Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Animals and Protocol of Intoxication
2.3. Plasma Cholinesterase (ChE) Activity Method
2.4. Muscular Contraction Protocol
2.5. Statistical Analysis and Graphs
3. Results
4. Discussion
Study Limitations
- (i)
- The i.p. doses employed to evaluate the effects of AMPA and glyphosate on human plasma ChE (Table 1) were higher than those used in humans after oral ingestion [37]. Hence, the influence of the difference in pharmacokinetic factors in these studies remains unknown. The role of pharmacokinetics may also help explain why no clear dose-dependence was observed with the effects of these compounds (Table 1 and Figure 2).
- (ii)
- Our in vitro results (Figure 2) “fall beyond the role of pharmacokinetic factors in view that, unlike in vivo studies, the in vitro models generally allow: (a) the exclusion of nervous and hormonal influences; and (b) the control of most experimental factors (including concentrations, temperature, maximum responses, etc.) to guarantee that equilibrium conditions are reached”, as explained in detail elsewhere [38].
- (iii)
- The lack of a time-course analysis and a whole concentration–response curve of AMPA/glyphosate in the protocol of decreased human ChE activity (Figure 3); both analyses would allow us to know more details about the type of molecular interactions exerted by these xenobiotics.
- (iv)
- The AChE activity assay Kit (MAK119; purchased from Sigma-Aldrich, as indicated below in Section 2.1) indicates that its substrates may also be susceptible to the action of acetylcholinesterase; thus, strictly speaking, our results showing ChE activity include the total activity of at least these two enzymes. This is why our results report ChE (not butyrylcholinesterase) activity.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 7. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.; Powles, S. Perspective integrated pest management (IPM): Definition, historical development and implementation, and the other IPM Lester. Pest Manag. Sci. 2008, 63, 1100–1106. [Google Scholar]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000, 31, 117–165. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shukla, A.; Kaur, G.; Girdhar, M.; Malik, T.; Mohan, A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS Omega 2024, 9, 6165–6183. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, A.; Gnazzo, V.; Acosta, H.; López, S.L.; Carrasco, A.E. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem. Res. Toxicol. 2010, 23, 1586–1595. [Google Scholar] [CrossRef]
- Chávez-Reyes, J.; Gutiérrez-Reyes, C.D.; Hernández-Cuellar, E.; Marichal-Cancino, B.A. Neurotoxicity of glyphosate: Focus on molecular mechanisms probably associated with alterations in cognition and behavior. Environ. Toxicol. Pharmacol. 2024, 106, 104381. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, M.; Nowacka-Krukowska, H.; Bukowska, B. The effect of glyphosate, its metabolites and impurities on erythrocyte acetylcholinesterase activity. Environ. Toxicol. Pharmacol. 2014, 37, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Ait Bali, Y.; Kakai, N.-e.; Ba-M´hamed, S.; Bennis, M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology 2019, 415, 8. [Google Scholar] [CrossRef]
- Gallegos, C.E.; Bier, C.J.; Bartos, M.; Bras, C.; Domínguez, S.; Monaco, N.; Gumilar, F.; Giménez, M.S.; Minetti, A. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory. Neurotox. Res. 2018, 34, 363–374. [Google Scholar] [CrossRef]
- Bento, C.P.; Yang, X.; Gort, G.; Xue, S.; van Dam, R.; Zomer, P.; Mol, H.G.; Ritsema, C.J.; Geissen, V. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci. Total Environ. 2016, 572, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Zouaoui, K.; Dulaurent, S.; Gaulier, J.M.; Moesch, C.; Lachâtre, G. Determination of glyphosate and AMPA in blood and urine from humans: About 13 cases of acute intoxication. Forensic Sci. Int. 2013, 226, e20–e25. [Google Scholar] [CrossRef] [PubMed]
- Balderrama-Carmona, A.P.; Valenzuela-Rincón, M.; Zamora-Álvarez, L.A.; Adan-Bante, N.P.; Leyva-Soto, L.A.; Silva-Beltrán, N.P.; Morán-Palacio, E.F. Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico. Environ. Sci. Pollut. Res. 2020, 27, 28480–28489. [Google Scholar] [CrossRef]
- Eskenazi, B.; Gunier, R.B.; Rauch, S.; Kogut, K.; Perito, E.R.; Mendez, X.; Limbach, C.; Holland, N.; Bradman, A.; Harley, K.G. Association of lifetime exposure to glyphosate and aminomethylphosphonic acid (AMPA) with liver inflammation and metabolic syndrome at young adulthood: Findings from the CHAMACOS study. Environ. Health Perspect. 2023, 131, 037001. [Google Scholar] [CrossRef] [PubMed]
- Winstone, J.K.; Pathak, K.V.; Winslow, W.; Piras, I.S.; White, J.; Sharma, R.; Huentelman, M.J.; Pirrotte, P.; Velazquez, R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: Implications for neurodegenerative disorders. J. Neuroinflamm. 2022, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brewster, D.W.; Warren, J.; Hopkins, W.E., II. Metabolism of glyphosate in Sprague-Dawley rats: Tissue distribution, identification, and quantitation of glyphosate-derived materials following a single oral dose. Fundam. Appl. Toxicol. 1991, 17, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Venditti, S.; Kiesch, A.; Hansen, J. Fate of glyphosate and its metabolite AminoMethylPhosponic acid (AMPA) from point source through wastewater sludge and advanced treatment. Chemosphere 2023, 340, 139843. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Reyes, J.; López-Lariz, C.H.; Marichal-Cancino, B.A. Both acute glyphosate and the aminomethylphosphonic acid intoxication decreased the acetylcholinesterase activity in rat hippocampus, prefrontal cortex and gastrocnemius muscle. Drug Chem. Toxicol. 2024, Online ahead of print, 1–5. [Google Scholar] [CrossRef]
- Shine, R.; Amiel, J.; Munn, A.J.; Stewart, M.; Vyssotski, A.L.; Lesku, J.A. Is “cooling then freezing” a humane way to kill amphibians and reptiles? Biol. Open 2015, 4, 760–763. [Google Scholar] [CrossRef]
- Bayne, K. Revised Guide for the Care and Use of Laboratory Animals available. American Physiological Society. Physiologist 1996, 39, 199, 208–111. [Google Scholar]
- Kimura, M.; Kimura, I.; Ohkura, H. Fluctuation of acetylcholine sensitivity in skeletal muscles with development, denervation and glycerol treatment. Jpn. J. Pharmacol. 1978, 28, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Daramola, O.; Gutierrez Reyes, C.D.; Chávez-Reyes, J.; Marichal-Cancino, B.A.; Nwaiwu, J.; Onigbinde, S.; Adeniyi, M.; Solomon, J.; Bhuiyan, M.M.A.A.; Mechref, Y. Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites 2024, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.; Yousef, M.; Elagamy, E. Influence of paraquat, glyphosate, and cadmium on the activity of some serum enzymes and protein electrophoretic behavior (in vitro). J. Environ. Sci. Health Part B 2001, 36, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Martins-Gomes, C.; Coutinho, T.E.; Silva, T.L.; Andreani, T.; Silva, A.M. Neurotoxicity assessment of four different pesticides using in vitro enzymatic inhibition assays. Toxics 2022, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, D.; Viby-Mogensen, J.; Hanel, H.K.; Skovgaard, L.T. Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand. 1988, 32, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Wenthold, R.J.; Mahler, H.R.; Moore, W.J. The half-life of acetylcholinesterase in mature rat brain. J. Neurochem. 1974, 22, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xia, Y.; Chen, Y.; Xu, T.; Xu, L.; Guo, Z.; Xu, H.; Xie, H.Q.; Zhao, B. Acetylcholinesterase is a potential biomarker for a broad spectrum of organic environmental pollutants. Environ. Sci. Technol. 2018, 52, 8065–8074. [Google Scholar] [CrossRef]
- Nigg, H.N.; Knaak, J.B. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Rev. Environ. Contam. Toxicol. 2000, 163, 29–111. [Google Scholar] [CrossRef]
- Clapp, J. Explaining Growing Glyphosate Use: The Political Economy of Herbicide-Dependent Agriculture. Glob. Environ. Change 2021, 67, 102239. [Google Scholar] [CrossRef]
- Tang, T.; Boënne, W.; Desmet, N.; Seuntjens, P.; Bronders, J.; van Griensven, A. Quantification and characterization of glyphosate use and loss in a residential area. Sci. Total Environ. 2015, 517, 207–214. [Google Scholar] [CrossRef]
- Okada, E.; Allinson, M.; Barral, M.P.; Clarke, B.; Allinson, G. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Res. 2020, 168, 115139. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Meyer, M.T.; Kuivila, K.M.; Dietze, J.E. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 275–290. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Lemke, N.; Murawski, A.; Schmied-Tobies, M.I.; Rucic, E.; Hoppe, H.-W.; Conrad, A.; Kolossa-Gehring, M. Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany–human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Environ. Int. 2021, 156, 106769. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Pan, Y.; Zhang, Z.; Cui, J.; Yin, R.; Li, H.; Qin, J.; Li, A.J.; Qiu, R. Biomonitoring of glyphosate and aminomethylphosphonic acid: Current insights and future perspectives. J. Hazard. Mater. 2023, 463, 132814. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Jeong, W.; Kim, S.; Choi, H.; You, Y.; Cho, S.; Oh, S.; Ahn, H.; Park, J.; Min, J. Serial measurement of glyphosate blood concentration in a glyphosate potassium herbicide-intoxicated patient: A case report. Am. J. Emerg. Med. 2019, 37, 1600.e1605–1600.e1606. [Google Scholar] [CrossRef]
- Gupta, S.; Villalón, C.M. The relevance of preclinical research models for the development of antimigraine drugs: Focus on 5-HT(1B/1D) and CGRP receptors. Pharmacol. Ther. 2010, 128, 170–190. [Google Scholar] [CrossRef]
Drug | Doses (mg/kg; i.p.) | |||
---|---|---|---|---|
0 (Control) | 10 | 56 | 100 | |
AMPA | 939 ± 253 | 656 ± 70 * | 597 ± 134 * | 563 ± 153 * |
Glyphosate | 939 ± 253 | 640 ± 122 * | 522 ± 107 * | 712 ± 81 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Reyes, J.; Saráchaga-Terrazas, F.; Colis-Arenas, O.A.; López-Lariz, C.H.; Villalón, C.M.; Marichal-Cancino, B.A. Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats. J. Xenobiot. 2024, 14, 604-612. https://doi.org/10.3390/jox14020035
Chávez-Reyes J, Saráchaga-Terrazas F, Colis-Arenas OA, López-Lariz CH, Villalón CM, Marichal-Cancino BA. Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats. Journal of Xenobiotics. 2024; 14(2):604-612. https://doi.org/10.3390/jox14020035
Chicago/Turabian StyleChávez-Reyes, Jesús, Fernando Saráchaga-Terrazas, Oliver Alejandro Colis-Arenas, Carlos H. López-Lariz, Carlos M. Villalón, and Bruno A. Marichal-Cancino. 2024. "Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats" Journal of Xenobiotics 14, no. 2: 604-612. https://doi.org/10.3390/jox14020035
APA StyleChávez-Reyes, J., Saráchaga-Terrazas, F., Colis-Arenas, O. A., López-Lariz, C. H., Villalón, C. M., & Marichal-Cancino, B. A. (2024). Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats. Journal of Xenobiotics, 14(2), 604-612. https://doi.org/10.3390/jox14020035