Underexplored Molecular Mechanisms of Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensitivity of Genes to Chemical Exposures
2.2. Number of Publications Per Gene
2.3. Underexplored Pathways Sensitive to Chemical Exposures
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, R.; Valencia, A. Life Cycles of Successful Genes. Trends Genet. 2003, 19, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Grueneberg, D.A.; Degot, S.; Pearlberg, J.; Li, W.; Davies, J.E.; Baldwin, A.; Endege, W.; Doench, J.; Sawyer, J.; Hu, Y.; et al. Kinase Requirements in Human Cells: I. Comparing Kinase Requirements across Various Cell Types. Proc. Natl. Acad. Sci. USA 2008, 105, 16472–16477. [Google Scholar] [CrossRef]
- Edwards, A.M.; Isserlin, R.; Bader, G.D.; Frye, S.V.; Willson, T.M.; Yu, F.H. Too Many Roads Not Taken. Nature 2011, 470, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Oprea, T.I.; Bologa, C.G.; Brunak, S.; Campbell, A.; Gan, G.N.; Gaulton, A.; Gomez, S.M.; Guha, R.; Hersey, A.; Holmes, J.; et al. Unexplored Therapeutic Opportunities in the Human Genome. Nat. Rev. Drug Discov. 2018, 17, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Stoeger, T.; Gerlach, M.; Morimoto, R.I.; Nunes Amaral, L.A. Large-Scale Investigation of the Reasons Why Potentially Important Genes Are Ignored. PLoS Biol. 2018, 16, e2006643. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, T.; Hoffmann, R. Temporal Patterns of Genes in Scientific Publications. Proc. Natl. Acad. Sci. USA 2007, 104, 12052–12056. [Google Scholar] [CrossRef] [PubMed]
- Su, A.I.; Hogenesch, J.B. Power-Law-like Distributions in Biomedical Publications and Research Funding. Genome Biol. 2007, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Haynes, W.A.; Tomczak, A.; Khatri, P. Gene Annotation Bias Impedes Biomedical Research. Sci. Rep. 2018, 8, 1362. [Google Scholar] [CrossRef] [PubMed]
- Suvorov, A.; Salemme, V.; McGaunn, J.; Poluyanoff, A.; Teffera, M.; Amir, S. Unbiased Approach for the Identification of Molecular Mechanisms Sensitive to Chemical Exposures. Chemosphere 2021, 262, 128362. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, O.; Salemme, V.; Suvorov, A. Towards Whole Health Toxicology: In-Silico Prediction of Diseases Sensitive to Multi-Chemical Exposures. Toxics 2022, 10, 764. [Google Scholar] [CrossRef]
- Choudhuri, S.; Patton, G.W.; Chanderbhan, R.F.; Mattia, A.; Klaassen, C.D. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol. Sci. 2018, 161, 5–22. [Google Scholar] [CrossRef] [PubMed]
- NRC. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Research Council: Washington, DC, USA, 2007. [Google Scholar]
- Vinken, M. The Adverse Outcome Pathway Concept: A Pragmatic Tool in Toxicology. Toxicology 2013, 312, 158–165. [Google Scholar] [CrossRef]
- OECD. Revised Guidance Document on Developing and Assessing Adverse Outcome Pathways; OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 184; OECD: Paris, France, 2017. [Google Scholar]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- Haynes, R.C. ToxCast on Target: In Vitro Assays and Computer Modeling Show Promise for Screening Chemicals. Environ. Health Perspect. 2010, 118, A172. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, D.; Choi, J. Application of ToxCast/Tox21 Data for Toxicity Mechanism-Based Evaluation and Prioritization of Environmental Chemicals: Perspective and Limitations. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2022, 84, 105451. [Google Scholar] [CrossRef]
- Suvorov, A.; Salemme, V.; McGaunn, J.; Poluyanoff, A.; Amir, S. Data on Chemical-Gene Interactions and Biological Categories Enriched with Genes Sensitive to Chemical Exposures. Data Brief 2020, 33, 106398. [Google Scholar] [CrossRef]
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database: Update 2019. Nucleic Acids Res. 2019, 47, D948–D954. [Google Scholar] [CrossRef] [PubMed]
- Suvorov, A.; Salemme, V.; McGaunn, J.; Poluyanoff, A.; Amir, S.; Arowolo, O. Sensitivity of Genes, Molecular Pathways and Disease Related Categories to Chemical Exposures. Mendeley Data 2024, 4. [Google Scholar] [CrossRef]
- Suvorov, A. Simple Method for Cutoff Point Identification in Descriptive High-Throughput Biological Studies. BMC Genomics 2022, 23, 204. [Google Scholar] [CrossRef]
- Meta-Research: Understudied Genes Are Lost in a Leaky Pipeline between Genome-Wide Assays and Reporting of Results. Available online: https://elifesciences.org/reviewed-preprints/93429v1 (accessed on 24 March 2024).
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- The Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Casals-Casas, C.; Desvergne, B. Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annu. Rev. Physiol. 2011, 73, 135–162. [Google Scholar] [CrossRef]
- Heindel, J.J.; vom Saal, F.S.; Blumberg, B.; Bovolin, P.; Calamandrei, G.; Ceresini, G.; Cohn, B.A.; Fabbri, E.; Gioiosa, L.; Kassotis, C.; et al. Parma Consensus Statement on Metabolic Disruptors. Environ. Health Glob. Access Sci. Source 2015, 14, 54. [Google Scholar] [CrossRef]
- Gregg, E.W.; Zhuo, X.; Cheng, Y.J.; Albright, A.L.; Narayan, K.M.; Thompson, T.J. Trends in Lifetime Risk and Years of Life Lost Due to Diabetes in the USA, 1985–2011: A Modelling Study. Lancet Diabetes Endocrinol. 2014, 2, 867–874. [Google Scholar] [CrossRef]
- National Center for Health Statistics. Crude and Age-Adjusted Percentage of Civilian, Noninstitutionalized Adults with Diagnosed Diabetes, United States, 1980–2010; National Center for Chronic Disease Prevention and Health Promotion: Atlanta, GA, USA; Centers for Disease Control and Prevention, Division of Diabetes Translation: Atlanta, GA, USA, 2012. [Google Scholar]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatol. Baltim. Md 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Patton, H.M.; Sirlin, C.; Behling, C.; Middleton, M.; Schwimmer, J.B.; Lavine, J.E. Pediatric Nonalcoholic Fatty Liver Disease: A Critical Appraisal of Current Data and Implications for Future Research. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 413–427. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 26 March 2024).
- Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; Dobbins, R.L. Magnetic Resonance Spectroscopy to Measure Hepatic Triglyceride Content: Prevalence of Hepatic Steatosis in the General Population. Am. J. Physiol. Metab. 2005, 288, E462–E468. [Google Scholar] [CrossRef]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of Hepatic Steatosis in an Urban Population in the United States: Impact of Ethnicity. Hepatol. Baltim. Md 2004, 40, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Soejima, Y.; Shimada, M.; Suehiro, T.; Kishikawa, K.; Yoshizumi, T.; Hashimoto, K.; Minagawa, R.; Hiroshige, S.; Terashi, T.; Ninomiya, M.; et al. Use of Steatotic Graft in Living-Donor Liver Transplantation. Transplantation 2003, 76, 344–348. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Toxicogenomics of the C–C Chemokine Receptor Type 5 (CCR5): Exploring the Potential Impacts of Chemical-CCR5 Interactions on Inflammation and Human Health. Food Chem. Toxicol. 2024, 186, 114511. [Google Scholar] [CrossRef]
- Gilbert, D.G. euGenes: A Eukaryote Genome Information System. Nucleic Acids Res. 2002, 30, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Klimentidis, Y.C.; Beasley, T.M.; Lin, H.-Y.; Murati, G.; Glass, G.E.; Guyton, M.; Newton, W.; Jorgensen, M.; Heymsfield, S.B.; Kemnitz, J.; et al. Canaries in the Coal Mine: A Cross-Species Analysis of the Plurality of Obesity Epidemics. Proc. R. Soc. B Biol. Sci. 2010, 278, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism Disrupting Chemicals and Metabolic Disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [PubMed]
Biological Category | NES | FDR q |
---|---|---|
Reactome | ||
Glycerophospholipid biosynthesis | −2.16 | 0.014 |
The metabolism of amino acids and derivatives | −2.15 | 0.007 |
Peroxisomal protein import | −2.06 | 0.009 |
Cholesterol biosynthesis | −2.06 | 0.007 |
The metabolism of steroids | −1.94 | 0.018 |
Fatty acid metabolism | −1.82 | 0.046 |
The activation of gene expression by SREBF SREBP | −1.79 | 0.048 |
KEGG | ||
Butanoate metabolism | −2.03 | 0.007 |
Valine leucine and isoleucine degradation | −2.02 | 0.004 |
Fatty acid metabolism | −1.85 | 0.017 |
Peroxisome | −1.65 | 0.062 |
Glycolysis gluconeogenesis | −1.59 | 0.073 |
Gene Ontology (Biological Process) | ||
Organic acid catabolic process | −2.33 | 0.004 |
Monocarboxylic acid catabolic process | −2.12 | 0.016 |
Fatty acid catabolic process | −2.03 | 0.028 |
Fatty acid beta-oxidation | −1.98 | 0.037 |
Fatty acid derivative metabolic process | −1.93 | 0.05 |
Nucleoside bisphosphate metabolic process | −1.93 | 0.044 |
Amino acid metabolic process | −1.85 | 0.069 |
Cellular modified amino acid metabolic process | −1.83 | 0.069 |
Lipid oxidation | −1.83 | 0.065 |
Thioester metabolic process | −1.81 | 0.072 |
Alpha amino acid metabolic process | −1.78 | 0.08 |
Gene Ontology (Molecular Function) | ||
Oxidoreductase activity, acting on CH-OH group of donors | −2.30 | 0.003 |
Oxidoreductase activity, acting on CH-CH group of donors | −1.93 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arowolo, O.; Suvorov, A. Underexplored Molecular Mechanisms of Toxicity. J. Xenobiot. 2024, 14, 939-949. https://doi.org/10.3390/jox14030052
Arowolo O, Suvorov A. Underexplored Molecular Mechanisms of Toxicity. Journal of Xenobiotics. 2024; 14(3):939-949. https://doi.org/10.3390/jox14030052
Chicago/Turabian StyleArowolo, Olatunbosun, and Alexander Suvorov. 2024. "Underexplored Molecular Mechanisms of Toxicity" Journal of Xenobiotics 14, no. 3: 939-949. https://doi.org/10.3390/jox14030052
APA StyleArowolo, O., & Suvorov, A. (2024). Underexplored Molecular Mechanisms of Toxicity. Journal of Xenobiotics, 14(3), 939-949. https://doi.org/10.3390/jox14030052