Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Study Area
2.2. Sample Collection and Processing
2.3. Quantification of Physicochemical Parameters and Heavy Metal(oid)s
2.4. Soil Pollution Indices
2.4.1. Geo-Accumulation Index (Igeo)
2.4.2. Enrichment Factor (EF)
2.4.3. Contamination Factor (Cf)
2.4.4. Ecological Risk Factor (Er) and Potential Ecological Risk Index (PERI)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics of Physiochemical Parameters and Heavy Metal(oid)s of Soil
3.2. Comparison of Heavy Metal(oid)s in Soil with World-Wide Soil Guidelines and Reported Values
3.3. Source Identification Using Multivariate Analysis
3.4. Evaluation of Soil Pollution
3.4.1. Geo–Accumulation Index (Igeo)
3.4.2. Enrichment Factor (EF)
3.4.3. Contamination Factor (Cf)
3.4.4. Ecological Risk Factor (Er) and Potential Ecological Risk Index (PERI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherr, S.J. The future food security and economic consequences of soil degradation in the developing world. In Response to Land Degradation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 155–170. [Google Scholar]
- Halecki, W.; Gąsiorek, M. Seasonal variability of microbial biomass phosphorus in urban soils. Sci. Total Environ. 2015, 502, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Solgi, E. Contamination of two heavy metals in topsoils of the urban parks Asadabad, Iran 2013. Arch. Hyg. Sci. 2016, 5, 92–101. [Google Scholar]
- Proshad, R.; Islam, M.S.; Kormoker, T.; Sayeed, A.; Khadka, S.; Idris, A.M. Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Sci. Total Environ. 2021, 789, 147962. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, A.; Kumar, V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geol. Ecol. Landsc. 2020, 4, 87–103. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Zhou, Y.; Zhang, W.; Feng, D.; Su, X. Heavy metal contamination in Shanghai agricultural soil. Heliyon 2023, 9, 22824. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Naghizadeh, A.; Biglari, H.; Peirovi, R.; Ghasemi, A.; Zarei, A. Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environ. Sci. Pollut. Res. 2020, 27, 10317–10327. [Google Scholar] [CrossRef] [PubMed]
- El Azhari, A.; Rhoujjati, A.; El Hachimi, M.L.; Ambrosi, J.P. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicol. Environ. Saf. 2017, 144, 464–474. [Google Scholar] [CrossRef]
- Zhuo, H.; Wang, X.; Liu, H.; Fu, S.; Song, H.; Ren, L. Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China. Environ. Geochem. Health 2020, 42, 135–146. [Google Scholar] [CrossRef]
- Aboubakar, A.; Douaik, A.; Mewouo, Y.C.M.; Madong, R.C.B.A.; Dahchour, A.; El Hajjaji, S. Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé, Cameroon. J. Soils Sediments 2021, 21, 1437–1454. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Gevorgyan, A.; Frontasyeva, M. Factors conditioning the content of chemical elements in soil and mosses in Armenia. J. Trace Elem. Miner. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Han, Y.; Gu, X. Enrichment, contamination, ecological and health risks of toxic metals in agricultural soils of an industrial city, northwestern China. J. Trace Elem. Miner. 2023, 3, 100043. [Google Scholar] [CrossRef]
- Hachimi, M.L.E.; Fekhaoui, M.; Abidi, A.E.; Rhoujatti, A. Heavy metal contamination of soils from abandoned mines: The case of Aouli-Mibladen-Zeïda mines in Morocco. Cah. Agric. 2014, 23, 213–219. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Shi, W. Source apportionment and potential ecological risk assessment of heavy metals in soils on a large scale in China. Environ. Geochem. Health 2023, 45, 1413–1427. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kumar, S.; Nasiruddin, M.; Saha, N. Deciphering the origin of Cu, Pb and Zn contamination in school dust and soil of Dhaka, a megacity in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 40808–40823. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.H.; Khanam, D.; Adyel, T.M.; Islam, M.S.; Ahsan, M.A.; Akbor, M.A. Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of seasonal variation and indices. Appl. Sci. 2012, 2, 584–601. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida Basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V. Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. Int. J. Environ. Health Res. 2018, 29, 544–560. [Google Scholar] [CrossRef]
- Jia, X.; Hu, B.; Marchant, B.P.; Zhou, L.; Shi, Z.; Zhu, Y. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environ. Pollut. 2019, 250, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, P.; Mu, D. Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong Basin, China. Environ. Res. 2023, 234, 116527. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, S.; Gao, F.; Chen, Z.; Jiang, J.; Sun, G.X. Spatial distribution, sources apportionment and risk assessment of heavy metals in the Changchun black soil area, China. J. Hazard. Mater. Adv. 2024, 13, 100402. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.U.; Jain, M.K.; Masto, R.E. Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The case study of eastern India. Environ. Sci. Pollut. Res. 2020, 27, 10822–10834. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, W.; Dai, M.; Wang, Z.; Dong, X.; Fang, T. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environ. Monit. Assess. 2019, 191, 518. [Google Scholar] [CrossRef]
- Domingo, J.L.; Marquès, M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem. Toxicol. 2021, 152, 112161. [Google Scholar] [CrossRef] [PubMed]
- Nazir, F.; Hussain, A.; Fariduddin, Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 2019, 230, 544–558. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Ma, J.; Yang, H.; Zhang, W.; Li, C. Genotypic differences and glutathione metabolism response in wheat exposed to copper. Environ. Exp. Bot. 2019, 157, 250–259. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef] [PubMed]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, H.; Shenashen, M.A.; Elbaz, A.; Yamaguchi, H.; Abdelmottaleb, M.; El-Safty, S.A. Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. J. Hazard. Mater. 2021, 406, 124314. [Google Scholar] [CrossRef]
- Kulkarni, A.; Sharma, V.K. Wilson’s disease. In International Encyclopedia of Public Health, 2nd ed.; Quah, S.R., Ed.; Academic Press: Oxford, UK, 2017; pp. 424–433. [Google Scholar]
- Manne, R.; Kumaradoss, M.M.R.M.; Iska, R.S.R.; Devarajan, A.; Mekala, N. Water quality and risk assessment of copper content in drinking water stored in copper container. Appl. Water Sci. 2022, 12, 27. [Google Scholar] [CrossRef]
- Esplugas, R.; Mari, M.; Marquès, M.; Schuhmacher, M.; Domingo, J.L.; Nadal, M. Biomonitoring of trace elements in hair of schoolchildren living near a hazardous waste incinerator—A 20 years follow-up. Toxics 2019, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zeng, X.; Wang, Q.; Liu, Y.; Liu, X.; Wu, Y.; Gong, Z.; Fang, M. Exposure and health risk assessment of heavy metal in crayfish from the middle and lower reaches of the Yangtze River. Biol. Trace Elem. Res. 2024, 202, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Subhani, M.; Mustafa, I.; Alamdar, A.; Katsoyiannis, I.A.; Ali, N.; Huang, Q.; Peng, S.; Shen, H.; Eqani, S.A.M.A.S. Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. Ecotoxicol. Environ. Saf. 2015, 115, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Saha, N.; Kumar, S.; Khan, M.D.H.; Islam, A.R.M.T.; Khan, M.N.I. Coupling of redundancy analysis with geochemistry and mineralogy to assess the behavior of dust arsenic as a base of risk estimation in Dhaka, Bangladesh. Chemosphere 2022, 287, 132048. [Google Scholar] [CrossRef]
- Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Pirrone, N.; Thorne, R.J. Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Public Health 2017, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Lippert, J.; Montgomery, J.; DeMarco, C. Lead health fairs: A community-based approach to addressing lead exposure in Chicago. Health Educ. Behav. 2020, 48, 758–768. [Google Scholar] [CrossRef]
- Mo, A.; Huang, Y.; Gu, Z.; Liu, C.; Wang, J.; Yuan, Y. Health risk assessment and bioaccumulation of heavy metals in Procambarus clarkii from six provinces of China. Environ. Sci. Pollut. Res. 2022, 29, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, V.; Saini-Eidukat, B.; Hopkins, D.; DeSutter, T. Naturally elevated metal contents of soils in northeastern North Dakota, USA, with a focus on cadmium. J. Soils Sediments 2015, 15, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Comis, D. Getting cadmium out of sunflower seeds. Agric. Res. 1995, 43, 21–22. [Google Scholar]
- Doolittle, J.A. Soil Survey of Grand Forks County, North Dakota; US Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1981; Volume 21, pp. 1–191. [Google Scholar]
- Samson, S.D. Chemical and Physical Characteristics of Saline Soils in Grand Forks county North Dakota. Bachelor’s Thesis, University of North Dakota, Grand Forks, ND, USA, 1995. [Google Scholar]
- Burke, M.W.; Rundquist, B.C.; Zheng, H. Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery. Remote. Sens. 2019, 11, 218. [Google Scholar] [CrossRef]
- Long, Z.; Zhu, H.; Bing, H.; Tian, X.; Wang, Z.; Wang, X.; Wu, Y. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef]
- USEPA. Environmental Response Team Standard Operating Procedures, Soil Sampling (SOP: 2012); United States Environmental Protection Agency: Washington, DC, USA, 2000; pp. 1–13. [Google Scholar]
- Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Bedade, D.K.; Al-Ethawi, L.; Al-Waleed, S.M. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6, e05224. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Microwave assisted acid digestion of sediments, sludges, soils, and oils. In Method 3051A; Office of Solid Waste and Emergency Response, United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association, Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Li, Y.; Shi, Y.; Li, D.; Holm, P.E.; Ou, Q.; Hu, W. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ. 2021, 767, 144879. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the rhine river. Geojournal 1969, 2, 108–118. [Google Scholar]
- Zhang, Q.; Zhang, X. Quantitative source apportionment and ecological risk assessment of heavy metals in soil of a grain base in Henan Province, China, using PCA, PMF modeling, and geostatistical techniques. Environ. Monit. Assess. 2021, 193, 655. [Google Scholar] [CrossRef] [PubMed]
- Ennaji, W.; Barakat, A.; El Baghdadi, M.; Rais, J. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J. Sediment. Environ. 2020, 5, 307–320. [Google Scholar] [CrossRef]
- Jamil, M.; Malook, I.; Rehman, S.U.; Khan, M.D.; Fayyaz, M.; Aslam, M.M.; Rha, E.S. Multivariate geo-statistical perspective: Evaluation of agricultural soil contaminated by industrial estate’s effluents. Environ. Geochem. Health 2022, 44, 57–68. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 85th edition, Section 14, Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth’s Crust and in the Sea; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Abdullah, M.I.C.; Sah, A.S.R.M.; Haris, H. Geoaccumulation index and enrichment factor of arsenic in surface sediment of Bukit Merah Reservoir, Malaysia. Trop. Life Sci. Res. 2020, 31, 109. [Google Scholar] [CrossRef] [PubMed]
- Alata, M.H.; Alvarez-Risco, A.; Suni Torres, L.; Moran, K.; Pilares, D.; Carling, G.; Paredes, B.; Del-Aguila-Arcentales, S.; Yáñez, J.A. Evaluation of environmental contamination by toxic elements in agricultural soils and their health risks in the city of Arequipa, Peru. Sustainability 2023, 15, 3829. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J. Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N.; Li, H.; Lu, Y.; Wang, Q.; Yang, Z. Risk assessment, spatial distribution, and source identification of heavy metal (loid) s in paddy soils along the Zijiang River basin, in Hunan Province, China. J. Soils Sediments 2019, 19, 4042–4051. [Google Scholar] [CrossRef]
- Franz, C.; Makeschin, F.; Weiss, H.; Lorz, C. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoa catchment, Brasilia DF: A study on anthropogenic introduced chemical elements in an urban river basin. Sci. Total Environ. 2013, 452, 411–420. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.; Yang, Z.; Wang, L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ. Monit. Assess. 2015, 187, 731. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Zumlot, T.; Batayneh, A.; Nazal, Y.; Ghrefat, H.; Mogren, S.; Zaman, H.; Elawadi, E.; Laboun, A.; Qaisy, S. Using multivariate statistical analyses to evaluate groundwater contamination in the northwestern part of Saudi Arabia. Environ. Earth Sci. 2013, 70, 3277–3287. [Google Scholar] [CrossRef]
- Ávila, P.F.; Ferreira da Silva, E.; Candeias, C. Health risk assessment through consumption of vegetables rich in heavy metals: The case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Health 2017, 39, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K.K.; Prasad, M.V.R.; Kanagasabapathy, K.V. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 589–600. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Q.; Zhao, Y.; Cai, H. Identification and characterisation of heavy metals in farmland soil of Hunchun basin. Environ. Earth Sci. 2019, 78, 310. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil Spatial Variability Proceedings of a Workshop of the ISSS and the SSA, Las Vegas, NV, USA, 30 November–1 December 1984; Pudoc: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L.; Pan, N. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- USEPA. Ecological Soil Screening Levels, Interim Final, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, Washington, DC. 2005. Available online: https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents (accessed on 6 November 2023).
- Cheng, Z.; Paltseva, A.; Li, I.; Morin, T.; Huot, H.; Egendorf, S.; Su, Z.; Yolanda, R.; Singh, K.; Lee, L.; et al. Trace metal contamination in New York City garden soils. Soil Sci. 2015, 180, 167–174. [Google Scholar] [CrossRef]
- RIVM. Guidance Document on Deriving Environmental Risk Limits; National Institute of Public Health and The Environment: Bilthoven, The Netherlands, 2001; Available online: http://hdl.handle.net/10029/9552 (accessed on 2 November 2023).
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada; Available online: https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines (accessed on 14 February 2024).
- Abraham, J.; Dowling, K.; Florentine, S. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere 2018, 192, 122–132. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B. A regional soil and sediment geochemical study in northern California. Appl. Geochem. 2009, 24, 1482–1499. [Google Scholar] [CrossRef]
- Zhang, H. Background metal concentrations in Oklahoma soils. Oklahoma Cooperative Extension Service. 2018. Available online: https://extension.okstate.edu/fact-sheets/print-publications/pss/background-metal-concentrations-in-oklahoma-soils-pss-2276.pdf (accessed on 5 May 2024).
- Kim, H.; Lee, M.; Lee, J.H.; Kim, K.H.; Owens, G.; Kim, K.R. Distribution and extent of heavy metal (loid) contamination in agricultural soils as affected by industrial activity. Appl. Biol. Chem. 2020, 63, 31. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Batool, M.; Shah, M.H. Appraisal of contamination, source identification and health risk assessment of selected metals in the agricultural soil of Chakwal, Pakistan. Environ. Geochem. Health 2023, 45, 8295–8316. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Moore, F.; Keshavarzi, B. Evaluation, source apportionment and health risk assessment of heavy metal and polycyclic aromatic hydrocarbons in soil and vegetable of Ahvaz metropolis. Hum. Ecol. Risk Assess. Int. J. 2019, 27, 71–100. [Google Scholar] [CrossRef]
- Dinter, T.C.; Gerzabek, M.H.; Puschenreiter, M.; Strobel, B.W.; Couenberg, P.M.; Zehetner, F. Heavy metal contents, mobility and origin in agricultural topsoils of the Galápagos Islands. Chemosphere 2021, 272, 129821. [Google Scholar] [CrossRef]
- Zogaj, M.; Pacarizi, M.; Duering, R.A. Spatial distribution of heavy metals and assessment of their bioavailability in agricultural soils of Kosovo. Carpathian J. Earth Environ. Sci. 2014, 9, 221–230. [Google Scholar]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Šukalić, A.; Ahmetović, N.; Mačkić, S.; Leto, A.; Džubur, A.; Antunović, B. Human health risk assessment of heavy metals from the agricultural soil in South Herzegovina. Agric. Conspec. Sci. 2018, 83, 45–50. [Google Scholar]
- Mussa, C.; Biswick, T.; Changadeya, W.; Mapoma, H.W.; Junginger, A. Occurrence and ecological risk assessment of heavy metals in agricultural soils of Lake Chilwa catchment in Malawi, Southern Africa. SN Appl. Sci. 2020, 2, 1910. [Google Scholar] [CrossRef]
- Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Qu, L.; Song, Q.; Zhang, M. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard. Mater. 2019, 381, 121230. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Wang, J.; Lv, J. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere 2020, 242, 125266. [Google Scholar] [CrossRef]
- Yaylalı-Abanuz, G. Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchem. J. 2011, 99, 82–92. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Yang, Y.; Christakos, G.; Guo, M.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef]
- Pierart, A.; Shahid, M.; Séjalon-Delmas, N.; Dumat, C. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 2015, 289, 219–234. [Google Scholar] [CrossRef]
Value | Sediments Quality | Value | Sediments Quality |
---|---|---|---|
Igeo ≤ 0 | practically uncontaminated | Er < 40 | low risk |
0 < Igeo < 1 | uncontaminated to moderately contaminated | 40 ≤ Er < 80 | moderate risk |
1 < Igeo < 2 | moderately contaminated | 80 ≤ Er < 160 | considerable risk |
2 < Igeo < 3 | moderately to heavily contaminated | 160 ≤ Er < 320 | high risk |
3 < Igeo < 4 | heavily contaminated | Er ≥ 320 | very high risk |
4 < Igeo < 5 | heavily to extremely contaminated | ||
5 < Igeo | extremely contaminated | ||
EF < 2 | minimal enrichment | PERI < 150 | low risk |
2 ≤ EF < 5 | moderate enrichment | 150 ≤ PERI < 300 | moderate risk |
5 ≤ EF < 20 | significant enrichment | 300 ≤ PERI < 600 | considerable risk |
20 ≤ EF < 40 | very high enrichment | PERI ≥ 600 | very high risk |
EF ≥ 40 | extremely high enrichment | ||
Cf < 1 | low contamination | ||
1 ≤ Cf < 3 | moderate contamination | ||
3 ≤ Cf < 6 | considerable contamination | ||
6 ≤ Cf | very high contamination |
Mn | Fe | Co | Ni | Cu | Zn | As | Pb | Hg | Cr | Cd | pH | EC | TDS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 664.7 | 12229 | 4.623 | 15.07 | 7.614 | 45.60 | 3.592 | 6.379 | 0.019 | 15.21 | 0.421 | 6.6 | 86.20 | 57.30 |
Maximum | 1699 | 30057 | 11.49 | 36.83 | 25.49 | 89.25 | 17.66 | 14.77 | 0.104 | 28.76 | 1.231 | 7.1 | 1883 | 1251 |
Median | 1142 | 16332 | 6.272 | 20.37 | 10.77 | 64.00 | 4.535 | 8.687 | 0.029 | 19.01 | 0.500 | 6.9 | 305.5 | 203.3 |
Kurtosis | −0.739 | 3.612 | 4.660 | 4.228 | 3.550 | −0.118 | 3.796 | 1.524 | 6.976 | 0.802 | 3.34 | 0.343 | 1.155 | 1.129 |
Skewness | 0.386 | 1.737 | 1.892 | 1.921 | 1.929 | 0.452 | 2.185 | 1.458 | 2.565 | 1.022 | 2.03 | −0.544 | 1.421 | 1.416 |
CV | 27.90 | 27.64 | 26.50 | 25.51 | 41.33 | 19.58 | 70.68 | 26.37 | 64.07 | 19.03 | 41.14 | 2.192 | 103.9 | 103.8 |
K-S test | 0.200 | 0.135 | 0.077 | 0.004 | 0.004 | 0.200 | <0.001 | 0.002 | 0.001 | 0.126 | <0.001 | 0.200 | 0.048 | 0.048 |
S-W test | 0.351 | 0.029 | 0.021 | 0.004 | 0.003 | 0.722 | <0.001 | 0.010 | <0.001 | 0.237 | <0.001 | 0.218 | 0.009 | 0.009 |
Mn | Co | Ni | Cu | Zn | As | Pb | Hg | Cr | Cd | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Current Study | 1191 | 6.709 | 22.05 | 12.39 | 66.39 | 6.302 | 9.454 | 0.037 | 20.39 | 0.606 | Present study |
USEPA Ecological SSL | 220 | 13 | 38 | 70 | 160 | 18 | 120 | - | - | 32 | USEPA 2005 [81] |
New York Back ground | - | - | 17 | 14 | 65 | 5 | 19 | - | 14 | 0.5 | Cheng et al., 2015 [82] |
Netherlands Soil Guidelines | - | 9 | 35 | 36 | 140 | 29 | 85 | 0.3 | 100 | 0.8 | RIVM, 2001. [83] |
Canadian Soil Quality Guidelines | - | 40 | 45 | 63 | 250 | 12 | 70 | 6.6 | 64 | 1.4 | CCME [84] |
Australia Ecological investigation levels | 500 | 50 | 60 | 100 | 200 | 20 | 600 | 1 | 400 | 3 | Abraham et l., 2018 [85] |
China Background Values | - | - | 9.6 | 10.5 | 36.3 | 6.8 | 29.8 | 0.055 | 35.6 | 0.041 | Cai et al., 2019 [86] |
Conterminous US data | 487 | 10 | 20 | 25 | 63 | 6.8 | 22 | - | 54 | - | Goldhaber et al., 2009 [87] |
Worldwide reported values | |||||||||||
USA | 629 | - | 16.9 | 12.6 | 55.2 | 6.25 | 14.9 | - | 26.2 | 0.3 | Zhang, 2018 [88] |
Korea | - | - | 8.24 | 14.82 | 41.10 | 4.80 | 7.70 | 0.03 | - | 0.14 | Kim et al., 2020 [89] |
Turkey | - | - | 85.02 | 43.19 | 65.10 | 5.66 | 17.01 | - | 194.7 | - | Baltas et al., 2020 [90] |
Pakistan | 399.0 | 12.45 | 30.67 | 16.02 | 39.14 | - | 15.83 | - | 30.59 | 0.768 | Batool Shah, 2023 [91] |
Iran | 561.8 | 15.1 | 109.3 | 23.75 | 56.6 | - | 8.31 | 0.13 | 67.3 | 0.32 | Bahrami et al., 2019 [92] |
Greece | 1020 | 21.99 | 146.8 | 74.68 | 74.88 | 6.95 | 19.74 | - | 83.12 | 0.54 | Kelepertzis, 2014 [19] |
Morocco | - | - | - | 138.1 | 162.1 | - | 31.72 | - | 32.72 | 0.92 | Ennaji et al., 2020 [59] |
Galápagos Islands | - | 37.3 | 29.5 | 109 | 226 | - | 3.08 | - | 67.6 | 0.942 | Dinter et al., 2021 [93] |
Kosovo | - | - | 156.5 | 33.35 | 90 | - | 163.3 | - | 92.3 | 1.005 | Zogaj et al., 2014 [94] |
Colombia | - | - | 587 | 1004 | 1218 | - | 0.066 | 0.177 | - | 0.035 | Marrugo et al., 2017 [95] |
Herzegovina | - | 31.42 | 34.53 | 44.20 | 97.03 | - | 44.30 | - | - | 0.76 | ŠUKALIĆ et al., 2018 [96] |
Malawi | - | - | 16.32 | 13.45 | 36.71 | 1.09 | 6.54 | - | 26.77 | BDL | Mussa et al., 2020 [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, M.; Pierce, D.; Wang, Y.; Sens, D.A.; Somji, S.; Garrett, S.H. Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. J. Xenobiot. 2024, 14, 634-650. https://doi.org/10.3390/jox14020037
Saleem M, Pierce D, Wang Y, Sens DA, Somji S, Garrett SH. Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. Journal of Xenobiotics. 2024; 14(2):634-650. https://doi.org/10.3390/jox14020037
Chicago/Turabian StyleSaleem, Muhammad, David Pierce, Yuqiang Wang, Donald A. Sens, Seema Somji, and Scott H. Garrett. 2024. "Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils" Journal of Xenobiotics 14, no. 2: 634-650. https://doi.org/10.3390/jox14020037
APA StyleSaleem, M., Pierce, D., Wang, Y., Sens, D. A., Somji, S., & Garrett, S. H. (2024). Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. Journal of Xenobiotics, 14(2), 634-650. https://doi.org/10.3390/jox14020037