Associations between Non-Essential Trace Elements in Women’s Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Collection of Follicular Fluid, Whole Blood, and Urine Samples
2.3. Quantification of Non-Essential Trace Elements by ICP-MS
2.4. Clinical Management and Outcome Assessment
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Non-Essential Trace Element Distribution among Biofluids
3.3. Associations between Non-Essential Trace Element Concentrations and Ovarian Response Outcomes
3.4. Association of Non-Essential Trace Element Concentrations with Preimplantation IVF Outcomes
3.5. Association of Non-Essential Trace Element Concentrations with Clinical IVF Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Molecular, Clinical and Environmental Toxicicology Volume 3: Environmental Toxicology. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Martinez-Morata, I.; Sobel, M.; Tellez-Plaza, M.; Navas-Acien, A.; Howe, C.G.; Sanchez, T.R. A State-of-the-Science Review on Metal Biomarkers; Springer: Berlin/Heidelberg, Germany, 2023; Volume 10, ISBN 0123456789. [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Martin, R.; Grau-Perez, M.; Sebastian-Leon, P.; Diaz-Gimeno, P.; Vidal, C.; Tellez-Plaza, M.; Dominguez, F. Association of Blood Cadmium and Lead Levels with Self-Reported Reproductive Lifespan and Pregnancy Loss: The National Health and Nutrition Examination Survey 1999–2018. Environ. Res. 2023, 233, 116514. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Coskun, S.; Mashhour, A.; Shinwari, N.; El-Doush, I.; Billedo, G.; Jaroudi, K.; Al-Shahrani, A.; Al-Kabra, M.; El Din Mohamed, G. Exposure to Heavy Metals (Lead, Cadmium and Mercury) and Its Effect on the Outcome of in-Vitro Fertilization Treatment. Int. J. Hyg. Environ. Health 2008, 211, 560–579. [Google Scholar] [CrossRef] [PubMed]
- Tolunay, H.E.; Şükür, Y.E.; Ozkavukcu, S.; Seval, M.M.; Ateş, C.; Türksoy, V.A.; Ecemiş, T.; Atabekoğlu, C.S.; Özmen, B.; Berker, B.; et al. Heavy Metal and Trace Element Concentrations in Blood and Follicular Fluid Affect ART Outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 198, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.S.; Fujimoto, V.Y.; Steuerwald, A.J.; Cheng, G.; Browne, R.W.; Parsons, P.J. Background Exposure to Toxic Metals in Women Adversely Influences Pregnancy during in Vitro Fertilization (IVF). Reprod. Toxicol. 2012, 34, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.S.; Kim, K.; Kruger, P.C.; Parsons, P.J.; Arnason, J.G.; Steuerwald, A.J.; Fujimoto, V.Y. Associations between Toxic Metals in Follicular Fluid and in Vitro Fertilization (IVF) Outcomes. J. Assist. Reprod. Genet. 2012, 29, 1369–1379. [Google Scholar] [CrossRef]
- Palomar, A.; Gonzalez-Martin, R.; Quiñonero, A.; Pellicer, N.; Fernandez-Saavedra, R.; Rucandio, I.; Fernandez-Martinez, R.; Conde-Vilda, E.; Quejido, A.J.; Zuckerman, C.; et al. Bioaccumulation of Non-Essential Trace Elements Detected in Women’s Follicular Fluid, Urine, and Plasma Is Associated with Poor Reproductive Outcomes Following Single Euploid Embryo Transfer: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 13147. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, K.; Li, M.; Rong, C.; Zheng, J.; Li, J. Metal Elements Associate with in Vitro Fertilization (IVF) Outcomes in 195 Couples. J. Trace Elem. Med. Biol. 2021, 68, 126810. [Google Scholar] [CrossRef]
- Bloom, M.S.; Parsons, P.J.; Kim, D.; Steuerwald, A.J.; Vaccari, S.; Cheng, G.; Fujimoto, V.Y. Toxic Trace Metals and Embryo Quality Indicators during in Vitro Fertilization (IVF). Reprod. Toxicol. 2011, 31, 164–170. [Google Scholar] [CrossRef]
- Wright, D.L.; Afeiche, M.C.; Ehrlich, S.; Smith, K.; Williams, P.L.; Chavarro, J.E.; Batsis, M.; Toth, T.L.; Hauser, R. Hair Mercury Concentrations and in Vitro Fertilization (IVF) Outcomes among Women from a Fertility Clinic. Reprod. Toxicol. 2015, 51, 125–132. [Google Scholar] [CrossRef]
- Bloom, M.S.; Parsons, P.J.; Steuerwald, A.J.; Schisterman, E.F.; Browne, R.W.; Kim, K.; Coccaro, G.A.; Conti, G.C.; Narayan, N.; Fujimoto, V.Y. Toxic Trace Metals and Human Oocytes during in Vitro Fertilization (IVF). Reprod. Toxicol. 2010, 29, 298–305. [Google Scholar] [CrossRef]
- Jiang, T.; Hu, Y.; He, S.; Jiang, R.; Yao, Y.; Jin, Z.; Shen, J.; Tao, F.; Ji, Y.; Liang, C. Exposure to Multiple Toxic Metals and the Risk of Early Embryonic Arrest among Women Undergoing Assisted Reproductive Techniques. Environ. Res. 2022, 211, 113072. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, E.H.; Sathyapalan, T.; Knight, R.; Maguiness, S.M.; Killick, S.R.; Robinson, J.; Atkin, S.L. Endocrine Disruptor & Nutritional Effects of Heavy Metals in Ovarian Hyperstimulation. J. Assist. Reprod. Genet. 2011, 28, 1223–1228. [Google Scholar] [CrossRef]
- García-Fortea, P.; Cohen-Corcia, I.; Córdoba-Doña, J.A.; Reche-Rosado, A.; González-Mesa, E. Toxic Elements in Hair and in Vitro Fertilization Outcomes: A Prospective Cohort Study. Reprod. Toxicol. 2018, 77, 43–52. [Google Scholar] [CrossRef]
- Butts, C.D.; Bloom, M.S.; McGough, A.; Lenhart, N.; Wong, R.; Mok-Lin, E.; Parsons, P.J.; Galusha, A.L.; Browne, R.W.; Yucel, R.M.; et al. Toxic Elements in Follicular Fluid Adversely Influence the Likelihood of Pregnancy and Live Birth in Women Undergoing IVF. Hum. Reprod. Open 2021, 2021, hoab023. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Martin, R.; Palomar, A.; Perez-Deben, S.; Salsano, S.; Quiñonero, A.; Caracena, L.; Fernandez-Saavedra, R.; Fernandez-Martinez, R.; Conde-Vilda, E.; Quejido, A.J.; et al. Higher Concentrations of Essential Trace Elements in Women Undergoing IVF May Be Associated with Poor Reproductive Outcomes Following Single Euploid Embryo Transfer. Cells 2024, 13, 839. [Google Scholar] [CrossRef]
- Gonzalez-Martin, R.; Palomar, A.; Quiñonero, A.; Pellicer, N.; Fernandez-Saavedra, R.; Conde-Vilda, E.; Quejido, A.J.; Whitehead, C.; Scott, R.T.; Dominguez, F. The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes Following Single Euploid Embryo Transfer. Int. J. Mol. Sci. 2023, 24, 10968. [Google Scholar] [CrossRef] [PubMed]
- Campisano, R.; Hall, K.; Griggs, J.; Willison, S.; Reimer, S.; Mash, H.; Magnuson, M.; Boczek, L.; Rhodes, E. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017; US Environmental Protection Agency: Washington, DC, USA, 2017; EPA/600/R-17/356.
- de los Santos, M.J.; Diez Juan, A.; Mifsud, A.; Mercader, A.; Meseguer, M.; Rubio, C.; Pellicer, A. Variables Associated with Mitochondrial Copy Number in Human Blastocysts: What Can We Learn from Trophectoderm Biopsies? Fertil. Steril. 2018, 109, 110–117. [Google Scholar] [CrossRef]
- Pardiñas, M.L.; Nohales, M.; Labarta, E.; De los Santos, J.M.; Mercader, A.; Remohí, J.; Bosch, E.; De los Santos, M.J. Elevated Serum Progesterone Does Not Impact Euploidy Rates in PGT-A Patients. J. Assist. Reprod. Genet. 2021, 38, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.M.; Kim, J.G.; Osman, E.K.; Tiegs, A.W.; Lathi, R.B.; Cheng, P.J.; Scott, R.T.; Franasiak, J.M. Impact of Paternal Age on Embryology and Pregnancy Outcomes in the Setting of a Euploid Single-Embryo Transfer with Ejaculated Sperm: Retrospective Cohort Study. F S Rep. 2020, 1, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Bartel, A. Tableone: Create “Table 1” to Describe Baseline Characteristics with or without Propensity Score Weights. Available online: https://cran.r-project.org/package=tableone (accessed on 8 January 2024).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. Available online: https://github.com/taiyun/corrplot (accessed on 8 January 2024).
- Barnier, J.; Briatte, F.; Larmarange, J. Questionr: Functions to Make Surveys Processing Easier. Available online: https://cran.r-project.org/package=questionr (accessed on 8 January 2024).
- Kim, K.; Steuerwald, A.J.; Parsons, P.J.; Fujimoto, V.Y.; Browne, R.W.; Bloom, M.S. Biomonitoring for Exposure to Multiple Trace Elements via Analysis of Urine from Participants in the Study of Metals and Assisted Reproductive Technologies (SMART). J. Environ. Monit. 2011, 13, 2413–2419. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; De Ziegler, D.; Tao, X.; Sun, L.; Zhan, Y.; Ayoubi, J.M.; Seli, E.; Franasiak, J.M.; Scott, R.T. Rate of True Recurrent Implantation Failure Is Low: Results of Three Successive Frozen Euploid Single Embryo Transfers. Fertil. Steril. 2021, 115, 45–53. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease) Toxicological Profile for Strontium; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004.
- Anifandis, G.; Michopoulos, A.; Daponte, A.; Chatzimeletiou, K.; Simopoulou, M.; Messini, C.I.; Polyzos, N.P.; Vassiou, K.; Dafopoulos, K.; Goulis, D.G. Artificial Oocyte Activation: Physiological, Pathophysiological and Ethical Aspects. Syst. Biol. Reprod. Med. 2019, 65, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.H. Parthenogenetic Activation of Oocytes. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot094409. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.; Setty, M.; Babu, U.V.; Pai, K.S.R. Implications of Environmental Toxicants on Ovarian Follicles: How It Can Adversely Affect the Female Fertility? Environ. Sci. Pollut. Res. 2021, 28, 67925–67939. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Chirumbolo, S.; Dadar, M.; Pivina, L.; Lindh, U.; Butnariu, M.; Aaseth, J. Mercury Exposure and Its Effects on Fertility and Pregnancy Outcome. Basic Clin. Pharmacol. Toxicol. 2019, 125, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Dack, K.; Fell, M.; Taylor, C.M.; Havdahl, A.; Lewis, S.J. Prenatal Mercury Exposure and Neurodevelopment up to the Age of 5 Years: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1976. [Google Scholar] [CrossRef]
- Björvang, R.D.; Hassan, J.; Stefopoulou, M.; Gemzell-Danielsson, K.; Pedrelli, M.; Kiviranta, H.; Rantakokko, P.; Ruokojärvi, P.; Lindh, C.H.; Acharya, G.; et al. Persistent Organic Pollutants and the Size of Ovarian Reserve in Reproductive-Aged Women. Environ. Int. 2021, 155, 106589. [Google Scholar] [CrossRef]
- Wu, S.; Wang, M.; Deng, Y.; Qiu, J.; Zhang, X.; Tan, J. Associations of Toxic and Essential Trace Elements in Serum, Follicular Fluid, and Seminal Plasma with In Vitro Fertilization Outcomes. Ecotoxicol. Environ. Saf. 2020, 204, 110965. [Google Scholar] [CrossRef]
- Tulić, L.; Vidaković, S.; Tulić, I.; Ćurčić, M.; Bulat, Z. Toxic Metal and Trace Element Concentrations in Blood and Outcome of In Vitro Fertilization in Women. Biol. Trace Elem. Res. 2019, 188, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Rollerova, E.; Tulinska, J.; Liskova, A.; Kuricova, M.; Kovriznych, J.; Mlynarcikova, A.; Kiss, A.; Scsukova, S. Titanium Dioxide Nanoparticles: Some Aspects of Toxicity/Focus on the Development. Endocr. Regul. 2015, 49, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Tibau, A.V.; Grube, B.D.; Velez, B.J.; Vega, V.M.; Mutter, J. Titanium Exposure and Human Health. Oral Sci. Int. 2019, 16, 15–24. [Google Scholar] [CrossRef]
- Jin, T.; Berlin, M. Titanium. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1287–1296. [Google Scholar]
- D’Errico, J.N.; Doherty, C.; Reyes George, J.J.; Buckley, B.; Stapleton, P.A. Maternal, Placental, and Fetal Distribution of Titanium after Repeated Titanium Dioxide Nanoparticle Inhalation through Pregnancy. Placenta 2022, 121, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Yoshioka, Y.; Higashisaka, K.; Mimura, K.; Morishita, Y.; Nozaki, M.; Yoshida, T.; Ogura, T.; Nabeshi, H.; Nagano, K.; et al. Silica and Titanium Dioxide Nanoparticles Cause Pregnancy Complications in Mice. Nat. Nanotechnol. 2011, 6, 321–328. [Google Scholar] [CrossRef]
- Ipach, I.; Schäfer, R.; Mittag, F.; Leichtle, C.; Wolf, P.; Kluba, T. The Development of Whole Blood Titanium Levels after Instrumented Spinal Fusion—Is There a Correlation between the Number of Fused Segments and Titanium Levels? BMC Musculoskelet. Disord. 2012, 13, 159. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, L.; Chen, F.; Zou, H.; Wang, Z. A Key Moment for TiO2: Prenatal Exposure to TiO2 Nanoparticles May Inhibit the Development of Offspring. Ecotoxicol. Environ. Saf. 2020, 202, 110911. [Google Scholar] [CrossRef]
- Mao, Z.; Yao, M.; Li, Y.; Fu, Z.; Li, S.; Zhang, L.; Zhou, Z.; Tang, Q.; Han, X.; Xia, Y. MiR-96-5p and MiR-101-3p as Potential Intervention Targets to Rescue TiO 2 NP-Induced Autophagy and Migration Impairment of Human Trophoblastic Cells. Biomater. Sci. 2018, 6, 3273–3283. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Ji, D.; Zhang, Z.; Luo, S.; Ma, Y.; Cao, W.; Cao, C.; Saw, P.E.; Chen, H.; et al. Maternal Exposure to Nano-Titanium Dioxide Impedes Fetal Development via Endothelial-to-Mesenchymal Transition in the Placental Labyrinth in Mice. Part. Fibre Toxicol. 2023, 20, 48. [Google Scholar] [CrossRef]
- Abukabda, A.B.; Bowdridge, E.C.; McBride, C.R.; Batchelor, T.P.; Goldsmith, W.T.; Garner, K.L.; Friend, S.; Nurkiewicz, T.R. Maternal Titanium Dioxide Nanomaterial Inhalation Exposure Compromises Placental Hemodynamics. Toxicol. Appl. Pharmacol. 2019, 367, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Zhou, Y.; Zhao, X.; Sheng, L.; Wang, L. Maternal Exposure to Nanosized Titanium Dioxide Suppresses Embryonic Development in Mice. Int. J. Nanomed. 2017, 12, 6197–6204. [Google Scholar] [CrossRef] [PubMed]
- Karimipour, M.; Zirak Javanmard, M.; Ahmadi, A.; Jafari, A. Oral Administration of Titanium Dioxide Nanoparticle through Ovarian Tissue Alterations Impairs Mice Embryonic Development. Int. J. Reprod. Biomed. 2018, 16, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.K.; Vengosh, A. A Review of the Health Impacts of Barium from Natural and Anthropogenic Exposure. Environ. Geochem. Health 2014, 36, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental Barium: Potential Exposure and Health-Hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pi, X.; Chen, Y.; Wang, D.; Yin, S.; Jin, L.; Li, Z.; Ren, A.; Wang, L.; Yin, C. Prenatal Exposure to Barium and the Occurrence of Neural Tube Defects in Offspring. Sci. Total Environ. 2021, 764, 144245. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for toxic substances and Disease) Toxicological Profile for Tin; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2005.
- Graceli, J.B.; Sena, G.C.; Lopes, P.F.I.; Zamprogno, G.C.; da Costa, M.B.; Godoi, A.F.L.; dos Santos, D.M.; de Marchi, M.R.R.; dos Santos Fernandez, M.A. Organotins: A Review of Their Reproductive Toxicity, Biochemistry, and Environmental Fate. Reprod. Toxicol. 2013, 36, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tang, H.; Wang, X.; Xu, J.; Sun, F. Dibutyltin Dichloride Exposure Affects Mouse Oocyte Quality by Inducing Spindle Defects and Mitochondria Dysfunction. Chemosphere 2022, 295, 133959. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cui, Y.; Ma, J.; Ge, Z.; Shen, W.; Yin, S. Tributyltin Oxide Exposure Impairs Mouse Oocyte Maturation and Its Possible Mechanisms. J. Cell. Biochem. 2019, 120, 715–726. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Song, Y.-Q.; He, X.-Q.; Zhang, F.; Huang, X.; Liu, Y.; Ding, L.; Xu, L.; Zhu, M.-B.; Hu, W.-F.; et al. Triphenyltin Chloride Induces Spindle Microtubule Depolymerisation and Inhibits Meiotic Maturation in Mouse Oocytes. Reprod. Fertil. Dev. 2014, 26, 1084. [Google Scholar] [CrossRef]
- Huang, X.-J.; Shen, M.; Wang, L.; Yu, F.; Wu, W.; Liu, H. Effects of Tributyltin Chloride on Developing Mouse Oocytes and Preimplantation Embryos. Microsc. Microanal. 2015, 21, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Anke, M.; Angelow, L. Rubidium in the Food Chain. Fresenius. J. Anal. Chem. 1995, 352, 236–239. [Google Scholar] [CrossRef]
- Fieve, R.R.; Meltzer, H.L.; Taylor, R.M. Rubidium Chloride Ingestion by Volunteer Subjects: Initial Experience. Psychopharmacologia 1971, 20, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Anke, M.; Angelow, L.; Müller, R.; Anke, S. Recent Progress in Exploring the Essentiality of the Ultratrace Element Rubidium to the Nutrition of Animals and Man. Biomed. Res. Trace Elem. 2005, 16, 203–207. [Google Scholar]
- Su, Y.; Chen, L.-J.; He, J.-R.; Yuan, X.-J.; Cen, Y.-L.; Su, F.-X.; Tang, L.-Y.; Zhang, A.-H.; Chen, W.-Q.; Lin, Y.; et al. Urinary Rubidium in Breast Cancers. Clin. Chim. Acta 2011, 412, 2305–2309. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Cui, L.; Chen, L.; Zhang, J.; Zhang, X.; Kang, Q.; Jin, F.; Ye, Y. Parental Plasma Concentrations of Perfluoroalkyl Substances and In Vitro Fertilization Outcomes. Environ. Pollut. 2021, 269, 116159. [Google Scholar] [CrossRef] [PubMed]
- Carignan, C.C.; Mínguez-Alarcón, L.; Williams, P.L.; Meeker, J.D.; Stapleton, H.M.; Butt, C.M.; Toth, T.L.; Ford, J.B.; Hauser, R. Paternal Urinary Concentrations of Organophosphate Flame Retardant Metabolites, Fertility Measures, and Pregnancy Outcomes among Couples Undergoing In Vitro Fertilization. Environ. Int. 2018, 111, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Tielemans, E.; Van Kooij, R.; Looman, C.; Burdorf, A.; te Velde, E.; Heederik, D. Paternal Occupational Exposures and Embryo Implantation Rates after IVF. Fertil. Steril. 2000, 74, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Dodge, L.E.; Williams, P.L.; Williams, M.A.; Missmer, S.A.; Toth, T.L.; Calafat, A.M.; Hauser, R. Paternal Urinary Concentrations of Parabens and Other Phenols in Relation to Reproductive Outcomes among Couples from a Fertility Clinic. Environ. Health Perspect. 2015, 123, 665–671. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Bellavia, A.; Gaskins, A.J.; Chavarro, J.E.; Ford, J.B.; Souter, I.; Calafat, A.M.; Hauser, R.; Williams, P.L. Paternal Mixtures of Urinary Concentrations of Phthalate Metabolites, Bisphenol A and Parabens in Relation to Pregnancy Outcomes among Couples Attending a Fertility Center. Environ. Int. 2021, 146, 106171. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Williams, P.L.; Souter, I.; Sacha, C.; Amarasiriwardena, C.J.; Ford, J.B.; Hauser, R.; Chavarro, J.E. Hair Mercury Levels, Intake of Omega-3 Fatty Acids and Ovarian Reserve among Women Attending a Fertility Center. Int. J. Hyg. Environ. Health 2021, 237, 113825. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Afeiche, M.C.; Williams, P.L.; Arvizu, M.; Tanrikut, C.; Amarasiriwardena, C.J.; Ford, J.B.; Hauser, R.; Chavarro, J.E. Hair Mercury (Hg) Levels, Fish Consumption and Semen Parameters among Men Attending a Fertility Center. Int. J. Hyg. Environ. Health 2018, 221, 174–182. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | |
Age (years), median [IQR] | 39.00 [38.00, 41.00] |
Body mass index (kg/m2), median [IQR] | 22.97 [20.63, 25.12] |
Race/ethnic group, n (%) | |
| 48 (94.1%) |
| 1 (2.0%) |
| 1 (2.0%) |
| 1 (2.0%) |
Education, n (%) | |
| 3 (6.5%) |
| 5 (10.9%) |
| 5 (10.9%) |
| 33 (71.7%) |
Smoking, n (%) | |
| 23 (50.0%) |
| 13 (28.3%) |
| 9 (19.6%) |
| 1 (2.2%) |
Reproductive Characteristics | |
Total FSH + hMG dose during COS (IU), median [IQR] | 3300.00 [2437.50, 3925.00] |
Trigger day E2 (pg/mL), median [IQR] | 2083.00 [1622.50, 4045.50] |
Number of retrieved oocytes, median [IQR] | 12.00 [7.00, 16.00] |
Maturation rate, % mean ± SD | 80 ± 17% |
Fertilization rate, % mean ± SD | 75 ± 25% |
Blastulation rate, % mean ± SD | 54 ± 28% |
Euploidy rate, % mean ± SD | 42 ± 34% |
Embryo transfer rate, n (%) | 36 (70.6%) |
Implantation (positive hCG) rate, n (%) | 23 (63.9%) |
Clinical pregnancy rate, n (%) | 19 (52.8%) |
Live birth rate, n (%) | 17 (47.2%) |
Reproductive goal rate, n (%) | 17 (33.3%) |
LOD | Samples < LOD, n (%) | GM (SD) | 20% | 50% | 80% | |
---|---|---|---|---|---|---|
Follicular Fluid (n = 29) | ||||||
Mercury (Hg) (ng/mL) | 0.5 | 4 (10%) | 1.96 (2.59) | 1.31 | 2.12 | 3.73 |
Lead (Pb) (ng/mL) | 1 | 29 (74%) | 0.63 (0.50) | 0.50 | 0.50 | 0.50 |
Arsenic (As) (ng/mL) | 1 | 19 (49%) | 1.02 (1.30) | 0.50 | 1.00 | 2.04 |
Barium (Ba) (ng/mL) | 1 | 2 (5%) | 2.73 (5.15) | 1.16 | 2.60 | 6.02 |
Strontium (Sr) (ng/mL) | NA | 0 (0%) | 33.68 (11.84) | 26.81 | 35.00 | 43.00 |
Rubidium (Rb) (ng/mL) | NA | 0 (0%) | 83.30 (31.69) | 62.80 | 93.62 | 113.23 |
Titanium (Ti) (ng/mL) | NA | 0 (0%) | 2.48 (0.50) | 2.14 | 2.39 | 3.00 |
Whole Blood (n = 40) | ||||||
Mercury (Hg) (ng/mL) | NA | 0 (0%) | 6.21 (5.19) | 3.78 | 6.01 | 10.89 |
Lead (Pb) (ng/mL) | 1.5 | 6 (13%) | 4.93 (20.87) | 2.52 | 5.58 | 9.31 |
Arsenic (As) (ng/mL) | 1.5 | 19 (40%) | 1.76 (1.77) | 0.75 | 1.97 | 3.66 |
Barium (Ba) (ng/mL) | 1.5 | 2 (4%) | 2.58 (1.43) | 1.83 | 2.37 | 4.14 |
Strontium (Sr) (ng/mL) | NA | 0 (0%) | 28.13 (9.31) | 23.51 | 28.77 | 34.44 |
Rubidium (Rb) (ng/mL) | NA | 0 (0%) | 1205.68 (151.40) | 1073.35 | 1233.01 | 1304.84 |
Cesium (Cs) (ng/mL) | 1.5 | 2 (4%) | 2.89 (6.93) | 2.07 | 2.63 | 3.55 |
Titanium (Ti) (ng/mL) | NA | 0 (0%) | 5.26 (1.65) | 4.23 | 5.18 | 6.17 |
Nickel (Ni) (ng/mL) | 1.5 | 32 (67%) | 1.47 (7.15) | 0.75 | 0.75 | 4.12 |
Urine, VOR (n = 50) | ||||||
Mercury (Hg) (ng/mL) | NA | 0 (0%) | 1.90 (0.94) | 1.29 | 2.01 | 2.66 |
Creatinine-corrected Hg (µg/g CR) | 0.48 (0.25) | 0.32 | 0.49 | 0.75 | ||
Lead (Pb) (ng/mL) | 0.5 | 15 (30%) | 0.64 (2.20) | 0.25 | 0.64 | 0.99 |
Creatinine-corrected Pb (µg/g CR) | 0.16 (0.67) | 0.08 | 0.15 | 0.27 | ||
Arsenic (As) (ng/mL) | NA | 0 (0%) | 51.8 (109.67) | 24.10 | 53.72 | 113.49 |
Creatinine-corrected As (µg/g CR) | 12.78 (27.35) | 4.82 | 13.54 | 28.39 | ||
Barium (Ba) (ng/mL) | 0.5 | 5 (10%) | 1.93 (3.47) | 0.75 | 2.37 | 4.53 |
Creatinine-corrected Ba (µg/g CR) | 0.48 (1.22) | 0.19 | 0.52 | 0.99 | ||
Strontium (Sr) (ng/mL) | NA | 0 (0%) | 227.32 (217.26) | 105.32 | 269.76 | 497.51 |
Creatinine-corrected Sr (µg/g CR) | 55.27 (47.92) | 29.68 | 57.29 | 92.79 | ||
Rubidium (Rb) (ng/mL) | NA | 0 (0%) | 842.46 (508.08) | 545.43 | 830.17 | 1357.96 |
Creatinine-corrected Rb (µg/g CR) | 211.86 (108.70) | 137.13 | 206.19 | 315.74 | ||
Cesium (Cs) (ng/mL) | NA | 0 (0%) | 5.98 (3.16) | 4.06 | 6.12 | 8.18 |
Creatinine-corrected Cs (µg/g CR) | 1.49 (0.90) | 1.07 | 1.46 | 1.95 | ||
Tin (Sn) (ng/mL) | 0.5 | 1 (2%) | 1.80 (1.78) | 1.26 | 1.84 | 2.39 |
Creatinine-corrected Sn (µg/g CR) | 0.44 (0.37) | 0.28 | 0.48 | 0.71 | ||
Nickel (Ni) (ng/mL) | 1 | 4 (8%) | 3.07 (11.62) | 1.60 | 2.50 | 7.09 |
Creatinine-corrected Ni (µg/g CR) | 0.75 (4.04) | 0.34 | 0.59 | 1.60 | ||
Cobalt (Co) (ng/mL) | 0.5 | 23 (46%) | 0.52 (0.71) | 0.25 | 0.51 | 1.14 |
Creatinine-corrected Co (µg/g CR) | 0.13 (0.16) | 0.06 | 0.14 | 0.23 | ||
Urine, ET (n = 27) | ||||||
Mercury (Hg) (ng/mL) | NA | 0 (0%) | 1.67 (2.93) | 1.00 | 1.73 | 2.26 |
Creatinine-corrected Hg (µg/g CR) | 0.51 (0.81) | 0.32 | 0.50 | 0.75 | ||
Lead (Pb) (ng/mL) | 0.5 | 16 (57%) | 0.45 (1.31) | 0.25 | 0.25 | 0.81 |
Creatinine-corrected Pb (µg/g CR) | 0.14 (0.53) | 0.07 | 0.12 | 0.25 | ||
Arsenic (As) (ng/mL) | NA | 0 (0%) | 31.89 (68.56) | 8.73 | 40.45 | 73.65 |
Creatinine-corrected As (µg/g CR) | 9.84 (17.37) | 3.28 | 9.12 | 28.88 | ||
Barium (Ba) (ng/mL) | 0.5 | 3 (11%) | 1.41 (2.92) | 0.69 | 1.31 | 3.43 |
Creatinine-corrected Ba (µg/g CR) | 0.44 (0.75) | 0.18 | 0.44 | 0.98 | ||
Strontium (Sr) (ng/mL) | NA | 0 (0%) | 139.16 (120.93) | 90.61 | 164.24 | 224.32 |
Creatinine-corrected Sr (µg/g CR) | 42.96 (33.66) | 28.94 | 46.21 | 70.08 | ||
Rubidium (Rb) (ng/mL) | NA | 0 (0%) | 792.90 (487.88) | 494.65 | 807.54 | 1115.83 |
Creatinine-corrected Rb (µg/g CR) | 244.75 (107.57) | 172.66 | 261.40 | 351.82 | ||
Cesium (Cs) (ng/mL) | NA | 0 (0%) | 5.42 (2.16) | 3.92 | 5.76 | 7.43 |
Creatinine-corrected Cs (µg/g CR) | 1.67 (0.91) | 1.21 | 1.58 | 2.17 | ||
Tin (Sn) (ng/mL) | NA | 0 (0%) | 1.45 (2.37) | 0.90 | 1.31 | 1.75 |
Creatinine-corrected Sn (µg/g CR) | 0.45 (0.56) | 0.26 | 0.41 | 0.63 | ||
Nickel (Ni) (ng/mL) | 0.5 | 1 (4%) | 1.93 (2.50) | 1.08 | 2.50 | 2.50 |
Creatinine-corrected Ni (µg/g CR) | 0.60 (0.90) | 0.27 | 0.56 | 1.33 | ||
Cobalt (Co) (ng/mL) | 0.5 | 12 (43%) | 0.53 (0.63) | 0.25 | 0.55 | 1.14 |
Creatinine-corrected Co (µg/g CR) | 0.16 (0.17) | 0.07 | 0.15 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Martin, R.; Palomar, A.; Perez-Deben, S.; Salsano, S.; Quiñonero, A.; Caracena, L.; Rucandio, I.; Fernandez-Saavedra, R.; Fernandez-Martinez, R.; Conde-Vilda, E.; et al. Associations between Non-Essential Trace Elements in Women’s Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles. J. Xenobiot. 2024, 14, 1093-1108. https://doi.org/10.3390/jox14030062
Gonzalez-Martin R, Palomar A, Perez-Deben S, Salsano S, Quiñonero A, Caracena L, Rucandio I, Fernandez-Saavedra R, Fernandez-Martinez R, Conde-Vilda E, et al. Associations between Non-Essential Trace Elements in Women’s Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles. Journal of Xenobiotics. 2024; 14(3):1093-1108. https://doi.org/10.3390/jox14030062
Chicago/Turabian StyleGonzalez-Martin, Roberto, Andrea Palomar, Silvia Perez-Deben, Stefania Salsano, Alicia Quiñonero, Laura Caracena, Isabel Rucandio, Rocio Fernandez-Saavedra, Rodolfo Fernandez-Martinez, Estefania Conde-Vilda, and et al. 2024. "Associations between Non-Essential Trace Elements in Women’s Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles" Journal of Xenobiotics 14, no. 3: 1093-1108. https://doi.org/10.3390/jox14030062
APA StyleGonzalez-Martin, R., Palomar, A., Perez-Deben, S., Salsano, S., Quiñonero, A., Caracena, L., Rucandio, I., Fernandez-Saavedra, R., Fernandez-Martinez, R., Conde-Vilda, E., Quejido, A. J., Giles, J., Vidal, C., Bellver, J., & Dominguez, F. (2024). Associations between Non-Essential Trace Elements in Women’s Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles. Journal of Xenobiotics, 14(3), 1093-1108. https://doi.org/10.3390/jox14030062