.4–81.5%). |
[125] | 195 Japanese RIF patients: 131 EMMA evaluated (initially, 67 patients LDM, 64 patients NLDM) and 64 not evaluated (control group). Patients were excluded if they had intrauterine lesions, untreated hydrosalpinx, an allergy to antibiotics or inability to adhere to antibiotic treatment, or received antibiotic treatments within 3 months prior to sample collection. Antibiotics were chosen based on the pathogens identified in the EMMA test and the clinical profile of each patient. Metronidazole (500 mg twice a day for 7 days) when Gardnerella was detected. Amoxicillin and clavulanic acid (500–125 mg every 8 h for 8 days) when Streptococcus > 10% of EM. Vaginal suppositories containing Lactobacillus strains administered after antibiotic treatment for 7–10 days or for 10–17 days from day 5 of their FET cycle. All control group patients were given intravaginal probiotic treatment for 7–10 days, beginning on the 5th day of their FET cycle. Al 64 NLDM patients treated achieved LDM. Median percentage Lactobacillus spp: before treatment 25.8%, after treatment 90.8%. | Lactobacillus spp. detected in all patients. More frequently detected genera: Atopobium, Bifidobacterium, Gardnerella, Streptococcus. | Patients with LDM Clinical pregnancy rate: 64.5% (79/131) * Ongoing pregnant rate: 48.9% (64/131) * Live birth rate: 48.9% (64/131) * Weeks of gestation for single births: 38.8 ± 1.71 * | Patients not evaluated with EMMA (control group): Clinical pregnancy rate: 33.3% (25/64); Ongoing pregnant rate: 32.8% (21/64); Live birth rate: 31.2% (20/64); and Weeks of gestation for single births: 37.6 ± 3.42. |
6. Effect of Bisphenols on Reproduction
7. Bisphenols and the Gut Microbiota
8. Gut Microbiota Regulates Intestinal Permeability
9. Uterine Microbiota May Regulate Implantation Through Toll-like-Receptors (TLRs)-Tight Junctions (TJs)
10. Tight Junctions (TJs) Participation in Embryo Implantation
11. Impact of Bisphenols on Uterine Epithelial Cells (UECs) Tight Junctions (TJs)
12. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; García-Arévalo, M.; Quesada, I.; Nadal, Á. Bisphenol-A treatment during pregnancy in mice: A new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 2015, 156, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Commission Directive 2011/8/EU of 28 January 2011 Amending Directive 2002/72/EC as Regards the Restriction of Use of Bisphenol A in Plastic Infant Feeding Bottles Text with EEA relevance. OJ L Jan 28. 2011. Available online: http://data.europa.eu/eli/dir/2011/8/oj/eng (accessed on 8 May 2023).
- Björnsdotter, M.K.; de Boer, J.; Ballesteros-Gómez, A. Bisphenol A and replacements in thermal paper: A review. Chemosphere 2017, 182, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.-B.; Nakata, H.; Kannan, K. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wong, L.Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary concentrations of bisphenol A and three other bisphenols in convenience samples of U.S. adults during 2000–2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef]
- Asimakopoulos, A.G.; Xue, J.; De Carvalho, B.P.; Iyer, A.; Abualnaja, K.O.; Yaghmoor, S.S.; Kumosani, T.A.; Kannan, K. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ. Res. 2016, 150, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guan, J.; Yin, J.; Shao, B.; Li, H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere 2014, 112, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, R.; Ayotte, P.; Pereg, D.; Déry, S.; Dumas, P.; Langlois, E.; Dewailly, E. Determinants of plasma concentrations of perfluorooctanesulfonate and brominated organic compounds in Nunavik Inuit adults (Canada). Environ. Sci. Technol. 2009, 43, 5130–5136. [Google Scholar] [CrossRef] [PubMed]
- Carignan, C.C.; Abdallah, M.A.-E.; Wu, N.; Heiger-Bernays, W.; McClean, M.D.; Harrad, S.; Webster, T.F. Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environ. Sci. Technol. 2012, 46, 12146–12153. [Google Scholar] [CrossRef] [PubMed]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef]
- Lai, K.-P.; Chung, Y.-T.; Li, R.; Wan, H.-T.; Wong, C.K.-C. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ. Pollut. 2016, 218, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Balbi, T.; Vezzulli, L.; Lasa, A.; Pallavicini, A.; Canesi, L. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2020, 237, 108833. [Google Scholar] [CrossRef]
- Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Catron, T.R.; Keely, S.P.; E Brinkman, N.; Zurlinden, T.J.; E Wood, C.; Wright, J.R.; Phelps, D.; Wheaton, E.; Kvasnicka, A.; Gaballah, S.; et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol. Sci. 2019, 167, 468–483. [Google Scholar] [CrossRef]
- Gomez, M.V.; Dutta, M.; Suvorov, A.; Shi, X.; Gu, H.; Mani, S.; Cui, J.Y. Early life exposure to environmental contaminants (BDE-47, TBBPA, and BPS) produced persistent alterations in fecal microbiome in adult male mice. Toxicol. Sci. 2021, 179, 14–30. [Google Scholar] [CrossRef]
- Schäpe, S.S.; Krause, J.L.; Masanetz, R.K.; Riesbeck, S.; Starke, R.; Rolle-Kampczyk, U.; Eberlein, C.; Heipieper, H.-J.; Herberth, G.; von Bergen, M.; et al. Environmentally relevant concentration of bisphenol S shows slight effects on SIHUMIx. Microorganisms 2020, 8, 1436. [Google Scholar] [CrossRef] [PubMed]
- Wyżga, B.; Połeć, K.; Olechowska, K.; Hąc-Wydro, K. The impact of toxic bisphenols on model human erythrocyte membranes. Colloids Surf. B Biointerfaces 2020, 186, 110670. [Google Scholar] [CrossRef]
- Tong, T.; Li, R.; Chai, M.; Wang, Q.; Yang, Y.; Xie, S. Metagenomic analysis of microbial communities continuously exposed to Bisphenol A in mangrove rhizosphere and non-rhizosphere soils. Sci. Total Environ. 2021, 792, 148486. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Godoy-Vitorino, F.; Knight, R.; Blaser, M.J. Role of the microbiome in human development. Gut 2019, 68, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Grau, I.; Simon, C.; Moreno, I. Uterine microbiome-low biomass and high expectations. Biol. Reprod. 2019, 101, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Younes, J.A.; Lievens, E.; Hummelen, R.; van der Westen, R.; Reid, G.; Petrova, M.I. Women and their microbes: The unexpected friendship. Trends Microbiol. 2018, 26, 16–32. [Google Scholar] [CrossRef]
- Munoz, A.; Hayward, M.R.; Bloom, S.M.; Rocafort, M.; Ngcapu, S.; Mafunda, N.A.; Xu, J.; Xulu, N.; Dong, M.; Dong, K.L.; et al. Modeling the temporal dynamics of cervicovaginal microbiota identifies targets that may promote reproductive health. Microbiome 2021, 9, 163. [Google Scholar]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef]
- Borovkova, N.; Korrovits, P.; Ausmees, K.; Türk, S.; Jõers, K.; Punab, M.; Mändar, R. Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe 2011, 17, 414–418. [Google Scholar] [CrossRef]
- Amabebe, E.; Anumba, D.O.C. The vaginal microenvironment: The physiologic role of Lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bian, G.; Zheng, M.; Lu, G.; Chan, W.-Y.; Li, W.; Yang, K.; Chen, Z.-J.; Du, Y. Fertility factors affect the vaginal microbiome in women of reproductive age. Am. J. Reprod. Immunol. 2020, 83, e13220. [Google Scholar] [CrossRef]
- Singer, M.; Koedooder, R.; Bos, M.P.; Poort, L.; Schoenmakers, S.; Savelkoul, P.H.M.; Laven, J.S.E.; de Jonge, J.D.; Morré, S.A.; Budding, A.E. The profiling of microbiota in vaginal swab samples using 16S rRNA gene sequencing and IS-pro analysis. BMC Microbiol. 2021, 21, 100. [Google Scholar] [CrossRef] [PubMed]
- Brandão, P.; Gonçalves-Henriques, M. The impact of female genital microbiota on fertility and assisted reproductive treatments. J. Fam. Reprod. Health 2020, 14, 131–149. [Google Scholar] [CrossRef]
- Koedooder, R.; Mackens, S.; Budding, A.; Fares, D.; Blockeel, C.; Laven, J.; Schoenmakers, S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum. Reprod. Update 2019, 25, 298–325. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; LaMere, B.; Weihe, C.; Wandro, S.; Lindsay, K.L.; Wadhwa, P.D.; Mills, D.A.; Pride, D.T.; Fiehn, O.; Northen, T.; et al. Cervicovaginal microbiome composition is associated with metabolic profiles in healthy pregnancy. mBio 2020, 11, e01851-20. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Pliskova, L.; Bolehovska, R.; Gerychova, R.; Janku, P.; Matlak, P.; Simetka, O.; Faist, T.; Mls, J.; Vescicik, P.; et al. Lactobacilli-dominated cervical microbiota in women with preterm prelabor rupture of membranes. Pediatr. Res. 2020, 87, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Kindinger, L.M.; Bennett, P.R.; Lee, Y.S.; Marchesi, J.R.; Smith, A.; Cacciatore, S.; Holmes, E.; Nicholson, J.K.; Teoh, T.G.; MacIntyre, D.A. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome 2017, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Koedooder, R.; Singer, M.; Schoenmakers, S.; Savelkoul, P.H.M.; Morré, S.A.; de Jonge, J.D.; Poort, L.; Cuypers, W.J.S.S.; Beckers, N.G.M.; Broekmans, F.J.M.; et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: A prospective study. Hum. Reprod. 2019, 34, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Zhang, X.; Liang, Y.; Lin, S.; Qian, W.; Fan, S. Alterations in Vaginal Microbiota and Associated Metabolome in Women with Recurrent Implantation Failure. mBio 2020, 11, e03242-19. [Google Scholar] [CrossRef] [PubMed]
- Gerson, K.D.; McCarthy, C.; Elovitz, M.A.; Ravel, J.; Sammel, M.D.; Burris, H.H. Cervicovaginal microbial communities deficient in Lactobacillus species are associated with second trimester short cervix. Am. J. Obstet. Gynecol. 2020, 222, 491.e1–491.e8. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.F.; Zhang, Y.X.; Chen, S.; Zhu, F.F.; Huang, Y.X.; Liu, X.J.; Luo, S.P.; Deng, G.P.; Gao, J. Non-Lactobacillus-Dominated vaginal microbiota is associated with a tubal pregnancy in symptomatic Chinese women in the early stage of pregnancy: A nested case-control study. Front. Cell. Infect. Microbiol. 2021, 11, 659505. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Li, P.; Wu, S.; Tan, J. Association of the cervical microbiota with pregnancy outcome in a subfertile population undergoing in vitro fertilization: A case-control study. Front. Cell. Infect. Microbiol. 2021, 11, 654202. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Diaz, D.J.; Jesaveluk, B.; Hayward, J.A.; Tyssen, D.; Alisoltani, A.; Potgieter, M.; Bell, L.; Ross, E.; Iranzadeh, A.; Allali, I.; et al. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. Microbiome 2022, 10, 141. [Google Scholar] [CrossRef]
- Farage, M.A.; Stadler, A. Risk factors for recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 2005, 192, 981–982; author reply 982–983. [Google Scholar] [CrossRef] [PubMed]
- Rose, W.A.; McGowin, C.L.; Spagnuolo, R.A.; Eaves-Pyles, T.D.; Popov, V.L.; Pyles, R.B. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS ONE 2012, 7, e32728. [Google Scholar] [CrossRef] [PubMed]
- Eschenbach, D.A.; Thwin, S.S.; Patton, D.L.; Hooton, T.M.; Stapleton, A.E.; Agnew, K.; Winter, C.; Meier, A.; Stamm, W.E. Influence of the normal menstrual cycle on vaginal tissue, discharge, and microflora. Clin. Infect. Dis. 2000, 30, 901–907. [Google Scholar] [CrossRef]
- Takada, K.; Komine-Aizawa, S.; Kuramochi, T.; Ito, S.; Trinh, Q.D.; Pham, N.T.K.; Sasano, M.; Hayakawa, S. Lactobacillus crispatus accelerates re-epithelialization in vaginal epithelial cell line MS74. Am. J. Reprod. Immunol. 2018, 80, e13027. [Google Scholar] [CrossRef]
- Baker, J.M.; Chase, D.M.; Herbst-Kralovetz, M.M. Uterine microbiota: Residents, tourists, or invaders? Front. Immunol. 2018, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.C.; McAndrew, T.; Chen, Z.; Harari, A.; Barris, D.M.; Viswanathan, S.; Rodriguez, A.C.; Castle, P.; Herrero, R.; Schiffman, M.; et al. The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS ONE 2012, 7, e40425. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Simon, C. Relevance of assessing the uterine microbiota in infertility. Fertil. Steril. 2018, 110, 337–343. [Google Scholar] [CrossRef]
- Payne, M.S.; Bayatibojakhi, S. Exploring preterm birth as a polymicrobial disease: An overview of the uterine microbiome. Front. Immunol. 2014, 5, 595. [Google Scholar] [CrossRef] [PubMed]
- Salim, R.; Zafran, N.; Nachum, Z.; Edelstein, S.; Shalev, E. Employing nifedipine as a tocolytic agent prior to external cephalic version. Acta Obstet. Gynecol. Scand. 2008, 87, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Egbase, P.E.; Udo, E.E.; Al-Sharhan, M.; Grudzinskas, J.G. Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer. Lancet 1999, 354, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Fanchin, R.; Harmas, A.; Benaoudia, F.; Lundkvist, U.; Olivennes, F.; Frydman, R. Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome. Fertil. Steril. 1998, 70, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Egbase, P.E.; Al-Sharhan, M.; Al-Othman, S.; Al-Mutawa, M.; Udo, E.E.; Grudzinskas, J.G. Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Hum. Reprod. 1996, 11, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar]
- Molina, N.M.; Sola-Leyva, A.; Saez-Lara, M.J.; Plaza-Diaz, J.; Tubić-Pavlović, A.; Romero, B.; Clavero, A.; Mozas-Moreno, J.; Fontes, J.; Altmäe, S. New opportunities for endometrial health by modifying uterine microbial composition: Present or future? Biomolecules 2020, 10, 593. [Google Scholar] [CrossRef]
- Mitchell, C.M.; Haick, A.; Nkpara, E.; Gacria, R.; Rendi, M.; Agnew, K.; Fredricks, D.N.; Eschenbach, D. Colonization of the upper genital tract by vaginal bacterial species in non-pregnant women. Am. J. Obstet. Gynecol. 2015, 212, 611.e1–611.e9. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Werner, M.D.; Juneau, C.R.; Tao, X.; Landis, J.; Zhan, Y.; Treff, N.R.; Scott, R.T. Endometrial microbiome at the time of embryo transfer: Next-generation sequencing of the 16S ribosomal subunit. J. Assist. Reprod. Genet. 2016, 33, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, H.; Vilchez-Vargas, R.; Desimpel, F.; Jauregui, R.; Vankeirsbilck, N.; Weyers, S.; Verhelst, R.; De Sutter, P.; Pieper, D.H.; Van De Wiele, T. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ 2016, 4, e1602. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Ding, H.; Yu, H.; Ji, Y.; Xifang, X.; Pang, W.; Wang, X.; Zhang, Q.; Li, W. Comprehensive characterization of microbial community in the female genital tract of reproductive-aged women in China. Front. Cell. Infect. Microbiol. 2021, 11, 649067. [Google Scholar] [CrossRef] [PubMed]
- Vomstein, K.; Reider, S.; Böttcher, B.; Watschinger, C.; Kyvelidou, C.; Tilg, H.; Moschen, A.R.; Toth, B. Uterine microbiota plasticity during the menstrual cycle: Differences between healthy controls and patients with recurrent miscarriage or implantation failure. J. Reprod. Immunol. 2022, 151, 103634. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, E.S.; Willner, D.; Buttini, M.; Huygens, F. A role for the endometrial microbiome in dysfunctional menstrual bleeding. Antonie Leeuwenhoek 2018, 111, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Odawara, K.; Akino, R.; Sekizawa, A.; Sakamoto, M.; Yuriko, S.; Tanaka, K.; Mikashima, M.; Suzuki, M.; Odawara, Y. Examination of clinical factors affecting intrauterine microbiota. Reprod. Fertil. 2021, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kadogami, D.; Nakaoka, Y.; Morimoto, Y. Use of a vaginal probiotic suppository and antibiotics to influence the composition of the endometrial microbiota. Reprod. Biol. 2020, 20, 307–314. [Google Scholar] [CrossRef]
- Carosso, A.; Revelli, A.; Gennarelli, G.; Canosa, S.; Cosma, S.; Borella, F.; Tancredi, A.; Paschero, C.; Boatti, L.; Zanotto, E.; et al. Controlled ovarian stimulation and progesterone supplementation affect vaginal and endometrial microbiota in IVF cycles: A pilot study. J. Assist. Reprod. Genet. 2020, 37, 2315–2326. [Google Scholar] [CrossRef]
- Fang, R.L.; Chen, L.X.; Shu, W.S.; Yao, S.Z.; Wang, S.W.; Chen, Y.Q. Barcoded sequencing reveals diverse intrauterine microbiomes in patients suffering with endometrial polyps. Am. J. Transl. Res. 2016, 8, 1581. [Google Scholar] [PubMed]
- Monin, L.; Whettlock, E.M.; Male, V. Immune responses in the human female reproductive tract. Immunology 2020, 160, 106–115. [Google Scholar] [CrossRef]
- Tomaiuolo, R.; Veneruso, I.; Cariati, F.; D’Argenio, V. Microbiota and Human Reproduction: The Case of Female Infertility. High-Throughput 2020, 9, 12. [Google Scholar] [CrossRef]
- Zhu, N.; Yang, X.; Liu, Q.; Chen, Y.; Wang, X.; Li, H.; Gao, H. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front. Immunol. 2022, 13, 928475. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Garcia-Grau, I.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Bahçeci, M.; Barrionuevo, M.J.; Taguchi, S.; Puente, E.; Dimattina, M.; Lim, M.W.; et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome 2022, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, P.; Guo, Y.; Fang, C.; Li, T. Interaction between chronic endometritis caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure. Front. Immunol. 2021, 12, 748447. [Google Scholar] [CrossRef]
- Chen, W.; Wei, K.; He, X.; Wei, J.; Yang, L.; Li, L.; Chen, T.; Tan, B. Identification of uterine microbiota in infertile women receiving in vitro fertilization with and without chronic endometritis. Front. Cell Dev. Biol. 2021, 9, 693267. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Takebayashi, A.; Ishida, M.; Nakamura, A.; Kitazawa, J.; Morimune, A.; Hirata, K.; Takahashi, A.; Tsuji, S.; Takashima, A.; et al. Review: Chronic endometritis and its effect on reproduction. J. Obstet. Gynaecol. Res. 2019, 45, 951–960. [Google Scholar] [CrossRef]
- Kitaya, K.; Takeuchi, T.; Mizuta, S.; Matsubayashi, H.; Ishikawa, T. Endometritis: New time, new concepts. Fertil. Steril. 2018, 110, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ko, E.Y.-L.; Wong, K.K.-W.; Chen, X.; Cheung, W.-C.; Law, T.S.-M.; Chung, J.P.-W.; Tsui, S.K.-W.; Li, T.-C.; Chim, S.S.-C. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertil. Steril. 2019, 112, 707–717.e1. [Google Scholar] [CrossRef]
- Moreno, I.; Cicinelli, E.; Garcia-Grau, I.; Gonzalez-Monfort, M.; Bau, D.; Vilella, F.; De Ziegler, D.; Resta, L.; Valbuena, D.; Simon, C. The diagnosis of chronic endometritis in infertile asymptomatic women: A comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 2018, 218, 602.e1–602.e16. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Kitajima, M.; Hiraki, K.; Nakashima, M.; Masuzaki, H. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis. Hum. Reprod. 2014, 29, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Fujishita, A.; Masumoto, H.; Muto, H.; Kitajima, M.; Masuzaki, H.; Kitawaki, J. Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, C.; Silveira, P.; Rodrigues Sereia, A.F.; Christoff, A.P.; Mendes, H.; Valter de Oliveira, L.F.; Podgaec, S. Microbiome profile of deep endometriosis patients: Comparison of vaginal fluid, endometrium and lesion. Diagnostics 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 15. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Muto, H.; Masumoto, H.; Ogawa, K.; Koshiba, A.; Mori, T.; Itoh, K.; Teramukai, S.; Matsuda, K.; et al. Levofloxacin or gonadotropin releasing hormone agonist treatment decreases intrauterine microbial colonization in human endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Duan, H.; Wang, S.; Guo, Z.; Wang, S.; Chang, Y.; Chen, C.; Shen, M.; Shou, H.; Zhou, C. Endometrial microbiota in women with and without adenomyosis: A pilot study. Front. Microbiol. 2023, 14, 1075900. [Google Scholar] [CrossRef]
- Kubyshkin, A.V.; Aliev, L.L.; Fomochkina, I.I.; Kovalenko, Y.P.; Litvinova, S.V.; Filonenko, T.G.; Lomakin, N.V.; Kubyshkin, V.A.; Karapetian, O.V. Endometrial hyperplasia-related inflammation: Its role in the development and progression of endometrial hyperplasia. Inflamm. Res. 2016, 65, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Walther-António, M.R.S.; Chen, J.; Multinu, F.; Hokenstad, A.; Distad, T.J.; Cheek, E.H.; Keeney, G.L.; Creedon, D.J.; Nelson, H.; Mariani, A.; et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016, 8, 122. [Google Scholar] [CrossRef]
- Walsh, D.M.; Hokenstad, A.N.; Chen, J.; Sung, J.; Jenkins, G.D.; Chia, N.; Nelson, H.; Mariani, A.; Walther-Antonio, M.R.S. Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome). Sci. Rep. 2019, 9, 19213. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; He, F.; Lin, Z.; Liu, S.; Tang, L.; Huang, Y.; Hu, Z. Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. Int. J. Cancer 2021, 148, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Guo, Y.; Jia, L.; Wan, J.; He, T.; Fang, C.; Li, T. Interaction between functionally activate endometrial microbiota and host gene regulation in endometrial cancer. Front. Cell Dev. Biol. 2021, 9, 727286. [Google Scholar] [CrossRef]
- Gressel, G.M.; Usyk, M.; Frimer, M.; Kuo, D.Y.S.; Burk, R.D. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS ONE 2021, 16, e0259188. [Google Scholar] [CrossRef]
- Li, C.; Gu, Y.; He, Q.; Huang, J.; Song, Y.; Wan, X.; Li, Y. Integrated analysis of microbiome and transcriptome data reveals the interplay between commensal bacteria and fibrin degradation in endometrial cancer. Front. Cell. Infect. Microbiol. 2021, 11, 748558. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Chao, A.S.; Lin, C.Y.; Weng, C.H.; Wu, R.C.; Yeh, Y.M.; Huang, S.S.; Lee, Y.S.; Lai, C.H.; Huang, H.J.; et al. Analysis of endometrial lavage microbiota reveals an increased relative abundance of the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila in women with endometrial cancer/endometrial hyperplasia. Front. Cell. Infect. Microbiol. 2022, 12, 1031967. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Su, H.; Shi, L.; Chen, B.; Zhang, S. Endometrial microbiota from endometrial cancer and paired pericancer tissues in postmenopausal women: Differences and clinical relevance. Menopause 2022, 29, 1168–1175. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, T.J.; Vitrikas, K.R. Evaluation and treatment of infertility. Am. Fam. Physician 2015, 91, 308–314. [Google Scholar]
- Lozano, F.M.; Lledó, B.; Morales, R.; Cascales, A.; Hortal, M.; Bernabeu, A.; Bernabeu, R. Characterization of the endometrial microbiome in patients with recurrent implantation failure. Microorganisms 2023, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Idelevich, A.; Vilella, F. Mother and embryo cross-communication. Genes 2020, 11, 376. [Google Scholar] [CrossRef]
- Wang, W.; Feng, D.; Ling, B. Biologia Futura: Endometrial microbiome affects endometrial receptivity from the perspective of the endometrial immune microenvironment. Biol. Futur. 2022, 73, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Elnashar, A.M. Impact of endometrial microbiome on fertility. Middle East Fertil. Soc. J. 2021, 26, 4. [Google Scholar] [CrossRef]
- Cariati, F.; Carotenuto, C.; Bagnulo, F.; Pacella, D.; Marrone, V.; Paolillo, R.; Catania, M.R.; Di Girolamo, R.; Conforti, A.; Strina, I.; et al. Endometrial microbiota profile in in-vitro fertilization (IVF) patients by culturomics-based analysis. Front. Endocrinol. 2023, 14, 1204729. [Google Scholar] [CrossRef]
- Diaz-Martínez, M.D.C.; Bernabeu, A.; Lledó, B.; Carratalá-Munuera, C.; Quesada, J.A.; Lozano, F.M.; Ruiz, V.; Morales, R.; Llácer, J.; Ten, J.; et al. Impact of the vaginal and endometrial microbiome pattern on assisted reproduction outcomes. J. Clin. Med. 2021, 10, 4063. [Google Scholar] [CrossRef] [PubMed]
- Kyono, K.; Hashimoto, T.; Nagai, Y.; Sakuraba, Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: A single-center pilot study. Reprod. Med. Biol. 2018, 17, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Garcia-Grau, I.; Bau, D.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Vilella, F.; Romero, R.; Simón, C. The first glimpse of the endometrial microbiota in early pregnancy. Am. J. Obstet. Gynecol. 2020, 222, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, H.; Zou, H.; Zhang, H.; Liu, S.; Zheng, J.; Zhang, S.; Hu, L. Impact of vaginal microecological differences on pregnancy outcomes and endometrial microbiota in frozen embryo transfer cycles. J. Assist. Reprod. Genet. 2024, 41, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Oguchi, T. Age- and endometrial microbiota-related delay in development of endometrial receptivity. Reprod. Med. Biol. 2023, 22, e12523. [Google Scholar] [CrossRef] [PubMed]
- Riganelli, L.; Iebba, V.; Piccioni, M.; Illuminati, I.; Bonfiglio, G.; Neroni, B.; Calvo, L.; Gagliardi, A.; Levrero, M.; Merlino, L.; et al. Structural variations of vaginal and endometrial microbiota: Hints on female infertility. Front. Cell. Infect. Microbiol. 2020, 10, 350. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kyono, K. Does dysbiotic endometrium affect blastocyst implantation in IVF patients? J. Assist. Reprod. Genet. 2019, 36, 2471–2479. [Google Scholar] [CrossRef]
- Fotouh, I.A.; Al-Inany, M.G. The levels of bacterial contamination of the embryo transfer catheter relate negatively to the outcome of embryo transfer. Middle East Fertil. Soc. J. 2008, 13, 39–43. [Google Scholar]
- Kuon, R.; Togawa, R.; Vomstein, K.; Weber, M.; Goeggl, T.; Strowitzki, T.; Markert, U.; Zimmermann, S.; Daniel, V.; Dalpke, A.; et al. Higher prevalence of colonization with Gardnerella vaginalis and gram-negative anaerobes in patients with recurrent miscarriage and elevated peripheral natural killer cells. J. Reprod. Immunol. 2017, 120, 15–19. [Google Scholar] [CrossRef]
- Tao, X.; Franasiak, J.M.; Zhan, Y.; Scott, R.T.; Rajchel, J.; Bedard, J.; Newby, R.; Scott, R.T.; Treff, N.R.; Chu, T. Characterizing the endometrial microbiome by analyzing the ultra-low bacteria from embryo transfer catheter tips in IVF cycles: Next generation sequencing (NGS) analysis of the 16S ribosomal gene. Hum. Microbiome J. 2017, 3, 15–21. [Google Scholar] [CrossRef]
- Kitaya, K.; Nagai, Y.; Arai, W.; Sakuraba, Y.; Ishikawa, T. Characterization of microbiota in endometrial fluid and vaginal secretions in infertile women with repeated implantation failure. Mediat. Inflamm. 2019, 2019, 4893437. [Google Scholar] [CrossRef] [PubMed]
- Ichiyama, T.; Kuroda, K.; Nagai, Y.; Urushiyama, D.; Ohno, M.; Yamaguchi, T.; Nagayoshi, M.; Sakuraba, Y.; Yamasaki, F.; Hata, K.; et al. Analysis of vaginal and endometrial microbiota communities in infertile women with a history of repeated implantation failure. Reprod. Med. Biol. 2021, 20, 334–344. [Google Scholar] [CrossRef]
- Keburiya, L.K.; Smolnikova, V.Y.; Priputnevich, T.V.; Muravieva, V.V.; Gordeev, A.B.; Trofimov, D.Y.; Shubina, E.S.; Kochetkova, T.O.; Rogacheva, M.S.; Kalinina, E.A.; et al. Does the uterine microbiota affect the reproductive outcomes in women with recurrent implantation failures? BMC Women’s Health 2022, 22, 168. [Google Scholar] [CrossRef] [PubMed]
- Bednarska-Czerwińska, A.; Morawiec, E.; Zmarzły, N.; Szapski, M.; Jendrysek, J.; Pecyna, A.; Zapletał-Pudełko, K.; Małysiak, W.; Sirek, T.; Ossowski, P.; et al. Dynamics of microbiome changes in the endometrium and uterine cervix during embryo implantation: A comparative analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e941289. [Google Scholar] [CrossRef] [PubMed]
- Parvanov, D.; Ganeva, R.; Ruseva, M.; Handzhiyska, M.; Tihomirova, T.; Chapanova, S.; Staneva, R.; Rukova, B.; Pancheva, M.; Serafimova, M.; et al. Association between endometrial microbiome and implantation success in women with frozen embryo transfer: Results of a prospective cohort study. Biotechnol. Biotechnol. Equip. 2023, 37, 2250007. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, H.; Zhang, C.; Zhang, S. Chronic endometritis and the endometrial microbiota: Implications for reproductive success in patients with recurrent implantation failure. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.; Eichelberger, K. Maternal microbiome and pregnancy outcomes. Fertil. Steril. 2015, 104, 1358–1363. [Google Scholar] [CrossRef]
- Liu, Y.; Wong, K.K.W.; Ko, E.Y.L.; Chen, X.; Huang, J.; Tsui, S.K.W.; Li, T.C.; Chim, S.S.C. Systematic comparison of bacterial colonization of endometrial tissue and fluid samples in recurrent miscarriage patients: Implications for future endometrial microbiome studies. Clin. Chem. 2018, 64, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Makrigiannakis, A.; Makrygiannakis, F.; Vrekoussis, T. Approaches to improve endometrial receptivity in case of repeated implantation failures. Front. Cell Dev. Biol. 2021, 9, 613277. [Google Scholar] [CrossRef] [PubMed]
- Sola-Leyva, A.; Andrés-León, E.; Molina, N.M.; Terron-Camero, L.C.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gonzalvo, M.C.; Sánchez, R.; Ruíz, S.; Martínez, L.; et al. Mapping the entire functionally active endometrial microbiota. Hum. Reprod. 2021, 36, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Ishikawa, T. Genital tract dysbiosis in infertile women with a history of repeated implantation failure and pilot study for reproductive outcomes following oral enteric coating lactoferrin supplementation. Arch. Gynecol. Obstet. 2022, 306, 1761–1769. [Google Scholar] [CrossRef]
- Otsuki, K.; Tokunaka, M.; Oba, T.; Nakamura, M.; Shirato, N.; Okai, T. Administration of oral and vaginal prebiotic lactoferrin for a woman with a refractory vaginitis recurring preterm delivery: Appearance of lactobacillus in vaginal flora followed by term delivery. J. Obstet. Gynaecol. Res. 2014, 40, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Tanaka, H.; Enomoto, S.; Takeuchi, H.; Nishioka, M.; Tanaka, K.; Takayama, E.; Maezawa, T.; Kondo, E.; Ikeda, T. The efficacy of vaginal treatment for non-Lactobacillus dominant endometrial microbiota-A case-control study. J. Obstet. Gynaecol. Res. 2024, 50, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Kyono, K.; Hashimoto, T.; Kikuchi, S.; Nagai, Y.; Sakuraba, Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: An analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod. Med. Biol. 2019, 18, 72–82. [Google Scholar] [CrossRef]
- Iwami, N.; Kawamata, M.; Ozawa, N.; Yamamoto, T.; Watanabe, E.; Mizuuchi, M.; Moriwaka, O.; Kamiya, H. Therapeutic intervention based on gene sequencing analysis of microbial 16S ribosomal RNA of the intrauterine microbiome improves pregnancy outcomes in IVF patients: A prospective cohort study. J. Assist. Reprod. Genet. 2023, 40, 125–135. [Google Scholar] [CrossRef]
- Scinicariello, F.; Buser, M.C. Serum testosterone concentrations and urinary bisphenol A, benzophenone-3, triclosan, and paraben levels in male and female children and adolescents: NHANES 2011–2012. Environ. Health Perspect. 2016, 124, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Z.; Xia, M.; Zhuang, S.; Gong, X.; Pan, J.; Li, C.; Fan, R.; Pang, Q.; Lu, S. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA. Environ. Pollut. 2017, 229, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Akın, L.; Kendirci, M.; Narin, F.; Kurtoglu, S.; Saraymen, R.; Kondolot, M.; Koçak, S.; Elmali, F. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls. Acta Paediatr. 2015, 104, e171–e177. [Google Scholar] [CrossRef] [PubMed]
- Mok-Lin, E.; Ehrlich, S.; Williams, P.L.; Petrozza, J.; Wright, D.L.; Calafat, A.M.; Ye, X.; Hauser, R. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 2010, 33, 385–393. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, S.M.; Choi, M.H.; Lee, J.; Park, M.J.; Kim, S.H.; Lee, W.-Y.; Hong, J.; Chung, B.C. Changes in steroid metabolism among girls with precocious puberty may not be associated with urinary levels of bisphenol A. Reprod. Toxicol. 2014, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, W.; Zhu, W.; Chen, L.; Wang, W.; Tian, Y.; Shen, L.; Zhang, J.; Shanghai Birth Cohort Study. Associations of female exposure to bisphenol A with fecundability: Evidence from a preconception cohort study. Environ. Int. 2018, 117, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lathi, R.B.; Liebert, C.A.; Brookfield, K.F.; Taylor, J.A.; vom Saal, F.S.; Fujimoto, V.Y.; Baker, V.L. Conjugated bisphenol A in maternal serum in relation to miscarriage risk. Fertil. Steril. 2014, 102, 123–128. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, Y.; Jiang, J.; Liu, Y.; Luo, X.; Shen, Z.; Chen, X.; Wang, Y.; Dai, Y.; Zhao, J.; et al. Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in eastern China. PLoS ONE 2015, 10, e0127886. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Xia, W.; Wan, Y.; Zhang, B.; Zhou, A.; Zhang, Y.; Huang, K.; Zhu, Y.; Wu, C.; Peng, Y.; et al. Maternal urinary bisphenol A levels and infant low birth weight: A nested case-control study of the Health Baby Cohort in China. Environ. Int. 2015, 85, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cantonwine, D.E.; Meeker, J.D.; Ferguson, K.K.; Mukherjee, B.; Hauser, R.; McElrath, T.F. Urinary concentrations of bisphenol A and phthalate metabolites measured during pregnancy and risk of preeclampsia. Environ. Health Perspect. 2016, 124, 1651–1655. [Google Scholar] [CrossRef]
- Upson, K.; Sathyanarayana, S.; De Roos, A.J.; Koch, H.M.; Scholes, D.; Holt, V.L. A population-based case-control study of urinary bisphenol A concentrations and risk of endometriosis. Hum. Reprod. 2014, 29, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Varayoud, J.; Ramos, J.G.; Bosquiazzo, V.L.; Lower, M.; Muñoz-de-Toro, M.; Luque, E.H. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology 2011, 152, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.G.; Hancock, T.; deCatanzaro, D. Influence of oral and subcutaneous bisphenol-A on intrauterine implantation of fertilized ova in inseminated female mice. Reprod. Toxicol. 2007, 23, 138–144. [Google Scholar] [CrossRef]
- Machtinger, R.; Orvieto, R. Bisphenol A, oocyte maturation, implantation, and IVF outcome: Review of animal and human data. Reprod. Biomed. Online 2014, 29, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Peña, A.A.; Peña-Castillo, A.; Parra-Forero, L.Y.; Hernández-Ochoa, I.; Hernández-Barrientos, L.R.; Morimoto, S.; Mendoza-Rodríguez, C.A. Parental perinatal exposure to bisphenol A reduces the threshold to disrupt blastocyst implantation via decreasing talin, occudin and E-cadherin levels. Reprod. Toxicol. 2019, 86, 86–97. [Google Scholar] [CrossRef]
- Caserta, D.; Costanzi, F.; De Marco, M.P.; Di Benedetto, L.; Matteucci, E.; Assorgi, C.; Pacilli, M.C.; Besharat, A.R.; Bellati, F.; Ruscito, I. Effects of endocrine-disrupting chemicals on endometrial receptivity and embryo implantation: A systematic review of 34 mouse model studies. Int. J. Environ. Res. Public. Health 2021, 18, 6840. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Ziv-Gal, A.; Cudiamat, J.; Wang, W.; Zhou, C.; Flaws, J.A. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod. Toxicol. 2016, 60, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Brehm, E.; Gao, L.; Rattan, S.; Ziv-Gal, A.; Flaws, J.A. Bisphenol A exposure, ovarian follicle numbers, and female sex steroid hormone levels: Results from a CLARITY-BPA study. Endocrinology 2017, 158, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Lee, C.K.F.; Yeung, W.S.B.; Giesy, J.P.; Wong, M.H.; Zhang, X.; Hecker, M.; Wong, C.K.C. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod. Toxicol. 2011, 31, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.; Abril, N.; Morales-Prieto, N.; Monterde, J.; Ayala, N.; Lora, A.; Moyano, R. Hypothalamic-pituitary-ovarian axis perturbation in the basis of bisphenol A (BPA) reproductive toxicity in female zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2018, 156, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Han, A.; Xu, N.; Su, P. Effects of maternal exposure to bisphenol A during pregnancy on puberty in advance and hypothalamo-pituitary gonadal axis hormones level in female offspring. J. Hyg. Res. 2018, 47, 425–431. [Google Scholar]
- Wu, X.; Tian, Y.; Zhu, H.; Xu, P.; Zhang, J.; Hu, Y.; Ji, X.; Yan, R.; Yue, H.; Sang, N. Invisible hand behind female reproductive disorders: Bisphenols, recent evidence and future perspectives. Toxics 2023, 11, 1000. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, S.; Chen, H.; Luo, S.; Xiong, Y.; Wang, X.; Xu, B.; Zheng, C.; Wang, K.-J. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. J. Hazard. Mater. 2021, 406, 124303. [Google Scholar] [CrossRef]
- Ijaz, S.; Ullah, A.; Shaheen, G.; Jahan, S. Exposure of BPA and its alternatives like BPB, BPF, and BPS impair subsequent reproductive potentials in adult female Sprague Dawley rats. Toxicol. Mech. Methods 2020, 30, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Sekulovski, N.; MacLean, J.A.; Whorton, A.; Hayashi, K. Prenatal exposure to bisphenol A analogues on female reproductive functions in mice. Toxicol. Sci. 2019, 168, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Molina-Molina, J.-M.; Amaya, E.; Grimaldi, M.; Sáenz, J.-M.; Real, M.; Fernández, M.F.; Balaguer, P.; Olea, N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol. Appl. Pharmacol. 2013, 272, 127–136. [Google Scholar] [CrossRef]
- Stroheker, T.; Chagnon, M.-C.; Pinnert, M.-F.; Berges, R.; Canivenc-Lavier, M.-C. Estrogenic effects of food wrap packaging xenoestrogens and flavonoids in female Wistar rats: A comparative study. Reprod. Toxicol. 2003, 17, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Noda, S.; Imatanaka, N.; Yakabe, Y. Comparative study of the uterotrophic potency of 14 chemicals in a uterotrophic assay and their receptor-binding affinity. Toxicol. Lett. 2004, 146, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, N.; Ullah, H.; Ullah, W.; Jahan, S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere 2018, 197, 336–343. [Google Scholar] [CrossRef]
- Demacopulo, B.; Kreimann, E.L. Bisphenol S increases EZRIN expression and the detrimental effects induced by dehydroepiandrosterone in rat endometrium. Mol. Cell. Endocrinol. 2019, 483, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Fernando, S.R.; Jiang, L.; Wang, Z.; Kodithuwakku, S.P.; Wong, C.K.C.; Ng, E.H.Y.; Yeung, W.S.B.; Lee, K.-F. Bisphenol A analogues suppress spheroid attachment on human endometrial epithelial cells through modulation of steroid hormone receptors signaling pathway. Cells 2021, 10, 2882. [Google Scholar] [CrossRef]
- Wan, Y.; Huo, W.; Xu, S.; Zheng, T.; Zhang, B.; Li, Y.; Zhou, A.; Zhang, Y.; Hu, J.; Zhu, Y.; et al. Relationship between maternal exposure to bisphenol S and pregnancy duration. Environ. Pollut. 2018, 238, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, C.; Liu, T.; Tan, H.J.J.; Sheng, Y.; Wei, L.; Tang, P.; Huang, H.; Zeng, X.; Liu, S.; et al. Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China. Ecotoxicol. Environ. Saf. 2021, 228, 112960. [Google Scholar] [CrossRef] [PubMed]
- Kaimal, A.; Al Mansi, M.H.; Dagher, J.B.; Pope, C.; Varghese, M.G.; Rudi, T.B.; Almond, A.E.; Cagle, L.A.; Beyene, H.K.; Bradford, W.T.; et al. Prenatal exposure to bisphenols affects pregnancy outcomes and offspring development in rats. Chemosphere 2021, 276, 130118. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.-Y.; Li, H.-B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Weitekamp, C.A.; Phelps, D.; Swank, A.; McCord, J.; Sobus, J.R.; Catron, T.; Keely, S.; Brinkman, N.; Zurlinden, T.; Wheaton, E.; et al. Triclosan-selected host-associated microbiota perform xenobiotic biotransformations in larval zebrafish. Toxicol. Sci. 2019, 172, 109–122. [Google Scholar] [CrossRef]
- Feng, W.; Ao, H.; Peng, C.; Yan, D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 2019, 142, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Zhu, L.; Wang, Y.; Peng, C.; Lin, Y.; Ji, S.; Wei, J. Long-term Bisphenol S exposure induced gut microbiota dysbiosis, obesity, hepatic lipid accumulation, intestinal lesions and dyslipidemia in mice. Toxicology 2024, 504, 153798. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zhang, H.; Jiang, X.; Zou, J.; Li, Q.; Mai, H.; Su, D.; Ling, W.; Feng, X. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ. Pollut. 2020, 265, 114880. [Google Scholar] [CrossRef]
- Reddivari, L.; Veeramachaneni, D.N.R.; Walters, W.A.; Lozupone, C.; Palmer, J.; Hewage, M.K.K.; Bhatnagar, R.; Amir, A.; Kennett, M.J.; Knight, R.; et al. Perinatal bisphenol A exposure induces chronic inflammation in rabbit offspring via modulation of gut bacteria and their metabolites. mSystems 2017, 2, e00093-17. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, S.; Zhang, L.; Qu, W.; Chen, Z. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice. Environ. Pollut. 2019, 254, 112960. [Google Scholar] [CrossRef]
- Ni, Y.; Hu, L.; Yang, S.; Ni, L.; Ma, L.; Zhao, Y.; Zheng, A.; Jin, Y.; Fu, Z. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. Chemosphere 2021, 282, 130952. [Google Scholar] [CrossRef] [PubMed]
- Malaisé, Y.; Ménard, S.; Cartier, C.; Lencina, C.; Sommer, C.; Gaultier, E.; Houdeau, E.; Guzylack-Piriou, L. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice. Arch. Toxicol. 2018, 92, 347–358. [Google Scholar] [CrossRef]
- Diamante, G.; Cely, I.; Zamora, Z.; Ding, J.; Blencowe, M.; Lang, J.; Bline, A.; Singh, M.; Lusis, A.J.; Yang, X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ. Int. 2021, 146, 106260. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.X.; Chen, Y.W.; Shih, M.K.; Tain, Y.L.; Yeh, Y.T.; Chiu, M.H.; Chang, S.K.C.; Hou, C.Y. Resveratrol butyrate esters inhibit BPA-induced liver damage in male offspring rats by modulating antioxidant capacity and gut microbiota. Int. J. Mol. Sci. 2021, 22, 5273. [Google Scholar] [CrossRef]
- Meng, L.Y.; Tao, W.F.; Li, J.; Zhu, M.; Zhong, D.B.; Zhou, J.; Qin, X.; Wei, R.G. Effects of bisphenol A and its substitute, bisphenol F, on the gut microbiota in mice. Biomed. Environ. Sci. 2024, 37, 19–30. [Google Scholar]
- Zhang, H.; Zha, X.; Zhang, B.; Zheng, Y.; Elsabagh, M.; Wang, H.; Wang, M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. Microbiome 2024, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, T.; Shen, H.; Jiang, Y.; Yang, Q.; Su, S.; Wu, L.; Fan, X.; Gao, M.; Wu, Y.; et al. Mixed probiotics modulated gut microbiota to improve spermatogenesis in bisphenol A-exposed male mice. Ecotoxicol. Environ. Saf. 2024, 270, 115922. [Google Scholar] [CrossRef]
- Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 2016, 7, 471–485. [Google Scholar] [CrossRef]
- Xu, J.; Huang, G.; Nagy, T.; Guo, T.L. Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch. Toxicol. 2019, 93, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Sarma, S.J.; Marshall, B.L.; Liu, Y.; Kinkade, J.A.; Bellamy, M.M.; Mao, J.; Helferich, W.G.; Schenk, A.K.; Bivens, N.J.; et al. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci. Rep. 2020, 10, 10902. [Google Scholar]
- Shih, M.-K.; Tain, Y.-L.; Chen, Y.-W.; Hsu, W.-H.; Yeh, Y.-T.; Chang, S.K.C.; Liao, J.-X.; Hou, C.-Y. Resveratrol butyrate esters inhibit obesity caused by perinatal exposure to bisphenol A in female offspring rats. Molecules 2021, 26, 4010. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Li, H.; Qiao, F.; Wu, J.; Du, Z.-Y.; Zhang, M. Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS ONE 2016, 11, e0163895. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Y.; Hu, C.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ. Pollut. 2018, 234, 307–317. [Google Scholar] [CrossRef]
- Zheng, Q.; Cui, L.; Liao, H.; Junaid, M.; Li, Z.; Liu, S.; Gao, D.; Zheng, Y.; Lu, S.; Qiu, J.; et al. Combined exposure to polystyrene nanoplastics and bisphenol A induces hepato- and intestinal-toxicity and disturbs gut microbiota in channel catfish (Ictalurus punctatus). Sci. Total Environ. 2023, 891, 164319. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Ma, D.; Liu, X.; Zhao, L.; Ma, L.; Ma, D.; Dong, S. Bisphenol P exposure in C57BL/6 mice caused gut microbiota dysbiosis and induced intestinal barrier disruption via LPS/TLR4/NF-κB signaling pathway. Environ. Int. 2023, 175, 107949. [Google Scholar] [CrossRef]
- Wang, H.; Qi, S.; Mu, X.; Yuan, L.; Li, Y.; Qiu, J. Bisphenol F induces liver-gut alteration in zebrafish. Sci. Total Environ. 2022, 851, 157974. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Wang, Q.; Liu, Y.; Liu, X.; Wu, B.; Lu, G. Intestinal toxicity and microbial community disorder induced by bisphenol F and bisphenol S in zebrafish. Chemosphere 2021, 280, 130711. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, A.M.; Martínez, C.; Salvo-Romero, E.; Fortea, M.; Pardo-Camacho, C.; Pérez-Berezo, T.; Alonso-Cotoner, C.; Santos, J.; Vicario, M. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome. J. Gastroenterol. Hepatol. 2017, 32, 53–63. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Tulkens, J.; Vergauwen, G.; Van Deun, J.; Geeurickx, E.; Dhondt, B.; Lippens, L.; De Scheerder, M.-A.; Miinalainen, I.; Rappu, P.; De Geest, B.G.; et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 2020, 69, 191–193. [Google Scholar] [CrossRef]
- Zhu, W.; Winter, M.G.; Byndloss, M.X.; Spiga, L.; Duerkop, B.A.; Hughes, E.R.; Büttner, L.; de Lima Romão, E.; Behrendt, C.L.; Lopez, C.A.; et al. Precision editing of the gut microbiota ameliorates colitis. Nature 2018, 553, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, M.; Chen, X.; Li, M. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition. Ecotoxicol. Environ. Saf. 2015, 118, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Ottman, N.; Geerlings, S.Y.; Aalvink, S.; de Vos, W.M.; Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, A.; Nara, M.; Sugiyama, Y.; Sakanaka, M.; Yachi, H.; Kitakata, A.; Nakagawa, A.; Minami, H.; Okuda, S.; Katoh, T.; et al. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles. Biosci. Biotechnol. Biochem. 2017, 81, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Han, X.; Zhan, J.; You, Y.; Huang, W. Vanillin alleviates high fat diet-induced obesity and improves the gut microbiota composition. Front. Microbiol. 2018, 9, 2733. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.A.; Montag, D. Exploring the relationship between gut microbiota and exercise: Short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc. Med. 2021, 7, e000930. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, Y.; Heidari, H.R.; Khosroushahi, A.Y. Review of short-chain fatty acids effects on the immune system and cancer. Food Biosci. 2020, 38, 100793. [Google Scholar] [CrossRef]
- Iván, J.; Major, E.; Sipos, A.; Kovács, K.; Horváth, D.; Tamás, I.; Bay, P.; Dombrádi, V.; Lontay, B. The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev. 2017, 26, 1724–1733. [Google Scholar] [CrossRef]
- Behary, J.; Amorim, N.; Jiang, X.-T.; Raposo, A.; Gong, L.; McGovern, E.; Ibrahim, R.; Chu, F.; Stephens, C.; Jebeili, H.; et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat. Commun. 2021, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Wu, T.-K.; Lim, P.-S.; Jin, J.-S.; Wu, M.-Y.; Chen, C.-H. Impaired gut epithelial tight junction expression in hemodialysis patients complicated with intradialytic hypotension. BioMed Res. Int. 2018, 2018, 2670312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, H.; Li, W.; He, Q.; Liang, J.; Yan, X.; Yuan, Y.; Yue, T. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int. J. Biol. Macromol. 2022, 209, 356–366. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [Google Scholar] [CrossRef]
- González-Mariscal, L.; Betanzos, A.; Avila-Flores, A. MAGUK proteins: Structure and role in the tight junction. Semin. Cell Dev. Biol. 2000, 11, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Liu, Y.; Tang, W.; Zhang, J. Bisphenol S exposure induces intestinal inflammation: An integrated metabolomic and transcriptomic study. Chemosphere 2022, 292, 133510. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, W.; Ao, J.; Zhang, J.; Feng, L. Transcriptomics integrated with metabolomics reveals the effect of Bisphenol F (BPF) exposure on intestinal inflammation. Sci. Total Environ. 2022, 816, 151644. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.R.; Goel, R.; Seungbum, K.; Richards, E.M.; Holbert, R.C.; Pepine, C.J.; Raizada, M.K. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2018, 67, 1555–1557. [Google Scholar] [CrossRef] [PubMed]
- Hug, H.; Mohajeri, M.H.; La Fata, G. Toll-like receptors: Regulators of the immune response in the human gut. Nutrients 2018, 10, 203. [Google Scholar] [CrossRef]
- Peterson, J.; Balogh Sivars, K.; Bianco, A.; Röper, K. Toll-like receptor signalling via IRAK4 affects epithelial integrity and tightness through regulation of junctional tension. Development 2023, 150, dev201893. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.C.; Odle, J.; Blikslager, A.T.; Ziegler, A.L. Probiotics, prebiotics and epithelial tight junctions: A promising approach to modulate intestinal barrier function. Int. J. Mol. Sci. 2021, 22, 6729. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadi, R.; Nighot, P.; Nighot, M.; Haque, M.; Rawat, M.; Ma, T.Y. Lactobacillus acidophilus induces a strain-specific and Toll-like receptor 2-dependent enhancement of intestinal epithelial tight junction barrier and protection against intestinal inflammation. Am. J. Pathol. 2021, 191, 872–884. [Google Scholar] [CrossRef]
- Cario, E.; Gerken, G.; Podolsky, D.K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004, 127, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Cookson, A.L.; McNabb, W.C.; Park, Z.; McCann, M.J.; Kelly, W.J.; Roy, N.C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- He, W.-Q.; Wang, J.; Sheng, J.-Y.; Zha, J.-M.; Graham, W.V.; Turner, J.R. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 2020, 21, 993. [Google Scholar] [CrossRef]
- Aflatoonian, R.; Tuckerman, E.; Elliott, S.L.; Bruce, C.; Aflatoonian, A.; Li, T.C.; Fazeli, A. Menstrual cycle-dependent changes of Toll-like receptors in endometrium. Hum. Reprod. 2007, 22, 586–593. [Google Scholar] [CrossRef]
- Jorgenson, R.L.; Young, S.L.; Lesmeister, M.J.; Lyddon, T.D.; Misfeldt, M.L. Human endometrial epithelial cells cyclically express Toll-like receptor 3 (TLR3) and exhibit TLR3-dependent responses to dsRNA. Hum. Immunol. 2005, 66, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Osuga, Y.; Hamasaki, K.; Hirota, Y.; Nose, E.; Morimoto, C.; Harada, M.; Takemura, Y.; Koga, K.; Yoshino, O.; et al. Expression of toll-like receptors 2, 3, 4, and 9 genes in the human endometrium during the menstrual cycle. J. Reprod. Immunol. 2007, 74, 53–60. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.A.; Caballero, I.; Montazeri, M.; Maslehat, N.; Elliott, S.; Fernandez-Gonzalez, R.; Calle, A.; Gutierrez-Adan, A.; Fazeli, A. Local activation of uterine Toll-like receptor 2 and 2/6 decreases embryo implantation and affects uterine receptivity in mice. Biol. Reprod. 2014, 90, 87. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Sanchez-Lopez, J.A.; Caballero, I.; Maslehat Lay, N.; Elliott, S.; López-Martín, S.; Yáñez-Mó, M.; Fazeli, A. Activation of Toll-like receptor 3 reduces actin polymerization and adhesion molecule expression in endometrial cells, a potential mechanism for viral-induced implantation failure. Hum. Reprod. 2015, 30, 893–905. [Google Scholar] [CrossRef]
- Aboussahoud, W.; Bruce, C.; Elliott, S.; Fazeli, A. Activation of Toll-like receptor 5 decreases the attachment of human trophoblast cells to endometrial cells in vitro. Hum. Reprod. 2010, 25, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Al-Nasiry, S.; Ambrosino, E.; Schlaepfer, M.; Morré, S.A.; Wieten, L.; Voncken, J.W.; Spinelli, M.; Mueller, M.; Kramer, B.W. The interplay between reproductive tract microbiota and immunological system in human reproduction. Front. Immunol. 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Sehring, J.; Beltsos, A.; Jeelani, R. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome. Placenta 2022, 117, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Mukura, L.R.; Hickey, D.K.; Rodriguez-Garcia, M.; Fahey, J.V.; Wira, C.R. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells. Am. J. Reprod. Immunol. 2017, 78, e12764. [Google Scholar] [CrossRef]
- Kaushic, C.; Grant, K.; Crane, M.; Wira, C.R. Infection of polarized primary epithelial cells from rat uterus with Chlamydia trachomatis: Cell-cell interaction and cytokine secretion. Am. J. Reprod. Immunol. 2000, 44, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Howie, S.E.M.; Horner, P.J.; Horne, A.W. Chlamydia trachomatis infection during pregnancy: Known unknowns. Discov. Med. 2011, 12, 57–64. [Google Scholar] [PubMed]
- Baud, D.; Regan, L.; Greub, G. Emerging role of Chlamydia and Chlamydia-like organisms in adverse pregnancy outcomes. Curr. Opin. Infect. Dis. 2008, 21, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Giakoumelou, S.; Wheelhouse, N.; Cuschieri, K.; Entrican, G.; Howie, S.E.M.; Horne, A.W. The role of infection in miscarriage. Hum. Reprod. Update 2016, 22, 116–133. [Google Scholar] [CrossRef]
- Tang, W.; Mao, J.; Li, K.T.; Walker, J.S.; Chou, R.; Fu, R.; Chen, W.; Darville, T.; Klausner, J.; Tucker, J.D. Pregnancy and fertility-related adverse outcomes associated with Chlamydia trachomatis infection: A global systematic review and meta-analysis. Sex. Transm. Infect. 2020, 96, 322–329. [Google Scholar] [CrossRef]
- Vallely, L.M.; Egli-Gany, D.; Wand, H.; Pomat, W.S.; Homer, C.S.E.; Guy, R.; Silver, B.; Rumbold, A.R.; Kaldor, J.M.; Vallely, A.J.; et al. Adverse pregnancy and neonatal outcomes associated with Neisseria gonorrhoeae: Systematic review and meta-analysis. Sex. Transm. Infect. 2021, 97, 104–111. [Google Scholar] [CrossRef]
- Edwards, V.L.; Wang, L.-C.; Dawson, V.; Stein, D.C.; Song, W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell. Microbiol. 2013, 15, 1042–1057. [Google Scholar] [CrossRef]
- Rodríguez-Tirado, C.; Maisey, K.; Rodríguez, F.E.; Reyes-Cerpa, S.; Reyes-López, F.E.; Imarai, M. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract. Microbes Infect. 2012, 14, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, S.; Liu, J.; Ta, N. Inhibition of TLR2/TLR4 alleviates the Neisseria gonorrhoeae infection damage in human endometrial epithelial cells via Nrf2 and NF-Kβsignaling. J. Reprod. Immunol. 2020, 142, 103192. [Google Scholar] [CrossRef]
- Akhi, M.T.; Esmailkhani, A.; Sadeghi, J.; Niknafs, B.; Farzadi, L.; Akhi, A.; Nasab, E.N. The frequency of Staphylococcus aureus isolated from endocervix of infertile women in northwest Iran. Int. J. Fertil. Steril. 2017, 11, 28–32. [Google Scholar] [PubMed]
- Dutta, S.; Sengupta, P.; Izuka, E.; Menuba, I.; Jegasothy, R.; Nwagha, U. Staphylococcal infections and infertility: Mechanisms and management. Mol. Cell. Biochem. 2020, 474, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.M.; Moreno, L.Z.; Poor, A.P.; Matajira, C.E.C.; Moreno, M.; Gomes, V.T.d.M.; da Silva, G.F.R.; Takeuti, K.L.; Barcellos, D.E. Antimicrobial resistance profile of Staphylococcus hyicus strains isolated from Brazilian swine herds. Antibiotics 2022, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Guo, J.; Xu, M.; Jiang, P.; Yuan, X.; Zhao, C.; Maimai, T.; Cao, Y.; Zhang, N.; Fu, Y. Clostridium tyrobutyricum alleviates Staphylococcus aureus-induced endometritis in mice by inhibiting endometrial barrier disruption and inflammatory response. Food Funct. 2019, 10, 6699–6710. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, C.V.; Potter, J.A.; Grimshaw, A.A.; Abrahams, V.M.; Tong, M. Endometrial responses to bacterial and viral infection: A scoping review. Hum. Reprod. Update 2023, 29, 675–693. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, C.; Li, W.; Mu, W.; Li, C.; Guo, M. Selenium plays a protective role in Staphylococcus aureus-induced endometritis in the uterine tissue of rats. Biol. Trace Elem. Res. 2016, 173, 345–353. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, X.; Liu, Z.; Zhang, W.; Fang, J.; Xue, J.; Bao, H. Hydroxysafflor yellow A inhibits Staphylococcus aureus-induced mouse endometrial inflammation via TLR2-mediated NF-kB and MAPK pathway. Inflammation 2021, 44, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.-J.; Zhang, Z.-B.; Xu, N.-N.; Guo, Y.-F.; Qiu, C.; Li, C.-Y.; Deng, G.-Z.; Guo, M.-Y. Piperine plays an anti-inflammatory role in Staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid.-Based Complement. Altern. Med. 2016, 2016, 8597208. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Chen, X.; Zhao, G.; Wu, H.; Mi, J.; Qiu, C.; Peng, X.; Deng, G. IFN-τ plays an anti-inflammatory role in Staphylococcus aureus-induced endometritis in mice through the suppression of NF-κB pathway and MMP9 expression. J. Interferon Cytokine Res. 2017, 37, 81–89. [Google Scholar] [CrossRef]
- Murphy, C.R.; Swift, J.G.; Need, J.A.; Mukherjee, T.M.; Rogers, A.W. A freeze-fracture electron microscopic study of tight junctions of epithelial cells in the human uterus. Anat. Embryol. 1982, 163, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.R.; Rogers, P.A.W.; Hosie, M.J.; Leeton, J.; Beaton, L. Tight junctions of human uterine epithelial cells change during the menstrual cycle: A morphometric study. Acta Anat. 2008, 144, 36–38. [Google Scholar] [CrossRef]
- Iwanaga, S.; Inokuchi, T.; Notohara, A.; Higashi, R.; Murakami, M.; Kato, T. Alterations in tight junctions of human endometrial epithelial cells during normal menstrual cycle--freeze-fracture electron microscopic study. Nihon Sanka Fujinka Gakkai Zasshi 1985, 37, 2847–2852. [Google Scholar] [PubMed]
- Mendoza-Rodríguez, C.A.; González-Mariscal, L.; Cerbón, M. Changes in the distribution of ZO-1, occludin, and claudins in the rat uterine epithelium during the estrous cycle. Cell Tissue Res. 2005, 319, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Peña, A.A.; Rivera-Baños, J.; Méndez-Carrillo, L.L.; Ramírez-Solano, M.I.; Galindo-Bustamante, A.; Páez-Franco, J.C.; Morimoto, S.; González-Mariscal, L.; Cruz, M.E.; Mendoza-Rodríguez, C.A. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod. Toxicol. 2017, 69, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.E.; Madawala, R.J.; Day, M.L.; Murphy, C.R. Claudin 7 is reduced in uterine epithelial cells during early pregnancy in the rat. Histochem. Cell Biol. 2013, 139, 583–593. [Google Scholar] [CrossRef]
- Murphy, C.R.; Swift, J.G.; Mukherjee, T.M.; Rogers, A.W. Effects of ovarian hormones on cell membranes in the rat uterus. II. Freeze-fracture studies on tight junctions of the lateral plasma membrane of the luminal epithelium. Cell Biophys. 1981, 3, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.R.; Swift, J.G.; Mukherjee, T.M.; Rogers, A.W. The structure of tight junctions between uterine luminal epithelial cells at different stages of pregnancy in the rat. Cell Tissue Res. 1982, 223, 281–286. [Google Scholar] [CrossRef]
- Ding, L.; Lu, Z.; Foreman, O.; Tatum, R.; Lu, Q.; Renegar, R.; Cao, J.; Chen, Y.-H. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 2012, 142, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Orchard, M.D.; Murphy, C.R. Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat. Acta Histochem. 2002, 104, 149–155. [Google Scholar] [CrossRef]
- Nicholson, M.D.O.; Lindsay, L.A.; Murphy, C.R. Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochem. 2010, 112, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Ikenouchi, J.; Sasaki, H.; Tsukita, S.; Furuse, M.; Tsukita, S. Loss of occludin affects tricellular localization of tricellulin. Mol. Biol. Cell 2008, 19, 4687–4693. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.R. The plasma membrane transformation of uterine epithelial cells during pregnancy. J. Reprod. Fertil. Suppl. 2000, 55, 23–28. [Google Scholar]
- Van Itallie, C.M.; Anderson, J.M. Claudin interactions in and out of the tight junction. Tissue Barriers 2013, 1, e25247. [Google Scholar] [CrossRef] [PubMed]
- Carson, D.D.; Lagow, E.; Thathiah, A.; Al-Shami, R.; Farach-Carson, M.C.; Vernon, M.; Yuan, L.; Fritz, M.A.; Lessey, B. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol. Hum. Reprod. 2002, 8, 871–879. [Google Scholar] [CrossRef]
- Riesewijk, A.; Martín, J.; van Os, R.; Horcajadas, J.A.; Polman, J.; Pellicer, A.; Mosselman, S.; Simón, C. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol. Hum. Reprod. 2003, 9, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Van Itallie, C.; Rahner, C.; Anderson, J.M. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Investig. 2001, 107, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, M.D.; Lu, Q.; Chen, Y.-H. Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J. Cell Sci. 2005, 118 Pt 12, 2683–2693. [Google Scholar] [CrossRef]
- Tsang, L.L.; Chan, L.N.; Wang, X.F.; So, S.C.; Yuen, J.P.; Fiscus, R.R.; Chan, H.C. Enhanced epithelial Na(+) channel (ENaC) activity in mouse endometrial epithelium by upregulation of gammaENaC subunit. Jpn. J. Physiol. 2001, 51, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.; Baines, D.L.; Naftalin, R.J.; Milligan, S.R. The hormonal control of uterine luminal fluid secretion and absorption. J. Membr. Biol. 2005, 206, 17–28. [Google Scholar] [CrossRef]
- Lindsay, L.A.; Murphy, C.R. Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem. 2004, 106, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Png, F.Y.; Murphy, C.R. Closure of the uterine lumen and the plasma membrane transformation do not require blastocyst implantation. Eur. J. Morphol. 2000, 38, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Lindsay, L.A.; Murphy, C.R. Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells. Reprod. Fertil. Dev. 2008, 20, 892–899. [Google Scholar] [CrossRef]
- Paria, B.C.; Zhao, X.; Das, S.K.; Dey, S.K.; Yoshinaga, K. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev. Biol. 1999, 208, 488–501. [Google Scholar] [CrossRef]
- Wang, X.; Matsumoto, H.; Zhao, X.; Das, S.K.; Paria, B.C. Embryonic signals direct the formation of tight junctional permeability barrier in the decidualizing stroma during embryo implantation. J. Cell Sci. 2004, 117, 53–62. [Google Scholar] [CrossRef]
- Umeda, K.; Ikenouchi, J.; Katahira-Tayama, S.; Furuse, K.; Sasaki, H.; Nakayama, M.; Matsui, T.; Tsukita, S.; Furuse, M.; Tsukita, S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006, 126, 741–754. [Google Scholar] [CrossRef]
Ref. | Model System | BP Dose | AgeExp | Experimental Time Span | Age Coll | Change in the Abundance of Bacterial Taxon (Phylum, Order, Family, Genus, or Species) | Intestinal Permeability (Serum LPS) and SCFAs | TJs and Mucin 2 |
---|---|---|---|---|---|---|---|---|
[13] | Male CD-1 Mice n = 4 | BPA in water 120 μg/mL | 3 weeks old | 10 weeks | 13 weeks old | ↑ Proteobacteria: Epsilonproteobacteria, Helicobacter ganmani. ↓ Firmicutes: Clostridium viride, Coprococcus comes, Eubacterium dolichum, Lactobacillus intestinalis, Tenericutes. | ||
[17] | Zebrafish (Danio rerio) larva | BPA, BPAF, BPB, BPF, BPS (0.2 to 45 μM) | 1 DPF | 10 days | 10 DPF | BPS: ↑ Cryomorphaceae ↓ Chitinimonas, Leptothrix, Neisseriaceae, Pseudomonas, Rheinheimera. BPA and BPF: ↑ Chromatiaceae, Leptothrix, Pseudomonas, Rheinheimera ↓ Chitinimonas, Neisseriaceae. BPAF and BPB did not disrupt microbial community structure. | ||
[18] | Pregnant CD-1 mouse | TBBPA 0.2 mg/Kg/d or BPS 0.2 mg/Kg/d | Adult dams | GD 8 to PND 21 | F1: 20-week-old adult male pups | TBBPA and BPS: ↓ Bacteroidetes uniformis, Clostridiales, Lachnospiraceae, Oscillospira, RF39, Ruminococcaceae, Ruminococcus, Ruminococcus gnavus BPS: ↑ Adlercreutzia, Bacillus cereus, Gemellaceae, Lactobacillus, Lautropia, S24-7 ↓ Bacteroidaceae, Bacteroides, Odoribacter, Rikenellaceae TBBPA: ↑ Alkaliphilus, Anaerotruncus, Bacillales, Bacillus, Bacteroides, Candidatus arthromitus, Coriobacteriaceae, Lactococcus garvieae, Lactococcus, Rikenellaceae, Streptococcus agalactiae ↓ Anaerostipes, Coprobacillus, Roseburia | BPS: ↓ acetic acid TBBPA: ↑ propionic acid, succinate | |
[163] | Female C57BL/6J mice | BPS 1.5 μg/d | 3 weeks old | 22 weeks | 25 weeks old | ↑ Actinobacteria, Bacillales, Coriobacteriales ↓ Acidobacteria, Acidobacteriales, Caldilineales, Gaiellales, Sphingomonadales ↑ Firmicutes/Bacteroidetes ratio | ||
[165] | Pregnant Dutch belted rabbits n = 4/grp | BPA 200 μg/Kg BW/d | Adult | F0 females: GD 15 (midgestation) to PND 7 | F1: 6 weeks of age | F0 dams fecal samples: ↑ Acinetobacter, Jeotgalicoccus, Oscillospira spp. F1 fecal samples: ↓ Akkermansia spp., Odoribacter spp. | Serum: ↑ LPS Feces: ↓ acetic and propionic acid | |
[166] | Male CD-1 mice n = 10/grp | BPA in water 50 μg/Kg/d | 3 weeks old | 10 weeks | 13 weeks old | Colonic mucosa ↑ Subdoligranulum ↓ Eubacterium coprostanoligenes group, Oscillospira, Prevotella 1, Prevotella 2, Prevotellaceae NK3B31 group, Rikenellaceae RC9 gut group Ruminococcaceae NK4A214 group, Ruminococcaceae UCG 002, Ruminococcaceae UCG 010 | In plasma and colonic mucosae: ↑ DAO, endotoxins, D-lactate, zonulin | mRNA: ↓ muc2, ZO-1, occl, cldn-1 Protein: ↓ ZO-1, occl, cldn-1 |
[164] | Male CD-1 mice n = 8/grp | BPA in diet 50 μg/Kg BW/d | 6 weeks old | 24 weeks | 30 weeks old | ↑ Proteobacteria ↓ Akkermansia, Verrucomicrobia | Serum: ↑ LPS, DAO, D-lactate | Protein: ↓ ZO-1, occl |
[167] | Male and female C57BL/6J mice | BPA in diet 0.05, 0.5, 5, and 50 mg/Kg/d feed weight | 8 weeks old | 22 weeks | 30 weeks old | Male: ↑ Firmicutes, Oscillibacter, Rikenellaceae RC9 gut group, Ruminiclostridium 9, Ruminococcaceae NK4A214 group, Tyzzerella, Verrucomicrobia. ↓ Akkermansia, Allobaculum, Alloprevotella, Bacteroidetes, Christensenellaceae R 7 group, Marvinbryantia, Muribaculum, Parabacteroides, Parasutterella, Proteobacteria, Ruminococcaceae UGG 010, Ruminococcaceae UGG 013, Ruminococcus 1. Female: ↑ Bilophila, Desulfovibrio, Enterorhabdus, Firmicutes, Millionella, Peotococcus, Proteobacteria, RikenellaceaeRC9 gut group, Ruminococcaceae UGG 009. ↓ Bacteroides, Bacteroidetes, Muribaculum, Parasulterella. | Male: ↓ propionic acid, caproic acid Female: ↓ butyrate acid | Male mRNA and protein: ↓ muc2, ZO-1, occl, cldn-1 Female mRNA and protein: = muc2, ZO-1, occl, cldn-1 |
[168] | Pregnant C3H/HeN mice n = 10–16/grp | BPA 50 μg/Kg BW/d | 8 weeks old | F0 females: GD15 to PND 21 | F1 males: PND 45 and 170 | ↓ Firmicutes: (Clostridium butyricum, Clostridium Cluster XIVa); Bifidobacterium spp. | ||
[169] | Pregnant C57BL/6J mice | BPA 5 μg/Kg/d | F0 Adults | F0 dams: Gestation period (19–21 days) | F1 samples at 11, 14, and 20 weeks of age | F1 females: ↑ Rikenellaceae, ↓ Prevotella. F1 males: ↑ Rikenellaceae, ↓ Lactobacillus. | ||
[170] | Pregnant Sprague Dawley rats | BPA 50 μg/Kg/d | F0 15 weeks old | F0 dams: GD 6 to PND21 | F1 males PND 50 | ↑ Allobaculum, Blautia, C. ruminantium, Lactobacillaceae, L. reuteri, Prevotella. ↓ Adlercreutzia, Oscillospira | ↑ acetic acid, propionic acid | |
[171] | C57BL/6 male mice | BPA 50 μg/kg/d and 5 mg/Kg/d BPF 50 μg/Kg/d and 5 mg/Kg/d | 8 weeks old | 14 days | 10 weeks old | BPA 5 mg/kg/d ↑ Alistipes, Alloprevotella, Anaerotruncus, Bacteroides, Bilophila, Butyricicoccus, Enterorhabdus, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, Oscillibacter, Prevotellaceae UCG-011, Roseburia, Ruminiclostridium 9, Ruminiclostridium, Ruminococcaceae NK4A214, Ruminococcaceae UCG-010, Streptococcus ↓ Lactobacillaceae, Ruminococcaceae UCG-014 BPA 50 μg/kg/d ↑ Butyricicoccus, Butyricimonas, Lachnospiraceae NK4A136, Oscillibacter, Prevotellaceae NK3B31, Ruminococcaceae UCG-010, Ruminococcus 1 ↓ Lactobacillaceae, Prevotella 9, Prevotellaceae UCG-011, Ruminococcaceae UCG-014, Streptococcus BPF 5 mg/kg/d ↑ Lachnospiraceae FCS020, Lachnospiraceae NK4A136, Oscillibacter, Ruminococcaceae UCG-010 ↓ Lactobacillaceae, Prevotellaceae UCG-011, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014 BPF 50 μg/kg/d ↑ Alistipes, Butyricimonas, Lachnospiraceae NK4A136, Oscillibacter, Prevotellaceae UCG-001E, Roseburia, Ruminococcaceae UCG-010 ↓ Lactobacillaceae, Prevotella 9, Prevotellaceae UCG-011, Ruminococcaceae UCG-014, Streptococcus spp. | ||
[172] | Pregnant Hu ewes n = 8/grp Gut microbiota transplantation (GMT) from pregnant ewes to microflora-free mice (removed by antibiotics). | Hu ewes: BPA 5 mg/Kg/d sc injection | Hu ewes: 18.7 ± 0.6 months Mice: 7 weeks old | Hu ewes: GD 40 to GD 110. Mice: GMT for 6 weeks administration of ewe fecal supernatant and afterwards from GD 0 to GD 18 | Hu ewes: GD 110 Mice: GD 18 | Ewes and mice: ↑ Firmicutes, Proteobacteria, Veillonella ↓ Actinobacteria, Bacteroides, Bacteroidetes, Bifidobacterium, Clostridium, Lactobacillus ↑ Firmicutes/Bacteroidetes ratio | Colonic content: ↓ acetate, butyrate, propionate, isobutyrate, LPS | |
[173] | Male C57BL/6j mice | BPA 50 mg/Kg BW/d | 8 weeks old | 6 weeks | 14 weeks old | ↑ Bifidobacterium, Faecalibaculum, Parasutterella ↓ Alloprevotella, Bacteroides, Helicobacter, Lactobacillus | Feces: ↓ Acetate, propionate, butyrate Serum: ↑ LPS | Protein: ↓ ZO-1, occl |
[174] | Pregnant California mouse n = 6/grp | BPA in diet 50 mg/Kg feed weight | F0 females 2 weeks prior to breeding F0 males from breeding | Gestation and lactation (30 days) | F0: Adults F1: PND 30 | F0 Females: ↑ Clostridiales, Mogibacteriaceae, Sutterella spp. ↓ Lactococcus spp. F0 males: ↑ Mollicutes, Prevotellaceae. ↓ Desulfovibrio spp. F1 Females: ↑ Bifidobacterium spp., Mogibacteriaceae. ↓ Oxalobacter spp. F1 males: ↑ Akkermansia spp., Methanobrevibacter spp., Sutterella spp. ↓ Proteobacteria, Desulfovibrio spp. | ||
[175] | Female NOD mice n = 6/grp | BPA by gavage using micropipetting. 30 μg/Kg BW/d | Juvenile | PND 28 to PND 56 | PND 134 | ↑ Akkermansia, Anaerofustis, Jeotgalicoccus, Lachnospiraceae, Oscillospira, Rhodospirillales, Ruminococcus, TA18, Turicibacter, Verrucomicrobia, Verrucomicrobiae ↓ 0319 6A21, Acidobacteriia, AD3, EB1017, Ellin329, Gemmatimonadetes, Gitt GS 136, JG37 AG 4, Koribacteraceae, N1423WL, Nitrospira, Nitrospirae, OD1, SC I 84, Sinobacteraceae | ||
[176] | Pregnant California mouse Peromyscus californicus | BPA in diet LD 5 mg/Kg feed weight UD 50 mg/Kg feed weight | F0 Adults | F0 dams: 2 weeks before mating and during gestation and lactation (30 days). | Adults | F1 LD BPA females: ↑ Akkermansia muciniphila, Allobaculum spp., Blautia spp., Clostridiales, Dehalobacterium spp., Dorea spp., Enterobacteriaceae, Lachnospiraceae, Lactobacillus spp., [Mogibacteriaceae], Oscillospira spp., Ruminococcaceae, Ruminococcus spp. ↓ Akkermansia spp., Alphaproteobacteria RF32, Anaerostipes spp., Bacteroidales f.S24-7, Coprococcus spp., Lachnospiraceae. F1 UD BPA females: ↑ Allobaculum spp., Lachnospiraceae, Lactobacillus spp., Rikenellaceae ↓ Alphaproteobacteria RF32, Bacteroidales f.S24-7, Bacteroides uniformis, Clostridiales, Coprococcus spp., Oscillospira spp. F1 LD BPA males: ↑ Allobaculum spp., Bacteroides spp., Blautia producto, Blautia spp., Burkholderiales, Clostridiaceae, Clostridiales, Coriobacteriaceae, Desulfovibrio spp., Desulfovibrionaceae, Dorea spp., [Eubacterium] dolichum, Lactobacillus reuteri, Lactobacillus spp., Parabacteroides distasonis, Parabacteroides spp., Peptostreptococcaceae, Peptostreptococcaceae, Porphyromonadaceae, Ruminococcaceae, Ruminococcus spp. ↓ Akkermansia muciniphila, Anaeroplasma spp., Bacteroidales S24-7, Carnobacteriaceae, Clostridiaceae, Coprococcus spp., Cyanobacteria c.4C0d-2 o.YS2, Desulfovibrionaceae, Lachnospiraceae, Lactobacillus spp., Odoribacter spp., Oscillospira spp., Ruminococcaceae. F1 UD BPA male ↑ Blautia spp., Clostridiale, Desulfovibrio spp., Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, Parabacteroides distasonis, Parabacteroides spp., Porphyromonadaceae. ↓ Allobaculum spp., Bacteroidales f.S24-7, Lactobacillus spp. | ||
[177] | Pregnant Sprague Dawley rats | BPA gavage 50 μg/Kg/d | 15 weeks old | F0 dams: GD 6 to PND 21 | F1 females: PND 50 | ↑ Clostridium perfringens, Clostridium ruminantiums, Prevotella. ↓ Firmicutes/Bacteroidetes ratio | ↑ Acetic acid | |
[178] | Male zebrafish n = 120/grp | BPA 2000 μg/L | Adult | 5 weeks | Adult | ↓ Acinetobacter, Aquabacter, Bacteroidetes, Bosea, Proteobacteria, Xanthobacter ↑ CKC4, Firmicutes | ||
[179] | Male and female zebrafish (Danio rerio) | BPA 0, 2, and 20 μg/L | Adult | 3 months | Adult | Male and female: ↑ Actinobacteria ↓ Hyphomicrobium Male: ↑ Lawsonia | Female 2 μg/L: ↑ TJP2 20 μg/L: ↓ TJP2 | |
[180] | Channel catfish (Ictalurus punctatus) | BPA 500 μg/L | Juvenile | 7 days | Juvenile | ↑ Actinobacteriota, Firmicutes, Proteobacteria ↓ Bacteroidota, Clostridium, Fusobacteriota | ||
[181] | C57BL/6 male mice n = 6/grp | BPP 30 or 3000 μg/Kg/d | 5 weeks old | 5 weeks | 10 weeks old | ↑ Bacteroidetes, Firmicutes, Helicobacter, Proteobacteria ↓ Bacteroides, Lactobacillus, Oscillospira, Prevotella ↑ Firmicutes/Bacteroidetes ratio | Serum: ↑ LPS | mRNA: ↓ ZO-1, occl Protein: ↓ ZO-1, occl, cldn-4 |
[182] | Adult zebrafish | BPF 0.5, 5, and 50 μg/L | Embryonic stage | 180 days | Adult | ↓ Erysipelotrichaceae, Gemmobacter, Rhodobacteraceae | ||
[183] | Zebrafish (AB strain, Danio rerio) | BPF, BPS and BPS+BPF 1, 10, 100, 1000 μg/L | 5 months old | 14 days | 5.5 months old | BPF ↑ Flavobacterium, Fusobacteria ↓ Bacteroidetes BPS ↑ Actinobacteria, Flavobacterium, Proteobacteria, Pseudomonas ↓ Bacteroidetes, Cetobacterium ↑↓ Fusobacteria, depending on dose BPS+BPF ↑ Acinetobacter, Proteobacteria, Pseudomonas, Stenotrophomonas ↓ Bacteroidetes, Cetobacterium ↑↓ Fusobacteria, depending on dose |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellanos-Ruiz, D.; Ojeda-Borbolla, J.G.; Ruiz-García, O.V.; Peña-Corona, S.I.; Martínez-Peña, A.A.; Ibarra-Rubio, M.E.; Gavilanes-Ruiz, M.; Mendoza-Rodríguez, C.A. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J. Xenobiot. 2025, 15, 26. https://doi.org/10.3390/jox15010026
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. Journal of Xenobiotics. 2025; 15(1):26. https://doi.org/10.3390/jox15010026
Chicago/Turabian StyleCastellanos-Ruiz, Dafne, J. Gerardo Ojeda-Borbolla, Olga V. Ruiz-García, Sheila I. Peña-Corona, Annia A. Martínez-Peña, María Elena Ibarra-Rubio, Marina Gavilanes-Ruiz, and C. Adriana Mendoza-Rodríguez. 2025. "Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health" Journal of Xenobiotics 15, no. 1: 26. https://doi.org/10.3390/jox15010026
APA StyleCastellanos-Ruiz, D., Ojeda-Borbolla, J. G., Ruiz-García, O. V., Peña-Corona, S. I., Martínez-Peña, A. A., Ibarra-Rubio, M. E., Gavilanes-Ruiz, M., & Mendoza-Rodríguez, C. A. (2025). Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. Journal of Xenobiotics, 15(1), 26. https://doi.org/10.3390/jox15010026