Rates of Divergent Pharmacogenes in a Psychiatric Cohort of Inpatients with Depression—Arguments for Preemptive Testing
Abstract
:1. Introduction
2. Aim
3. Materials and Methods
4. Results
4.1. Demographics
4.2. Phenotypes
4.2.1. CYP-Enzymes (n = 108)
4.2.2. DPYD, NAT2, VKORC and TMTP (n = 108)
4.2.3. Very Important Pharmacogenes (n = 108)
4.3. Comparison to a Danish Cohort
5. Discussion
5.1. Frequencies of Divergent Genotypes
5.2. Comparison to a Danish Cohort
6. Limitations
7. Further Studies
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varnai, R.; Szabo, I.; Tarlos, G.; Szentpeteri, L.J.; Sik, A.; Balogh, S.; Sipeky, C. Pharmacogenomic biomarker information differences between drug labels in the United States and Hungary: Implementation from medical practitioner view. Pharm. J. 2020, 20, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayzent® German Fachinformation. (Prescribers Information) Updated July 2022. Available online: www.fachinfo.de (accessed on 1 September 2022).
- EMA Press Release. 30 April 2020. Available online: https://www.ema.europa.eu/en/documents/press-release/ema-recommendations-dpd-testing-prior-treatment-fluorouracil-capecitabine-tegafur-flucytosine_en.pdf (accessed on 23 August 2022).
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Mueller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedik, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; Caudle, K.E.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 2011, 90, 625–629. [Google Scholar] [CrossRef]
- Hahn, M.; Roll, S.C. The Influence of Pharmacogenetics on the Clinical Relevance of Pharmacokinetic Drug-Drug Interactions: Drug-Gene, Drug-Gene-Gene and Drug-Drug-Gene Interactions. Pharmaceuticals 2021, 14, 487. [Google Scholar] [CrossRef] [PubMed]
- Malki, M.A.; Pearson, E.R. Drug–drug–gene interactions and adverse drug reactions. Pharm. J. 2020, 20, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeurgt, P.; Mamiya, T.; Oesterheld, J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics 2014, 15, 655–665. [Google Scholar] [CrossRef]
- Kukreja, S.; Kalra, G.; Shah, N.; Shrivastava, A. Polypharmacy in psychiatry: A review. Mens Sana Monogr. 2013, 11, 82–99. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Saito, M.; Uno, T.; Takahata, T.; Suguwara, K.; Tateishi, T. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J. Clin. Pharmacol. 2004, 44, 1223–1229. [Google Scholar] [CrossRef]
- Hamelin, B. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin. Pharm. Ther. 2000, 67, 466–477. [Google Scholar] [CrossRef]
- Zhu, L.; Brüggemann, R.; Uy, J.; Colbers, A.; Hruska, M.W.; Chung, E.; Sims, K.; Vakkalagadda, B.; Xiaohui, X.; van Schaik, R.H.N.; et al. CYP2C19 Genotype-Dependent Pharmacokinetic Drug Interaction Between Voriconazole and Ritonavir-Boosted Atazanavir in Healthy Subjects. J. Clin. Pharm. 2017, 57, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Damy, T.; Pousset, F.; Caplain, H.; Hulot, S.; Lechat, P. Pharmacokinetic and pharmacodynamic interactions between metoprolol and dronedarone in extensive and poor CYP2D6 metabolizers healthy subjects. Fundam. Clin. Pharmacol. 2004, 18, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Yu, K.; Jang, I.; Yang, B.; Shin, S.; Yim, D. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br. J. Clin. Pharmacol. 2002, 53, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Uno, T.; Shimizu, M.; Yasui-Furukori, N.; Sugawara, K.; Tateishi, T. Different effects of fluvoxamine on rabeprazole pharmacokinetics in relation to CYP2C19 genotype status. Br. J. Clin. Pharmacol. 2006, 61, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Malhi, H. Warfarin and celecoxib interaction in the setting of cytochrome P450 (CYP2C9) polymorphism with bleeding complication. Postgrad. Med. J. 2004, 80, 107–109. [Google Scholar] [CrossRef]
- Andersson, M.; Eliasson, E.; Lindh, J. A clinically significant interaction between warfarin and simvastatin is unique to carriers of theCYP2C9*3allele. Pharmacogenomics 2012, 13, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yan, J.; Zhu, W.; Yang, G.; Tan, Z.; Wu, W.; Zhou, G.; Chen, X.; Ouyang, D. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur. J. Clin. Pharmacol. 2010, 66, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Yasui-Furukori, N.; Uno, T.; Takahata, T.; Sugawara, K.; Munakata, A.; Tateishi, T. Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes. Br. J. Clin. Pharmacol. 2005, 59, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T.; Iwaki, T.; Umemura, K. Influences of different proton pump inhibitors on the anti-platelet function of clopidogrel in relation to CYP2C19 genotypes. Br. J. Clin. Pharmacol. 2010, 70, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Harmze, A.; Van Werkum, J.; Souverein, P.; Breet, N.J.; Bouman, H.J.; Hackeng, C.M.; Ruven, H.J.T.; ten Berg, J.M.; Klungel, O.H.; de Boer, A.; et al. Combined influence of proton-pump inhibitors, calcium-channel blockers and CYP2C19*2 on on-treatment platelet reactivity and on the occurrence of atherothrombotic events after percutaneous coronary intervention. J. Thromb. Haemost. 2011, 9, 1892–1901. [Google Scholar] [CrossRef]
- Hahn, M.; Roll, S.C. Pharmakokinetische Interaktionen in der Psychopharmakotherapie-die Relevanz ist eine Frage des Genotyps. Psychopharmakotherapie 2022, 29, 17–26. [Google Scholar]
- Venkatakrishnan, K.; Greenblatt, D.J.; Moltke, L.L.; Schimder, J.; Harmatz, J.S.; Shader, R.I. Five distinct human cytochromes mediate amitriptyline-N-demethylation in vitro: Dominance of CYP2C19 and CYP3A4. J. Clin. Pharmacol. 1998, 38, 112–1212. [Google Scholar] [CrossRef] [PubMed]
- Schatzberg, A.F.; De Battista, C.; Lazzeroni, L.; Etkin, A.; Murphy, G.M., Jr.; Williams, L.M. ABCB1 Genetic Effects on Antidepressant Outcomes: A Report From the iSPOT-D Trial. Am. J. Psychiatry 2015, 172, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Swen, J.J.; Nijenhuis, M.; De Boer, A.; Grandia, L.; Maintland-van der Zee, A.H.; Mulder, H.; Rongen, G.A.P.J.M.; van Schaik, R.H.N.; Schalekamp, T.; Touw, D.J.; et al. Pharmacogenetics: From bench to byte an update of guidelines. Clin. Pharmacol. Ther. 2011, 89, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Tansey, K.E.; Guipponi, M.; Hu, X.; Domenici, E.; Lewis, G.; Malafosse, A.; Wendland, J.R.; Lewis, C.M.; McGuffin, P.; Uher, R. Contribution of common genetic variants to antidepressant response. Biol. Psychiatry 2013, 73, 679–682. [Google Scholar] [CrossRef]
- Rosenblat, J.D.; Lee, Y.; McIntyre, R.S. The effect of pharmacogenomic testing on response and remission rates in the acute treatment of major depressive disorder: A meta-analysis. J. Affect. Disord. 2018, 241, 484–491. [Google Scholar] [CrossRef]
- Hall-Flavin, D.K.; Winner, J.G.; Allen, J.D.; Cahart, J.M.; Proctor, B.; Snyder, K.A.; Drews, M.S.; Eisterhold, L.L.; Geske, J.; Mrazek, D. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharm. Genom. 2013, 23, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Pérez, V.; Salavert, A.; Espadaler, J.; Tuson, M.; Saiz-Ruiz, J.; Saez-Navarro, C.; Bobes, J.; Baca-Garcia, E.; Vieta, E.; Olivares, J.M.; et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial. BMC Psychiatry 2017, 17, 250. [Google Scholar] [CrossRef] [Green Version]
- Bradley, P.; Shiekh, M.; Mehra, V.; Vrbicky, K.; Layle, S.; Olson, M.C.; Maciel, A.; Cullors, A.; Garces, J.A.; Lukowiak, A.A. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: A randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018, 96, 100–107. [Google Scholar] [CrossRef]
- Bousman, C.A.; Arandjelovic, K.; Mancuso, S.G.; Eyre, H.A.; Dunlop, B.W. Pharmacogenetic tests and depressive symptom remission: A meta-analysis of randomized controlled trials. Pharmacogenomics 2019, 20, 37–47. [Google Scholar] [CrossRef]
- Jukić, M.M.; Haslemo, T.; Molden, E.; Ingelman-Sundberg, M. Impact of CYP2C19 Genotype on Escitalopram Exposure and Therapeutic Failure: A Retrospective Study Based on 2087 Patients. Am. J. Psychiatry 2018, 175, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bråten, L.S.; Haslemo, T.; Jukic, M.M.; Ivanov, M.; Ingelman-Sundberg, M.; Molden, E.; Kringen, M.K. A Novel CYP2C-Haplotype Associated With Ultrarapid Metabolism of Escitalopram. Clin. Pharmacol. Ther. 2021, 110, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Milosavljevic, F.; Bukvic, N.; Pavlovic, Z.; Pavlovic, Z.; Miljevic, C.; Pesic, V.; Molden, E.; Ingelman-Sundberg, M.; Leucht, S.; Jukic, M.M. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Bousman, C.; Maruf, A.A.; Müller, D.J. Towards the integration of pharmacogenetics in psychiatry: A minimum, evidence-based genetic testing panel. Curr. Opin. Psychiatry 2019, 32, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.; Dunnenberger, H.; Freimuth, R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2017, 19, 215–223. [Google Scholar] [CrossRef]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Reilling, M.V.; Scott, S.A.; Hertz, D.L.; et al. Standardizing CYP 2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Lunenburg, C.A.T.C.; Thirstrup, J.P.; Bybjerg-Grauholm, J.; Baekvad-Hansen, M.; Hougaard, D.M.; Nordentoft, M.; Werge, T.; Borglum, A.D.; Mors, O.; Mortensen, P.B.; et al. Pharmacogenetic genotype and phenotype frequencies in a large Danish population-based case-cohort sample. Transl. Psychiatry 2021, 11, 294. [Google Scholar] [CrossRef]
- Alshabeeb, M.A.; Deneer, V.H.M.; Khan, A.; Asselbergs, F.W. Use of pharmacogenetic drugs by the dutch population. Front. Genet. 2019, 10, 567. [Google Scholar] [CrossRef]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef] [Green Version]
- De Leon, J.; Armstrong, S.C.; Cozza, K.L. Clinical guidelines for psychiatrists recommended the use of pharmacogenetic testing for CYP 2D6 and CYP 2C19. Psychosomatics 2006, 47, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.; Müller, D.J.; Roll, S.C. Frequencies of Genetic Polymorphisms of Clinically Relevant Gene-Drug Pairs in a German Psychiatric Inpatient Population. Pharmacopsychiatry 2020, 53, 81–89. [Google Scholar] [CrossRef]
- Wang, Y.; Merln, M.Y.; Yang, J.; Zhu, Z.; Li, G. Opportunities for pharmacists to integrate pharmacogenomics into clinical practice. Pharm. J. 2020, 20, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Stanton, J.D.; Bharthi, K.; Maruf, A.; Müller, D.J.; Bousman, C.A. Pharmacogenomic Testing and Depressive Symptom Remission: A Systematic Review and Meta-Analysis of Prospective, Controlled Clinical Trials. Clin. Pharmacol. Therapeutics 2022. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, D.A.; Hornberger, J.C.; Altar, C.A.; Degitar, I. A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996–2013. Psychiatr. Serv. 2014, 65, 977–987. [Google Scholar] [CrossRef]
- Bättig, V.; Roll, S.C.; Hahn, M. Pharmacogenetic Testing in Depressed Patients and Interdisciplinary Exchange between a Pharmacist and Psychiatrists Results in Reduced Hospitalization Times. Pharmacopsychiatry 2020, 53, 185–192. [Google Scholar] [CrossRef]
- Sim, S.C.; Kacevska, M.; Ingelman-Sundberg, M. Pharmacogenomics of drug-metabolizing enzymes: A recent update on clinical implications and endogenous effects. Pharm. J. 2013, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, S.; Kirkpatrick, C.M.J.; Byron, K.; Sheffield, L. An analysis of allele, genotype and phenotype frequencies, actionable pharmacogenomic (PGx) variants and phenoconversion in 5408 Australian patients genotyped for CYP2D6, CYP2C19, CYP2C9 and VKORC1 genes. J. Neural Transm. 2019, 126, 5–18. [Google Scholar] [CrossRef]
- Hahn, M.; Roll, S.C. A collaborative approach in pharmacogenetic testing: Actionable genotypes of antidepressants and their avoidance in a retrospective analysis. J. Explor. Res. Pharmacol. 2022; publication in progress. [Google Scholar] [CrossRef]
- Oslin, D.W.; Lynch, K.G.; Shih, M.C.; Ingram, E.P.; Wray, L.O.; Chapman, S.R.; Kranzler, H.R.; Gelernter, J.; Pyne, J.M.; Stone, A.; et al. Effect of Pharmacogenomic Testing for Drug-Gene Interactions on Medication Selection and Remission of Symptoms in Major Depressive Disorder: The PRIME Care Randomized Clinical Trial. JAMA 2022, 328, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Greden, J.F.; Parikh, S.V.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; DeBattista, C.; Conway, C.R.; Forester, B.P.; Mondimore, F.M.; Chelton, R.C.; et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: A large, patient- and rater-blinded, randomized, controlled study. J. Psychiatr. Res. 2019, 111, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Ruaño, G.; Szarek, B.L.; Villagra, D.; Gorowski, K.; Kocherla, M.; Seip, R.L.; Goethe, J.W.; Schwartz, H.I. Length of psychiatric hospitalization is correlated with CYP2D6 functional status in inpatients with major depressive disorder. Biomark. Med. 2013, 7, 429–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stäuble, C.K.; Lampert, M.L.; Allemann, S.; Hatzinger, M.; Hersberger, K.E.; Meyer Zu Schwabedissen, H.E.; Imboden, C.; Mikoteit, T. Pharmacist-guided pre-emptive pharmacogenetic testing in antidepressant therapy (PrePGx): Study protocol for an open-label, randomized controlled trial. Trials 2021, 22, 919. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
Gene | Variants and Alleles That Were Counted as Divergent |
---|---|
CYP1A2 | Increased inducibility or decreased function (*1F, *1C) |
CYP2B6 | PM, IM (*2, *18, *6) |
CYP2C8 | Reduced activity (*3) |
CYP2C9 | Decreased function and no function (*2, *3, *6, *8, *11) |
CYP2C19 | PM, IM, RM, UM, (*2, *3, *4, *17) |
CYP2D6 | Activity score below 1.25: PM, IM, UM |
CYP3A4 | Increased activity (*1B, *1G) |
CYP3A5 | NM (*1), as PM is the wild type in Caucasians (90%) |
DPYD | PM, IM |
NAT2 | Rapid, Slow (*5B, *6A, *7B) |
TMTP | PM, IM (homo- and heterozygous) |
VKORC1 | NM/IM, IM/IM (homo- and heterozygous carriers) |
Gene/Variant | German Cohort with MDD (n = 108) | Danish Cohort with SMI (n = 51,464) | z-Value | p-Value |
---|---|---|---|---|
CYP3A5 | ||||
Homozygous | 19.4% | 0.6% | −1.8414 | 0.066 |
Heterozygous | 12.8% | |||
Non-Expressor | 80.6% | 86.6% | 1.8548 | 0.064 |
CYP2B6 | ||||
NM | 60% | 58,4% | −0.3788 | 0.70394 |
IM and PM | 40% | 41,6% | 0.3788 | 0.70394 |
CYP2C9 | ||||
NM | 83% | 66.3% | −3.7519 | 0.0018 |
IM | 17% | 30.2% | 3.2703 | 0.00108 |
PM | 1% | 3.6% | 1.474 | 0.14156 |
CYP2C19 | ||||
UM | 9% | 3.7% | −3.0349 | 0.00244 |
RM | 31% | 25.8% | −1.1296 | 0.25848 |
NM | 32% | 43.5% | 2.3238 | 0.00203 |
IM | 27% | 24.8% | −0.4942 | 0.62141 |
PM | 2% | 2.1% | 0.236 | 0.81034 |
CYP2D6 | ||||
UM | 1% | 0% | 21.8295 | <0.00001 |
NM | 54% | 62.4% | 1.8564 | 0.06288 |
IM | 35% | 33.5% | −0.3743 | 0.71138 |
PM | 7% | 4.2% | −1.6953 | 0.08914 |
UM/PM ((*1/*4)xN) | 3% | 0% | −37.8106 | <0.00001 |
DPYD | ||||
GAS 2 | 76% | 98% | 16.1002 | <0.00001 |
GAS 1.5 | 2% | 0.1% | −1.4595 | 0.1443 |
GAS 1 | 19% | <1.4% | −16.118 | <0.00001 |
GAS 0.5 | 0% | <0.02% | 0.1024 | 0.92034 |
GAS 0 | 3% | <0.02% | −23.074 | <0.00001 |
VKORC | ||||
Heterozygous | 38.9% | 37.2% | −0.303 | 0.718 |
Homozygous | 13.8% | 15.3% | 0.4046 | 0.682 |
TMPT | ||||
NM | 94.4% | 90.2% | 1.4824 | 0.139 |
IM | 4.6% | 9.6% | 1.7527 | 0.080 |
PM | 0.9% | 0.3% | 1.1885 | 0.234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roll, S.C.; Hahn, M. Rates of Divergent Pharmacogenes in a Psychiatric Cohort of Inpatients with Depression—Arguments for Preemptive Testing. J. Xenobiot. 2022, 12, 317-328. https://doi.org/10.3390/jox12040022
Roll SC, Hahn M. Rates of Divergent Pharmacogenes in a Psychiatric Cohort of Inpatients with Depression—Arguments for Preemptive Testing. Journal of Xenobiotics. 2022; 12(4):317-328. https://doi.org/10.3390/jox12040022
Chicago/Turabian StyleRoll, Sibylle Christine, and Martina Hahn. 2022. "Rates of Divergent Pharmacogenes in a Psychiatric Cohort of Inpatients with Depression—Arguments for Preemptive Testing" Journal of Xenobiotics 12, no. 4: 317-328. https://doi.org/10.3390/jox12040022
APA StyleRoll, S. C., & Hahn, M. (2022). Rates of Divergent Pharmacogenes in a Psychiatric Cohort of Inpatients with Depression—Arguments for Preemptive Testing. Journal of Xenobiotics, 12(4), 317-328. https://doi.org/10.3390/jox12040022