New Perspectives on the Impact of Iron Chelation Therapy on the Gut Microbiome in Thalassemia Patients
Abstract
:1. Introduction
Literature Selection Strategy
2. Iron Metabolism and Its Role in Thalassemia
Iron Chelation Therapy
3. The Gut Microbiome
3.1. Evidence of Gut Microbiome Changes in Thalassemia Patients
3.2. Functional Impacts of Microbiome Dysbiosis
4. Bacterial Infections in Thalassemia Patients
Pathogen | Associated Infections | Pathogen-Specific Risk Factors | Case Studies |
---|---|---|---|
Klebsiella spp. | Sinusitis, septicemia, abscesses (kidneys, liver, lungs, parotid gland). | Iron overload in severe thalassemia with frequent transfusions. | Common in thalassemia patients, with a high mortality rate due to iron overload. |
Y. enterocolitica | Septicemia, tonsillitis, pharyngitis, focal abscesses. | Desferrioxamine therapy (iron chelator acting as a siderophore). | Infections were significantly associated with desferrioxamine use. |
L. monocytogenes | Neurological infections and systemic infections in immunocompromised. | Iron overload increases bacterial virulence. | Show increased severity, with high morbidity in immunocompromised patients. |
S.pneumoniae | Post-splenectomy infections. | Splenectomy reduces clearance of encapsulated bacteria. | The risk of sepsis among asplenic individuals is significantly elevated, with a high case-fatality rate of 50–70%. |
E. coli | Bacteremia, urinary tract infections (UTIs). | Iron overload enhances virulence; | Iron overload significantly increases susceptibility to bacterial infections, including E. coli UTIs. |
5. Therapeutic Implications and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadiq, I.Z.; Abubakar, F.S.; Usman, H.S.; Abdullahi, A.D.; Ibrahim, B.; Kastayal, B.S.; Ibrahim, M.; Hassan, H.A. Thalassemia: Pathophysiology, diagnosis, and advances in treatment. Thalass. Rep. 2024, 14, 81–102. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Porter, J.B.; Viprakasit, V.; Taher, A.T. A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Rev. 2018, 32, 300–311. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, D.G.; Zidova, Z.; Mikhael, M.; Hamdi, A.; Horvathova, M.; Ponka, P. Pathophysiology and treatment of beta-thalassemia: Investigations of heme oxygenase 1 and its inhibitors. Blood 2015, 126, 3373. [Google Scholar] [CrossRef]
- Allali, S.; de Montalembert, M.; Brousse, V.; Chalumeau, M.; Karim, Z. Management of iron overload in hemoglobinopathies. Transfus. Clin. Biol. 2017, 24, 223–226. [Google Scholar] [CrossRef]
- Auger, D.; Pennell, D.J. Cardiac complications in thalassemia major. Ann. N. Y. Acad. Sci. 2016, 1368, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Borgna-Pignatti, C.; Marsella, M. Iron chelation in thalassemia major. Clin. Ther. 2015, 37, 2866–2877. [Google Scholar] [CrossRef]
- Di Paola, A.; Tortora, C.; Argenziano, M.; Marrapodi, M.; Rossi, F. Emerging roles of the iron chelators in inflammation. Int. J. Mol. Sci. 2022, 23, 47977. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.; Macklin, E.; Porter, J.; Evans, P.; Kwiatkowski, J.; Neufeld, E.; Harmatz, P. Inflammation and oxidant stress in β-thalassemia patients treated with iron chelators deferasirox (ICL670) or deferoxamine: An ancillary study of the Novartis CICL670A0107 trial. Haematologica 2008, 93, 817–825. [Google Scholar] [CrossRef]
- Fibach, E.; Rachmilewitz, E. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann. N. Y. Acad. Sci. 2010, 1202, 10–16. [Google Scholar] [CrossRef]
- Taher, A.; Weatherall, D.; Cappellini, M. Thalassaemia. Lancet 2018, 391, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Suparan, K.; Trirattanapa, K.; Sriwichaiin, S.; Kerdphoo, S.; Tantiworawit, A.; Chattipakorn, N.; Chattipakorn, S.C. Transfusion-dependent thalassemia patients develop cognitive impairment with gut dysbiosis. Alzheimers Dement. 2023, 19, 73541. [Google Scholar] [CrossRef]
- Thiengtavor, C.; Siriworadetkun, S.; Paiboonsukwong, K.; Fucharoen, S.; Pattanapanyasat, K.; Vadolas, J.; Svasti, S.; Chaichompoo, P. Increased ferritin levels in non-transfusion-dependent β°-thalassaemia/HbE are associated with reduced CXCR2 expression and neutrophil migration. Br. J. Haematol. 2019, 189, 162–195. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.; Forni, G. Management of iron overload in beta-thalassemia patients: Clinical practice update based on case series. Int. J. Mol. Sci. 2020, 21, 22871. [Google Scholar] [CrossRef] [PubMed]
- Parmanand, B.; Kellingray, L.; Gall, L.; Basit, A.; Fairweather-Tait, S.; Narbad, A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria: An in vitro colonic fermentation study. J. Nutr. Biochem. 2019, 67, 20–27. [Google Scholar] [CrossRef]
- Seyoum, Y.; Baye, K.; Humblot, C. Iron homeostasis in host and gut bacteria—A complex interrelationship. Gut Microbes 2021, 13, e1874855. [Google Scholar] [CrossRef]
- Porter, J.B.; Shah, F.T. Iron overload in thalassemia and related conditions: Therapeutic goals and assessment of response to chelation therapies. Hematol. Oncol. Clin. N. Am. 2010, 24, 1109–1130. [Google Scholar] [CrossRef]
- Abetz, L.; Baladi, J.; Jones, P.; Rofail, D. The impact of iron overload and its treatment on quality of life: Results from a literature review. Health Qual. Life Outcomes 2006, 4, 73. [Google Scholar] [CrossRef]
- Njeim, R.; Naouss, B.; Bou-Fakhredin, R.; Haddad, A.; Taher, A. Unmet needs in β-thalassemia and the evolving treatment landscape. Transfus. Clin. Biol. 2023, 30, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Li, H. Gut microbiota and iron: The crucial actors in health and disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef]
- Morgenthau, A.; Pogoutse, A.; Adamiak, P.; Moraes, T.; Schryvers, A. Bacterial receptors for host transferrin and lactoferrin: Molecular mechanisms and role in host-microbe interactions. Future Microbiol. 2013, 8, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.; Chehadeh, F.; Husband, S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front. Immunol. 2022, 13, 906258. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Kolodziejczyk, A.; Thaiss, C.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Weatherall, D.J.; Clegg, J.B. The Thalassaemia Syndromes; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
- Vento, S.; Cainelli, F.; Cesario, F. Infections and thalassemia. Lancet Infect. Dis. 2006, 6, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Zheng, L.; Wang, Y.; Colgan, S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.S.; Cowles, R.A. Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.R.; Probert, C.S.; Cogan, T.A. Identification and characterisation of an iron-responsive candidate probiotic. PLoS ONE 2011, 6, e26507. [Google Scholar] [CrossRef] [PubMed]
- Arrazuria, R.; Pérez, V.; Molina, E.; Juste, R.; Khafipour, E.; Elguezabal, N. Diet-induced changes in the microbiota and cell composition of rabbit gut-associated lymphoid tissue (GALT). Sci. Rep. 2018, 8, 32484. [Google Scholar] [CrossRef] [PubMed]
- Usuda, H.; Okamoto, T.; Wada, K. Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. Int. J. Mol. Sci. 2021, 22, 7613. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y. The risk of severe bacterial infection in non-transfusion-dependent thalassemia. Pediatr. Res. 2021, 92, 360–361. [Google Scholar] [CrossRef]
- Bidell, M.R.; Hobbs, A.L.; Lodise, T.P. Gut microbiome health and dysbiosis: A clinical primer. Pharmacotherapy 2022, 42, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Rusu, I.G.; Suharoschi, R.; Vodnar, D.C.; Pop, C.R.; Socaci, S.A.; Vulturar, R.; Istrati, M.; Moroșan, I.; Fărcaș, A.C.; Kerezsi, A.D.; et al. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency—A literature-based review. Nutrients 2020, 12, 1993. [Google Scholar] [CrossRef] [PubMed]
- Puga, A.; Samaniego-Vaesken, M.; Montero-Bravo, A.; Ruperto, M.; Partearroyo, T.; Varela-Moreiras, G. Iron supplementation at the crossroads of nutrition and gut microbiota: The state of the art. Nutrients 2022, 14, 1926. [Google Scholar] [CrossRef] [PubMed]
- Alzhrani, F.S.; Algethmi, F.A.; Makin, M.; Barayan, N.A.; Hilal, R.M.; Alnakhli, S. Prevalence and risk factors of severe bacterial infections in thalassemia patients. Curr. Pediatr. Res. 2020, 24, 264–269. [Google Scholar]
- Wang, S.-C.; Lin, K.-H.; Chern, J.P.S.; Lu, M.-Y.; Jou, S.-T.; Lin, D.-T.; Lin, K.-S. Severe bacterial infection in transfusion-dependent patients with thalassemia major. Clin. Infect. Dis. 2003, 37, 984–988. [Google Scholar] [CrossRef]
- Taher, A.T.; Saliba, A.N. Iron overload in thalassemia: Different organs at different rates. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Price, V.E.; Blanchette, V.S.; Ford-Jones, E.L. The prevention and management of infections in children with asplenia or hyposplenia. Infect. Dis. Clin. N. Am. 2007, 21, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Miri-Aliabad, G.; Rezaeifar, A.; Salarzaei, M. Comparison of immunoglobulins status in splenectomized and non-splenectomized patients with major beta-thalassemia. J. Pediatr. Rev. 2022, 10, 161–166. [Google Scholar] [CrossRef]
- Khan, F.A.; Fisher, M.A.; Khakoo, R.A. Association of hemochromatosis with infectious diseases: Expanding spectrum. Int. J. Infect. Dis. 2007, 11, 482–487. [Google Scholar] [CrossRef]
- Moura, E.; Noordermeer, M.A.; Verhoeven, N.; Verheul, A.F.; Marx, J.J. Iron release from human monocytes after erythrophagocytosis in vitro: An investigation in normal subjects and hereditary hemochromatosis patients. Blood 1998, 92, 2511–2519. [Google Scholar] [CrossRef]
- Visitchanakun, P.; Panpetch, W.; Saisorn, W.; Chatthanathon, P.; Wannigama, D.L.; Thim-Uam, A.; Leelahavanichkul, A. Increased susceptibility to dextran sulfate-induced mucositis of iron-overload β-thalassemia mice, another endogenous cause of septicemia in thalassemia. Clin. Sci. 2021, 135, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Sae-Khow, K.; Chantainayarong, A.; Visitchanakun, P.; Saisorn, W.; Svasti, S.; Fucharoen, S.; Leelahavanichkul, A. Pathogen-associated molecules from gut translocation enhance severity of cecal ligation and puncture sepsis in iron-overload β-thalassemia mice. J. Inflamm. Res. 2020, 13, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhang, W.; Lin, M.; Teymournejad, O.; Budachetri, K.; Lakritz, J.; Rikihisa, Y. Iron robbery by intracellular pathogen via bacterial effector–induced ferritinophagy. Proc. Natl. Acad. Sci. USA 2021, 118, e2026598118. [Google Scholar] [CrossRef] [PubMed]
- Pajuelo, D.; Hernández-Cabanyero, C.; Sanjuán, E.; Lee, C.; Silva-Hernández, F.X.; Hor, L.; Mackenzie, S.; Amaro, C. Iron and Fur in the life cycle of the zoonotic pathogen Vibrio vulnificus. Environ. Microbiol. 2016, 18, 4005–4022. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.H.Y.; Ha, S.Y.; Chan, G.C.F.; Chiang, A.; Lee, T.L.; Ho, H.K.; Lee, C.Y.; Luk, C.W.; Lau, Y.L. Klebsiella infection in patients with thalassemia. Clin. Infect. Dis. 2003, 36, 575–579. [Google Scholar] [CrossRef]
- Hansen, M.G.; Pearl, G.; Lévy, M. Intussusception due to Yersinia enterocolitica enterocolitis in a patient with beta-thalassemia. Arch. Pathol. Lab. Med. 2009, 125, 1486–1488. [Google Scholar] [CrossRef] [PubMed]
- Drevets, D.A.; Leenen, P.J.; Greenfield, R.A. Invasion of the central nervous system by Listeria monocytogenes: Implications for bacterial entry across the blood-brain barrier. Infect. Immun. 2004, 72, 155–167. [Google Scholar]
- Charlier, C.; Perrodeau, E.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet. Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.M.; Crowther, M.A.; Cook, R.J.; Sigouin, C.S.; Heddle, N.M.; Molnar, L.; Kelton, J.G. Adverse outcomes after splenectomy in adults. JAMA 2008, 299, 2324–2331. [Google Scholar]
- Sinwar, P.D. Overwhelming post-splenectomy infection syndrome—Review study. Int. J. Surg. 2014, 12, 1314–1316. [Google Scholar] [CrossRef]
- Obed, F.A.; Omran, A.M.; Jebur, K.S. Effect of iron overload on prevalence of common bacterial infection in thalassemia patients. Iraqi J. Hematol. 2024, 13, 38–43. [Google Scholar] [CrossRef]
- Spelman, D.; Buttery, J.; Daley, A.; Isaacs, D.; Jennens, I.; Kakakios, A.; Lawrence, R.; Roberts, S.; Torda, A.; Watson, D.A.; et al. Guidelines for the prevention of sepsis in asplenic and hyposplenic patients. Intern. Med. J. 2008, 38, 349–356. [Google Scholar] [CrossRef] [PubMed]
Databases Searched | PubMed, Scopus, Web of Science, and Google Scholar |
---|---|
Keywords Used | “Thalassemia AND iron overload”, “Iron chelation AND gut microbiome”, “Hepcidin suppression AND microbiome”, “Oxidative stress AND thalassemia”, “Iron metabolism AND gut dysbiosis”, etc. |
Inclusion Criteria | Peer-reviewed studies, research on iron overload and gut microbiota, studies on oxidative stress and hepcidin, full-text in English |
Exclusion Criteria | Non-peer-reviewed sources, opinion pieces, studies unrelated to iron metabolism or microbiome, genetic studies without iron/microbiome focus |
Chelator | Administration | Efficacy | Side Effects | Gut Microbiota Impact |
---|---|---|---|---|
Deferoxamine (DFO) | IV/Subcutaneous | High efficacy but requires prolonged infusion. | Poor compliance, injection site reactions. | Minimal direct gut impact. |
Deferasirox (DFX) | Oral | Effective, particularly for liver iron. | GI toxicity, hepatic injury. | ↑ Fecal iron excretion alters microbial balance. |
Deferiprone (DFP) | Oral | Most effective for cardiac iron. | Agranulocytosis, GI disturbances. | May have lesser gut impact than DFX. |
Factor | Description | Clinical Implications |
---|---|---|
Antibiotic Use | Frequent infections in thalassemia patients necessitate recurrent antibiotic use, which disrupts gut microbiota balance. | ↑ Infection risk, ↓ microbial diversity; probiotics may help restore balance. |
Dietary Habits | Dietary restrictions or deficiencies alter nutrient availability, affecting microbial composition and function. | Malabsorption, gut dysbiosis; prebiotics/polyphenols support balance. |
Iron Overload | High intestinal iron levels favor pathogenic bacterial growth, disrupting the gut microbiota. | ↑ Dysbiosis, systemic inflammation; iron management and microbiome therapy needed. |
Feature | NTDT | TDT |
---|---|---|
Iron Overload | Moderate from increased absorption | Severe, due to chronic transfusions. |
Chelation Therapy | Sometimes needed. | Required for nearly all patients. |
Microbiome Changes | Mild dysbiosis, linked to inflammation | Severe dysbiosis due to high fecal iron excretion. |
Common Bacteria | ↑ Enterobacteriaceae, Clostridium; ↓ SCFA-producers | ↑ Verrucomicrobiota, Fusobacteriota. |
Infection Risk | Elevated but lower than TDT | Very high due to iron overload and transfusions. |
Therapy Approach | Probiotics, dietary adjustments. | Chelation + microbiome-targeted strategies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deumić, S.; Crnčević, N.; Hukić, M.; Dizdar, M.; Avdić, M. New Perspectives on the Impact of Iron Chelation Therapy on the Gut Microbiome in Thalassemia Patients. Thalass. Rep. 2025, 15, 2. https://doi.org/10.3390/thalassrep15010002
Deumić S, Crnčević N, Hukić M, Dizdar M, Avdić M. New Perspectives on the Impact of Iron Chelation Therapy on the Gut Microbiome in Thalassemia Patients. Thalassemia Reports. 2025; 15(1):2. https://doi.org/10.3390/thalassrep15010002
Chicago/Turabian StyleDeumić, Sara, Neira Crnčević, Mirsada Hukić, Muamer Dizdar, and Monia Avdić. 2025. "New Perspectives on the Impact of Iron Chelation Therapy on the Gut Microbiome in Thalassemia Patients" Thalassemia Reports 15, no. 1: 2. https://doi.org/10.3390/thalassrep15010002
APA StyleDeumić, S., Crnčević, N., Hukić, M., Dizdar, M., & Avdić, M. (2025). New Perspectives on the Impact of Iron Chelation Therapy on the Gut Microbiome in Thalassemia Patients. Thalassemia Reports, 15(1), 2. https://doi.org/10.3390/thalassrep15010002