Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sediment Sampling and Processing
2.3. Microplastic Quantification and Characterisation
2.4. Assessment of Persistent Organic Pollutant Concentrations
3. Results
3.1. Quantification and Characterisation of Microplastics in Ob River Beach Sediments
3.2. Persistent Organic Pollutants Associated with Microplastics in Ob River Beach Sediments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritization. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Correa-Araneda, F.; Pérez, J.; Tonin, A.M.; Esse, C.; Boyero, L.; Díaz, M.E.; Figueroa, R.; Santander-Massa, R.; Cornejo, A.; Link, O.; et al. Microplastic concentration, distribution and dynamics along one of the largest Mediterranean-climate rivers: A whole watershed approach. Environ. Res. 2022, 209, 112808. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Orlowski, N.; Bopf, F.K.; Breuer, L. A review on microplastics in major European rivers. WIREs Water 2024, 11, e1713. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef] [PubMed]
- Frank, Y.; Ershova, A.; Batasheva, S.; Vorobiev, E.; Rakhmatullina, S.; Vorobiev, D.; Fakhrullin, R. Microplastics in freshwater: A focus on the Russian inland waters. Water 2022, 14, 3909. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Haider, A.; Ahmad, H.M.; Mohyuddin, A.; Umer Aslam, H.M.; Nadeem, S.; Javed, M.; Othman, M.H.D.; Goh, H.H.; Chew, K.W. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. Chemosphere 2023, 325, 138367. [Google Scholar] [CrossRef] [PubMed]
- Gabbott, S.; Russell, C.; Yohan, Y.; Zalasiewicz, J. The geography and geology of plastics: Their environmental distribution and fate. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 33–63. [Google Scholar] [CrossRef]
- Lofty, J.; Valero, D.; Wilson, C.A.M.E.; Franca, M.J.; Ouro, P. Microplastic and natural sediment in bed load saltation: Material does not dictate the fate. Water Res. 2023, 243, 120329. [Google Scholar] [CrossRef]
- Xia, F.; Tan, Q.; Qin, H.; Wang, D.; Cai, Y.; Zhang, J. Sequestration and export of microplastics in urban river sediments. Environ. Int. 2023, 181, 108265. [Google Scholar] [CrossRef]
- Acarer, S. Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. Water Sci. Technol. 2023, 85, 685. [Google Scholar] [CrossRef] [PubMed]
- Skalska, K.; Ockelford, A.; Ebdon, J.E.; Cundy, A.B. Riverine microplastics: Behaviour, spatio-temporal variability, and recommendations for standardised sampling and monitoring. J. Water Process Eng. 2020, 38, 101600. [Google Scholar] [CrossRef]
- van Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef]
- Haque, A.; Holsen, T.M.; Baki, A.B.M. Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Sci. Rep. 2024, 14, 6006. [Google Scholar] [CrossRef] [PubMed]
- Alvim, C.B.; Mendoza-Roca, J.A.; Bes-Piá, A. Wastewater treatment plant as microplastics release source—Quantification and identification techniques. J. Environ. Manag. 2020, 255, 109739. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Tolkou, A.K.; Evgenidou, E.; Bikiaris, D.N.; Lambropoulou, D.A.; Mitropoulos, A.C.; Kalavrouziotis, I.K.; Kyzas, G.Z. Fate and removal of microplastics from industrial wastewaters. Sustainability 2023, 15, 6969. [Google Scholar] [CrossRef]
- Reddy, A.S.; Nair, A.T. The fate of microplastics in wastewater treatment plants: An overview of source and remediation technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Gies, E.A.; LeNoble, J.L.; Noël, M.; Etemadifar, A.; Bishay, F.; Hall, E.R.; Ross, P.S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull. 2022, 133, 553–561. [Google Scholar] [CrossRef]
- Lambert, S. Microplastics are contaminants of emerging concern in freshwater environments: An overview. In Freshwater Microplastics. Emerging Environmental Contaminants; Wagner, M., Lambert, S., Eds.; Springer: Basel, Switzerland, 2018; pp. 1–23. [Google Scholar] [CrossRef]
- Miloloža, M.; Kučić Grgić, D.; Bolanča, T.; Ukić, Š.; Cvetnić, M.; Ocelić Bulatović, V.; Dionysiou, D.D.; Kušić, H. Ecotoxicological assessment of microplastics in freshwater sources—A review. Water 2021, 13, 56. [Google Scholar] [CrossRef]
- Saeedi, M. How microplastics interact with food chain: A short overview of fate and impacts. J. Food Sci. Technol. 2024, 61, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Velzeboer, I.; Kwadijk, C.J.; Koelmans, A.A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ. Sci. Technol. 2014, 48, 4869–4876. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicol. Environ. Saf. 2018, 147, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Gateuille, D.; Naffrechoux, E. Transport of persistent organic pollutants: Another effect of microplastic pollution? WIREs Water 2022, 9, e1600. [Google Scholar] [CrossRef]
- Stockholm Convention. Available online: http://www.pops.int/ (accessed on 5 July 2024).
- Fitzgerald, L.; Wikoff, D.S. Persistent Organic Pollutants. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 820–825. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Besseling, E.; Wegner, A.; Foekema, E.M. Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environ. Sci. Technol. 2013, 47, 7812–7820. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Diepens, N.J.; Mohamed Nor, N.H. Weight of evidence for the microplastic vector effect in the context of chemical risk assessment: An overview. In Freshwater Microplastics. Emerging Environmental Contaminants; Wagner, M., Lambert, S., Eds.; Springer: Basel, Switzerland, 2018; pp. 155–197. [Google Scholar] [CrossRef]
- Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019, 173, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.; Rogers, E.; Altin, D.; Salaberria, I.; Booth, A.M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 2020, 258, 113844. [Google Scholar] [CrossRef]
- Horton, A.A.; Jürgens, M.D.; Lahive, E.; van Bodegom, P.M.; Vijver, M.G. The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK. Environ. Pollut. 2018, 236, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, M.; Obolewski, K. Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrol. Hydrobiol. 2020, 20, 333–345. [Google Scholar] [CrossRef]
- Schröder, K.; Kossel, E.; Lenz, M. Microplastic abundance in beach sediments of the Kiel Fjord, Western Baltic Sea. Environ. Sci. Pollut. Res. 2021, 28, 26515–26528. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R. Occurrence, fate, and effect of microplastics in freshwater systems. In Microplastic Contamination in Aquatic Environments. An Emerging Matter of Environmental Urgency; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–132. [Google Scholar] [CrossRef]
- Quang, H.H.P.; Dinh, D.A.; Dutta, V.; Chauhan, A.; Lahiri, S.K.; Gopalakrishnan, C.; Radhakrishnan, A.; Batoo, K.M.; Thi, L.P. Current approaches, and challenges on identification, remediation and potential risks of emerging plastic contaminants: A review. Environ. Toxicol. Pharmacol. 2023, 101, 104193. [Google Scholar] [CrossRef] [PubMed]
- Ojha, M.D.; Skariyachan, S. The fate of micro/nano plastic pollutants in the natural environment. In Remediation of Plastic and Microplastic Waste, 1st ed.; Mondal, S., Das, P., Mondal, A., Paul, P., Pandey, J.K., Das, T.K., Eds.; CRC Press: Boca Raton, CA, USA, 2024; pp. 215–239. [Google Scholar] [CrossRef]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Nizzetto, L.; Bussi, G.; Futter, M.; Butterfield, D.; Whitehead, P. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ. Sci. Process Impacts 2016, 18, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Talbot, R.; Chang, H. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environ. Pollut. 2022, 292 Pt B, 118393. [Google Scholar] [CrossRef]
- Lechthaler, S.; Esser, V.; Schüttrumpf, H.; and Stauch, G. Why analysing microplastics in floodplains matters: Application in a sedimentary context. Environ. Sci. Process Impacts 2021, 23, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Lahon, J.; Handique, S. Impact of flooding on microplastic abundance and distribution in freshwater environment: A review. Environ. Sci. Pollut. Res. 2023, 30, 118175–118191. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.D.; Schneidewind, U.; Li, A.; Hoellein, T.J.; Krause, S.; Packman, A.I. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Sci. Adv. 2022, 8, eabi9305. [Google Scholar] [CrossRef] [PubMed]
- Kirpotin, S.N. The great Ob River basin. Int. J. Environ. Stud. 2015, 72, 377–379. [Google Scholar] [CrossRef]
- Vorobyev, S.N.; Pokrovsky, O.S.; Kirpotin, S.N.; Kolesnichenko, S.G.; Shirokova, L.S.; Manasypov, R.M. Flood zone biogeochemistry of the Ob River middle course. Appl. Geochem. 2019, 63, 133–145. [Google Scholar] [CrossRef]
- Frank, Y.A.; Vorobiev, E.D.; Vorobiev, D.S.; Trifonov, A.A.; Antsiferov, D.V.; Soliman Hunter, T.; Wilson, S.P.; Strezov, V. Preliminary screening for microplastic concentrations in the surface water of rivers Ob and Tom in Siberia, Russia. Sustainability 2021, 13, 80. [Google Scholar] [CrossRef]
- Frank, Y.A.; Vorobiev, D.S.; Kayler, O.A.; Vorobiev, E.D.; Kulinicheva, K.S.; Trifonov, A.A.; Soliman Hunter, T. Evidence for microplastics contamination of the remote tributary of the Yenisei River, Siberia—The pilot study results. Water 2021, 13, 3248. [Google Scholar] [CrossRef]
- Frank, Y.; Vorobiev, D.; Mandal, A.; Lemeshko, Y.; Rakhmatullina, S.; Darbha, G.K. Freshwater fish Siberian dace ingest microplastics in the remote Yenisei tributary. Toxics 2023, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Esiukova, E.; Khatmullina, L.; Lobchuk, O.; Grave, A.; Kileso, A.; Haseler, M.; Zyubin, A.; Chubarenko, I. From macro to micro: Dataset on plastic contamination along and across a sandy tide-less coast (the Curonian Spit, the Baltic Sea). Data Brief. 2020, 30, 105635. [Google Scholar] [CrossRef] [PubMed]
- Carson, H.S.; Colbert, S.L.; Kaylor, M.J.; McDermid, K.J. Small plastic debris changes water movement and heat transfer through beach sediments. Mar. Pollut. Bull. 2011, 62, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- ISO 3310-1:2016; Test Sieves. Technical Requirements and Testing. Technical Committee: Geneva, Switzerland, 2016; p. 15.
- Tošić, T.N.; Vruggink, M.; Vesman, A. Microplastics quantification in surface waters of the Barents, Kara and White Seas. Mar. Pollut. Bull. 2020, 161 Pt A, 111745. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 23 April 2024).
- Tsygankov, V.; Donets, M.M.; Gumovskaya, Y.P.; Lyagusha, M.S.; Gumovskiy, A.N.; Chernyaev, A.P. Chernyaev Methods to De-termine Persistent Organic Pollutants in Various Components of Ecosystems in the Far Eastern Region. In Persistent Organic Pollutants in the Ecosystems of the North Pacific; Earth and Environmental Sciences Library; Springer Nature: Cham, Switzerland, 2023; pp. 49–56. [Google Scholar] [CrossRef]
- Donets, M.M.; Tsygankov, V.Y.; Gumovskiy, A.N.; Gumovskaya, Y.P.; Boyarova, M.D.; Kulshova, V.I.; Busarova, O.Y.; Litvinenko, A.V.; Khristoforova, N.K.; Lyakh, V.A. Fish as a risk source for human health: OCPs and PCBs in Pacific salmon. Food Control 2022, 134, 108696. [Google Scholar] [CrossRef]
- Lu, H.-C.; Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. A systematic review of freshwater microplastics in water and sediments: Recommendations for harmonisation to enhance future study comparisons. Sci. Total Environ. 2021, 781, 146693. [Google Scholar] [CrossRef]
- Redondo-Hasselerharm, P.E.; Rico, A.; Koelmans, A.A. Risk assessment of microplastics in freshwater sediments guided by strict quality criteria and data alignment methods. J. Hazard. Mater. 2023, 441, 129814. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef]
- Frank, Y.; Vorobiev, E.; Rakhmatullina, S.; Trifonov, A.; Vorobiev, D. Screening of microplastic content in surface waters of Russian rivers. Ecol. Ind. Russ. 2022, 26, 67–71. (In Russian) [Google Scholar] [CrossRef]
- Ghinassi, M.; Michielotto, A.; Uguagliati, F.; Zattin, M. Mechanisms of microplastics trapping in river sediments: Insights from the Arno river (Tuscany, Italy). Sci. Total Environ. 2023, 866, 161273. [Google Scholar] [CrossRef] [PubMed]
- Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; Semensatto, D. Microplastics in sediments from Amazon rivers, Brazil. Sci. Total Environ. 2020, 749, 141604. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wontor, K.; Cizdziel, J.V.; Lu, H. Distribution and characteristics of microplastics in beach sand near the outlet of a major reservoir in north Mississippi, USA. Microplastics Nanoplastics 2022, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-T.; Schneider, F.; Afiq Aziz, M.; Wong, K.Y.; Arunachalam, K.D.; Praveena, S.M.; Sethupathi, S.; Chong, W.C.; Nafisyah, A.L.; Parthasarathy, P.; et al. Microplastics in Asian rivers: Geographical distribution, most detected types, and inconsistency in methodologies. Environ. Pollut. 2024, 349, 123985. [Google Scholar] [CrossRef] [PubMed]
- Chubarenko, I.; Esiukova, E.; Khatmullina, L.; Lobchuk, O.; Grave, A.; Kileso, K.; Haseler, M. From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tide-less coast. Mar. Pollut. Bull. 2020, 156, 111198. [Google Scholar] [CrossRef] [PubMed]
- Nhon, N.T.T.; Nguyen, N.T.; Hai, H.T.N.; Hien, T.T. Distribution of microplastics in beach sand on the Can Gio Coast, Ho Chi Minh City, Vietnam. Water 2022, 14, 2779. [Google Scholar] [CrossRef]
- Gallitelli, L.; Cesarini, G.; Cera, A.; Sighicelli, M.; Lecce, F.; Menegoni, P.; Scalici, M. Transport and Deposition of Microplastics and Mesoplastics along the River Course: A Case Study of a Small River in Central Italy. Hydrology 2020, 7, 90. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-barroso, R.; Quiroga, J.M.; Coello, M.D. Science of the total environment microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Gündoğdu, S.; Çevik, C.; Güzel, E.; Kilercioğlu, S. Microplastics in municipal wastewater treatment plants in Turkey: A comparison of the influent and secondary effluent concentrations. Environ. Monitor Assess. 2018, 190, 626. [Google Scholar] [CrossRef]
- Masiá, P.; Ardura, A.; Gaitán, M.; Gerber, S.; Rayon-Viña, F.; Garcia-Vazquez, E. Maritime ports and beach management as sources of coastal macro-, meso-, and microplastic pollution. Environ. Sci. Pollut. Res. Int. 2021, 28, 30722–30731. [Google Scholar] [CrossRef]
- Ronda, A.C.; Menéndez, M.C.; Tombesi, N.; Álvarez, M.; Tomba, J.P.; Silva, L.I.; Arias, A.H. Microplastic levels on sandy beaches: Are the effects of tourism and coastal recreation really important? Chemosphere 2023, 316, 137842. [Google Scholar] [CrossRef]
- Novosibirsk Gorvodokanal Implements Advanced Technologies. Published on 17 February 2021. (In Russian). Available online: https://rg.ru/2021/02/17/reg-sibfo/novosibirskij-gorvodokanal-vnedriaet-peredovye-tehnologii.html (accessed on 8 July 2024).
- Liu, Y.; Zhang, J.; Cai, C.; He, Y.; Chen, L.; Xiong, X.; Huang, H.; Tao, S.; Liu, W. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China. Environ. Pollut. 2020, 262, 114261. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Reza, T.; Mohamad Riza, Z.H.; Sheikh Abdullah, S.R.; Abu Hasan, H.; Ismail, N.I.; Othman, A.R. Microplastic removal in wastewater treatment plants (WWTPs) by natural coagulation: A literature review. Toxics 2024, 12, 12. [Google Scholar] [CrossRef]
- Lahens, L.; Strady, E.; Kieu-Le, T.C.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef]
- Russkikh, I.V.; Serebrennikova, O.V.; Strelnikova, E.B.; Kadychagov, P.B.; Ivanov, A.A. The identification of pollutants in the Ob River near oil production areas. J. Sib. Fed. Univ. Chem. 2020, 13, 157–166. [Google Scholar] [CrossRef]
- Ovsyannikova, V.S.; Russkikh, I.V.; Strel’nikova, E.B.; Kadychagov, P.B. Chemical and microbiological composition of Tom River bottom sediments (Yurginskii District, Western Siberia). Water Resour. 2023, 50, 913–924. [Google Scholar] [CrossRef]
- Mamontova, E.A.; Mamontov, A.A. Persistent organic pollutants and suspended particulate matter in snow of Eastern Siberia in 2009-2023: Temporal trends and effects of meteorological factors and recultivation activities at former industrial area. Toxics 2024, 12, 11. [Google Scholar] [CrossRef]
- Prokić, M.D.; Radovanović, T.B.; Gavrić, J.P.; Faggio, C. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. TrAC-Trend Anal. Chem. 2019, 111, 37–46. [Google Scholar] [CrossRef]
- Conesa, J.A. Adsorption of PAHs and PCDD/Fs in Microplastics: A Review. Microplastics 2022, 1, 346–358. [Google Scholar] [CrossRef]
- Lee, H.; Shim, W.J.; Kwon, J.H. Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci. Total Environ. 2014, 470–471, 1545–1552. [Google Scholar] [CrossRef]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Lukyanova, O.N.; Tsygankov, V.Y.; Boyarova, M.D.; Khristoforova, N.K. Bioaccumulation of HCHs and DDTs in organs of Pacific salmon (genus Oncorhynchus) from the Sea of Okhotsk and the Bering Sea. Chemosphere 2016, 157, 174–180. [Google Scholar] [CrossRef]
- Salcedo-Bellido, I.; Amaya, E.; Pérez-Díaz, C.; Soler, A.; Vela-Soria, F.; Requena, P.; Barrios-Rodríguez, R.; Echeverría, R.; Pérez-Carrascosa, F.M.; Quesada-Jiménez, R.; et al. Differential bioaccumulation patterns of α, β-Hexachlorobenzene and Dicofol in adipose tissue from the GraMo Cohort (Southern Spain). Int. J. Environ. Res. Public. Health 2022, 19, 3344. [Google Scholar] [CrossRef]
- Tsygankov, V.Y.; Gumovskaya, Y.P.; Gumovskiy, A.N.; Donets, M.M.; Koval, I.P.; Boyarova, M.D. Bioaccumulation of POPs in human breast milk from south of the Russian Far East and exposure risk to breastfed infants. Environ. Sci. Pollut. Res. 2020, 27, 5951–5957. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Zafeiraki, E.; Manea-Karga, E.; Kouretas, D.; Tekos, F.; Skaperda, Z.; Doumpas, N.; Machera, K. Bioaccumulation of organic and inorganic pollutants in fish from Thermaikos Gulf: Preliminary human health risk assessment assisted by a computational approach. J. Xenobiot. 2024, 14, 701–716. [Google Scholar] [CrossRef]
- Donets, M.M.; Tsygankov, V.Y. Organochlorine Compounds in the Amur (Heilong) River Basin (2000–2020): A Review. J. Xenobiot. 2023, 13, 439–462. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Antunes, J.C.; Frias, J.G.L.; Micaelo, A.C.; Sobral, P. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar. Coast. Shelf Sci. 2013, 130, 62–69. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Sobral, P.; Ferreira, A.M. Organic Pollutants in Microplastics from Two Beaches of the Portuguese Coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef]
- Arias, A.H.; Alvarez, G.; Pozo, K.; Pribylova, P.; Klanova, J.; Rodríguez Pirani, L.S.; Picone, A.L.; Alvarez, M.; Tombesi, N. Beached microplastics at the Bahia Blanca estuary (Argentina): Plastic pellets as potential vectors of environmental pollution by POPs. Mar. Pollut. Bull. 2023, 187, 114520. [Google Scholar] [CrossRef]
- Yeo, B.G.; Takada, H.; Yamashita, R.; Okazaki, Y.; Uchida, K.; Tokai, T.; Tanaka, K.; Trenholm, N. PCBs and PBDEs in Microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan. Mar. Pollut. Bull. 2020, 151, 110806. [Google Scholar] [CrossRef]
- Cui, S.; Fu, Q.; Li, Y.-F.; Li, W.; Li, T.; Wang, M.; Xing, Z.-x.; Zhang, L. Levels, congener profile and inventory of polychlorinated biphenyls in sediment from the Songhua River in the vicinity of cement plant, China: A case study. Environ. Sci. Pollut. Res. 2016, 23, 15952–15962. [Google Scholar] [CrossRef]
- Guerra, R.; Pasteris, A.; Righi, S.; Ok, G. Historical record of polychlorinated biphenyls (PCBs) in the continental shelf of the Korea Strait. Chemosphere 2019, 237, 124438. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Moniruzzaman, M.; Aminabhavi, T.M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem. Eng. J. 2019, 358, 1186–1207. [Google Scholar] [CrossRef]
- UNEP. Regionally Based Assessment of Persistent Toxic Substances: Central and North East Asia Region; United Nations Environment Programme: Nairobi, Kenya, 2001. [Google Scholar]
- Dong, S.; Wu, J.; Liu, G.; Zhang, B.; Zheng, M. Unintentionally produced dioxin-like polychlorinated biphenyls during cooking. Food Control 2011, 22, 1797–1802. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, M.; Cai, M.; Nie, Z.; Zhang, B.; Liu, W.; Du, B.; Dong, S.; Hu, J.; Xiao, K. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes. Chemosphere 2013, 90, 2453–2460. [Google Scholar] [CrossRef]
- Gabryszewska, M. How are polychlorinated biphenyls currently being produced, despite the production ban, and do they pose a risk to the environment? Environ. Protect Nat. Res. 2022, 33, 29–34. [Google Scholar] [CrossRef]
Sampling Site | Total MPs, Items | MPs m−2 | MPs m−3 | MPs kg−1 |
---|---|---|---|---|
Ob-U3 | 8 | 32 ± 13.1 | 640 ± 261 | 0.41 ± 0.17 |
Ob-D2 | 26 | 104 ± 46.2 | 2080 ± 924 | 1.31 ± 0.58 |
Ob-4 | 6 | 24 ± 20.7 | 480 ± 413 | 0.3 ± 0.26 |
Mean | 3.33 ± 2.9 | 53.3 ± 46.4 | 1067 ± 929 | 0.67 ± 0.58 |
Total MP Mass, µg | MP mg m−2 | MP mg m−3 | MP µg kg−1 | |
Ob-U3 | 120 | 0.48 ± 0.1 | 9.61 ± 2.06 | 6.11 ± 1.31 |
Ob-D2 | 304 | 1.22 ± 0.39 | 24.3 ± 7.73 | 15.3 ± 4.86 |
Ob-4 | 65.2 | 0.26 ± 0.21 | 5.22 ± 4.12 | 3.26 ± 2.57 |
Mean | 40.8 ± 30.5 | 0.65 ± 0.49 | 13.1 ± 9.75 | 8.22 ± 6.13 |
Sample | α- HCH | β- HCH | γ- HCH | δ- HCH | 2,4- DDT | 4,4- DDT | 2,4- DDD | 4,4- DDD | 2,4- DDE | 4,4- DDE | PCB 28 | PCB 52 | PCB 155 | PCB 101 | PCB 118 | PCB 143 | PCB 153 | PCB 138 | PCB 180 | POP Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ng g−1 of MPs | ||||||||||||||||||||
Ob-U3 | * <0.3 | <0.1 | <0.3 | <0.2 | <0.6 | <0.3 | <0.2 | <0.1 | <0.3 | <0.4 | <0.6 | <0.7 | <0.1 | <0.6 | 197.8 | <0.5 | <0.1 | <0.2 | 1192 | 1390 |
Ob-D2 | <0.3 | <0.1 | 25.6 | <0.2 | <0.6 | 2504 | <0.2 | <0.1 | <0.3 | <0.4 | <0.6 | <0.7 | <0.1 | <0.6 | 215.4 | <0.5 | 651.7 | <0.2 | 501.7 | 3899 |
Ob-4 | <0.3 | <0.1 | <0.3 | <0.2 | <0.6 | <0.3 | <0.2 | <0.1 | <0.3 | 3440 | 738.9 | <0.7 | <0.1 | <0.6 | 1274 | <0.5 | <0.1 | <0.2 | 3484 | 8937 |
ng item−1 | ||||||||||||||||||||
Ob-U3 | <0.3 | <0.1 | <0.3 | <0.2 | <0.6 | <0.3 | <0.2 | <0.1 | <0.3 | <0.4 | <0.6 | <0.7 | <0.1 | <0.6 | 1.0 | <0.5 | <0.1 | <0.2 | 6.2 | 7.2 |
Ob-D2 | <0.3 | <0.1 | 0.04 | <0.2 | <0.6 | 4.3 | <0.2 | <0.1 | <0.3 | <0.4 | <0.6 | <0.7 | <0.1 | <0.6 | 0.4 | <0.5 | 1.1 | <0.2 | 0.9 | 6.74 |
Ob-4 | <0.3 | <0.1 | <0.3 | <0.2 | <0.6 | <0.3 | <0.2 | <0.1 | <0.3 | 7.6 | 1.6 | <0.7 | <0.1 | <0.6 | 2.8 | <0.5 | <0.1 | <0.2 | 7.7 | 19.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, Y.A.; Sotnikova, Y.S.; Tsygankov, V.Y.; Rednikin, A.R.; Donets, M.M.; Karpova, E.V.; Belanov, M.A.; Rakhmatullina, S.; Borovkova, A.D.; Polovyanenko, D.N.; et al. Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants. J. Xenobiot. 2024, 14, 989-1002. https://doi.org/10.3390/jox14030055
Frank YA, Sotnikova YS, Tsygankov VY, Rednikin AR, Donets MM, Karpova EV, Belanov MA, Rakhmatullina S, Borovkova AD, Polovyanenko DN, et al. Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants. Journal of Xenobiotics. 2024; 14(3):989-1002. https://doi.org/10.3390/jox14030055
Chicago/Turabian StyleFrank, Yulia A., Yulia S. Sotnikova, Vasiliy Yu. Tsygankov, Aleksey R. Rednikin, Maksim M. Donets, Elena V. Karpova, Maksim A. Belanov, Svetlana Rakhmatullina, Aleksandra D. Borovkova, Dmitriy N. Polovyanenko, and et al. 2024. "Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants" Journal of Xenobiotics 14, no. 3: 989-1002. https://doi.org/10.3390/jox14030055
APA StyleFrank, Y. A., Sotnikova, Y. S., Tsygankov, V. Y., Rednikin, A. R., Donets, M. M., Karpova, E. V., Belanov, M. A., Rakhmatullina, S., Borovkova, A. D., Polovyanenko, D. N., & Vorobiev, D. S. (2024). Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants. Journal of Xenobiotics, 14(3), 989-1002. https://doi.org/10.3390/jox14030055