What Is the Relevance of Murburn Concept in Thalassemia and Respiratory Diseases?
Abstract
:1. Introduction
2. What Is Murburn Concept?
3. How Is Murburn Concept Relevant in Thalassemia and Respiratory/Mitochondrial Diseases?
3.1. The Modality of Oxygen Utilization by Proteins/Cells
3.2. The Novel Function of Hemoglobin as a Murzyme ATP-Synthase
3.3. Erythrocyte Sustenance without Mitochondria and Nucleus
4. Future Research Agenda and Therapeutic Regimen
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef]
- Manoj, K.M.; Venkatachalam, A.; Parashar, P. Metabolism of xenobiotics by cytochrome P450: Novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive species. Drug Metabol. Rev. 2016, 48, 41–42. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gade, S.K.; Venkatachalam, A.; Gideon, D.A. Electron transfer amongst flavo- and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Adv. 2016, 6, 24121–24129. [Google Scholar] [CrossRef]
- Venkatachalam, A.; Parashar, A.; Manoj, K.M. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme ‘active site’ pocket plays a relatively ‘passive role’ in some enzyme-substrate interactions. Silico Pharmacol. 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Parashar, A.; Venkatachalam, A.; Goyal, S.; Satyalipsu; Singh, P.G.; Gade, S.K.; Periyasami, K.; Jacob, R.S.; Sardar, D.; et al. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals’ obligatory involvement in such redox reactions. Biochimie 2016, 125, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Parashar, A.; Gade, S.K.; Venkatachalam, A. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front. Pharmacol. 2016, 7, 161. [Google Scholar] [CrossRef]
- Manoj, K.M. Debunking chemiosmosis and proposing murburn concept as the operative principle for cellular respiration. Biomed. Rev. 2017, 28, 31–48. [Google Scholar] [CrossRef]
- Parashar, A.; Gideon, D.A.; Manoj, K.M. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses. Dose Response 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M. Aerobic Respiration: Criticism of the Proton-centric Explanation Involving Rotary Adenosine Triphosphate Synthesis, Chemiosmosis Principle, Proton Pumps and Electron Transport Chain. Biochem. Insights. 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M. The ubiquitous biochemical logic of murburn concept. Biomed. Rev. 2018, 29, 89–97. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A.; Jacob, V.D. Murburn scheme for mitochondrial thermogenesis. Biomed. Rev. 2018, 29, 73–82. [Google Scholar] [CrossRef]
- Jacob, V.D.; Manoj, K.M. Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology 2019, 10, 7–16. [Google Scholar] [CrossRef]
- Manoj, K.M.; Parashar, A.; David Jacob, V.; Ramasamy, S. Aerobic respiration: Proof of concept for the oxygen-centric murburn perspective. J. Biomol. Struct. Dyn. 2019, 37, 4542–4556. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Soman, V.; David Jacob, V.; Parashar, A.; Gideon, D.A.; Kumar, M.; Manekkathodi, A.; Ramasamy, S.; Pakshirajan, K.; Bazhin, N.M. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch. Biochem. Biophys. 2019, 676, 108128. [Google Scholar] [CrossRef]
- Manoj, K.M. Refutation of the cation-centric torsional ATP synthesis model and advocating murburn scheme for mitochondrial oxidative phosphorylation. Biophys Chem. 2020, 257, 106278. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M. Murburn concept: A paradigm shift in cellular metabolism and physiology. Biomol. Concepts. 2020, 11, 7–22. [Google Scholar] [CrossRef]
- Manoj, K.M.; Soman, V. Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective. Toxicology 2020, 432, 152369. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Ramasamy, S.; Parashar, A.; Gideon, D.A.; Soman, V.; Jacob, V.D.; Pakshirajan, K. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts. 2020, 11, 32–56. [Google Scholar] [CrossRef]
- Manoj, K.M.; Jacob, V.D. Murburn precepts for photoreception. Biomed. Rev. 2020, 31, 67–74. [Google Scholar] [CrossRef]
- Manoj, K.M. In defense of the murburn explanation for aerobic respiration. Biomed. Rev. 2020, 31, 135–160. [Google Scholar] [CrossRef]
- Manoj, K.M.; Manekkathodi, A. Light’s interaction with pigments in chloroplasts: The murburn perspective. J. Photochem. Photobiol. 2021, 5, 100015. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A.; Parashar, A. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective. Cell Biochem. Biophys. 2021, 79, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Gideon, D.A.; Nirusimhan, V.; Manoj, K.M. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J. Biomol. Struct. Dyn. 2022, 40, 1995–2009. [Google Scholar] [CrossRef]
- Parashar, A.; Manoj, K.M. Murburn Precepts for Cytochrome P450 Mediated Drug/Xenobiotic Metabolism and Homeostasis. Curr. Drug Metab. 2021, 22, 315–326. [Google Scholar] [CrossRef]
- Parashar, A.; Jacob, V.D.; Gideon, D.A.; Manoj, K.M. Hemoglobin catalyzes ATP-synthesis in human erythrocytes: A murburn model. J. Biomol. Struct. Dyn. 2022, 40, 8783–8795. [Google Scholar] [CrossRef] [PubMed]
- Gideon, D.A.; Nirusimhan, V.; Edward, J.C.; Sudarsha, K.; Manoj, K.M. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: Classical and murburn perspectives. J. Biomol. Struct. Dyn. 2022, 40, 9235–9252. [Google Scholar] [CrossRef]
- Manoj, K.M.; Bazhin, N.M. The murburn precepts for aerobic respiration and redox homeostasis. Prog. Biophys. Mol. Biol. 2021, 167, 104–120. [Google Scholar] [CrossRef]
- Manoj, K.M.; Bazhin, N.M.; Jacob, V.D.; Parashar, A.; Gideon, D.A.; Manekkathodi, A. Structure-function correlations and system dynamics in oxygenic photosynthesis: Classical perspectives and murburn precepts. J. Biomol. Struct. Dyn. 2021, 40, 10997–11023. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A.; Parashar, A.; Nirusimhan, V.; Annadurai, P.; Jacob, V.D.; Manekkathodi, A. Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons. J. Biomol. Struct. Dyn. 2022, 40, 11024–11056. [Google Scholar] [CrossRef]
- Manoj, K.M.; Bazhin, N.; Tamagawa, H. The murburn precepts for cellular ionic homeostasis and electrophysiology. J. Cell. Physiol. 2022, 237, 804–814. [Google Scholar] [CrossRef]
- Manoj, K.M.; Bazhin, N.; Wu, Y.; Manekkathodi, A. Murburn model of photosynthesis: Effect of additives like chloride and bicarbonate. In Chlorophylls; Ameen, S., Akhtar, M.S., Shin, H.-S., Eds.; Intech Open: London, UK, 2022. [Google Scholar] [CrossRef]
- Manoj, K.M.; Tamagawa, H. Critical analysis of explanations for cellular homeostasis and electrophysiology from murburn perspective. J. Cell. Physiol. 2022, 237, 421–435. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A.; Jaeken, L. Why do cells need oxygen? Insights from mitochondrial composition and function. Cell Biol. Int. 2022, 46, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Gideon, D.A.; Parashar, A.; Robin, J.; Annadurai, P.; Nirusimhan, V.; Manoj, K.M. Do cyclooxygenases possess a murzyme activity? Biomed. Rev. 2021, 32, 47–59. [Google Scholar]
- Manoj, K.M.; Nirusimhan, V.; Parashar, A.; Edward, J.; Gideon, D.A. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J. Cell. Physiol. 2022, 237, 1902–1922. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Gideon, D.A.; Jaeken, L. Interaction of membrane-embedded cytochrome b-complexes with quinols: Classical Q-cycle and murburn model. Cell Biochem. Funct. 2022, 40, 118–126. [Google Scholar] [CrossRef]
- Manoj, K.M.; Bazhin, N.M.; Tamagawa, H.; Jaeken, L.; Parashar, A. The physiological role of complex V in ATP synthesis: Murzyme functioning is viable whereas rotary conformation change model is untenable. J. Biomol. Struct. Dyn. 2023, 41, 3993–4012. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Tamagawa, H.; Bazhin, N.; Jaeken, L.; Nirusimhan, V.; Faraci, F.; Gideon, D.A. Murburn model of vision: Precepts and proof of concept. J. Cell. Physiol. 2022, 237, 3338–3355. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A. Structural foundations for explaining the physiological roles of murzymes embedded in diverse phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183981. [Google Scholar] [CrossRef]
- Manoj, K.M.; Gideon, D.A.; Bazhin, N.M.; Tamagawa, H.; Nirusimhan, V.; Kavdia, M.; Jaeken, L. Na, K-ATPase: A murzyme facilitating thermodynamic equilibriums at the membrane-interface. J. Cell. Physiol. 2023, 238, 109–136. [Google Scholar] [CrossRef]
- Manoj, K.M.; Manekkathodi, A.; Bazhin, N.; Parashar, A.; Wu, Y. Comprehensive Analyses of Enhancement of Oxygenesis in Photosynthesis by Bicarbonate and Effects of Diverse Additives: Classical Explanation versus Murburn Model. In Plant Physiology; Tsung-Chen, J., Ed.; Intech Open: London, UK, 2023. [Google Scholar] [CrossRef]
- Manoj, K.M. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J. Cell. Physiol. 2023. [Google Scholar] [CrossRef]
- Manoj, K.M.; Jacob, V.D.; Kavdia, M.; Tamagawa, H.; Jaeken, L.; Soman, V. Questioning physiological rotary functionality in the bacterial flagellar system and proposing a murburn model for motility. J. Biomol. Struct. Dyn. 2023. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Jaeken, L. Synthesis of Theories on Cellular Powering, Coherence, Homeostasis and Electro-mechanics: Murburn Concept & Evolutionary Perspectives. J. Cell. Physiol. 2023. [Google Scholar] [CrossRef]
- Manoj, K.M. Murburn concept and murzymes in 2023: Celebrating 25th year of pursuit. Biomed. Rev. 2022, in press. [Google Scholar]
- Chaldakov, G.N. Principles of Cell Biology (Eureka for Thought—5); BioMedES Ltd.: London, UK, 2022. [Google Scholar]
- Jaeken, L. The Coacervate-Coherence Nature of Life: Fundamentals of Cell Physiology (Chapter 6); BioMedES Ltd.: London, UK, 2021. [Google Scholar]
- Manoj, K.M. Murburn concept explains why oxygen is acutely needed to sustain life. Atlas Sci. 2023. Available online: https://atlasofscience.org/murburn-concept-explains-why-oxygen-is-acutely-needed-to-sustain-life/ (accessed on 3 March 2023).
- Wikipedia. Murburn Concept. 2019. Available online: https://en.wikipedia.org/wiki/Murburn_concept (accessed on 3 March 2023).
- Sethi, A.; Bhartiya, S.; Venkatesh, K.V. First Workshop on Murburn Concept. March 15 & 16, 2023, at IIT Bombay. Available online: https://www.youtube.com/@satyamjayatu5613/videos (accessed on 3 March 2023).
- Manoj, K.M.; Hager, L.P. Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim. Biophys. Acta 2001, 1547, 408–417. [Google Scholar] [CrossRef]
- Manoj, K.M. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate (s) and the reaction components play multiple roles in the overall process. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2006, 1764, 1325–1339. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Hager, L.P. Chloroperoxidase, a janus enzyme. Biochemistry 2008, 47, 2997–3003. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Baburaj, A.; Ephraim, B.; Pappachan, F.; Maviliparambathu, P.P.; Vijayan, U.K.; Narayanan, S.V.; Periasamy, K.; George, E.A.; Mathew, L.T. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PLoS ONE 2010, 5, e10601. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.M.; Gade, S.K.; Mathew, L. Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PLoS ONE 2010, 5, e13272. [Google Scholar] [CrossRef]
- Andrew, D.; Hager, L.; Manoj, K.M. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochem. Biophys. Res. Commun. 2011, 415, 646–649. [Google Scholar] [CrossRef]
- Parashar, A.; Manoj, K.M. Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochem. Biophys. Res. Commun. 2012, 417, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Gideon, D.A.; Kumari, R.; Lynn, A.M.; Manoj, K.M. What is the Functional Role of N-terminal Transmembrane Helices in the Metabolism Mediated by Liver Microsomal Cytochrome P450 and its Reductase? Cell. Biochem. Biophys. 2012, 63, 35–45. [Google Scholar] [CrossRef]
- Gade, S.K.; Bhattacharya, S.; Manoj, K.M. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochem. Biophys. Res. Commun. 2012, 419, 211–214. [Google Scholar] [CrossRef]
- Parashar, A.; Gade, S.K.; Potnuru, M.; Madhavan, N.; Manoj, K.M. The curious case of benzbromarone: Insight into super-inhibition of cytochrome P450. PLoS ONE 2014, 9, e89967. [Google Scholar] [CrossRef]
- Parashar, A.; Venkatachalam, A.; Gideon, D.A.; Manoj, K.M. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochem. Biophys. Res. Commun. 2014, 455, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Angastiniotis, M.; Lobitz, S. Thalassemias: An Overview. Int. J. Neonatal Screen. 2019, 5, 16. [Google Scholar] [CrossRef]
- Sanchez-Villalobos, M.; Blanquer, M.; Moraleda, J.M.; Salido, E.J.; Perez-Oliva, A.B. New Insights Into Pathophysiology of β-Thalassemia. Front. Med. 2022, 9, 880752. [Google Scholar] [CrossRef]
- Keikhaei, B.; Yousefi, H.; Bahadoram, M. Clinical and Haematological Effects of Hydroxyurea in β-Thalassemia Intermedia Patients. J. Clin. Diagn. Res. 2015, 9, OM01. [Google Scholar] [CrossRef] [PubMed]
- Tabei, S.M.; Mazloom, M.; Shahriari, M.; Zareifar, S.; Azimi, A.; Hadaegh, A.; Karimi, M. Determining and surveying the role of carnitine and folic acid to decrease fatigue in β-thalassemia minor subjects. Pediatr. Hematol. Oncol. 2013, 30, 742–747. [Google Scholar] [CrossRef]
- Reddy, P.S.; Locke, M.; Badawy, S.M. A systematic review of adherence to iron chelation therapy among children and adolescents with thalassemia. Ann. Med. 2022, 54, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Ngim, C.F.; Lai, N.M.; Hong, J.Y.; Tan, S.L.; Ramadas, A.; Muthukumarasamy, P.; Thong, M.K. Growth hormone therapy for people with thalassaemia. Cochrane Database Syst. Rev. 2017, 9, CD012284. [Google Scholar] [CrossRef] [PubMed]
- Dighriri, I.M.; Alrabghi, K.K.; Sulaiman, D.M.; Alruwaili, A.M.; Alanazi, N.S.; Al-Sadiq, A.A.; Hadadi, A.M.; Sahli, B.Y.; Qasem, B.A.; Alotaibi, M.T.; et al. Efficacy and Safety of Luspatercept in the Treatment of β-Thalassemia: A Systematic Review. Cureus. 2022, 14, e31570. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.T.; Sayani, F.; Trompeter, S.; Drasar, E.; Piga, A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019, 37, 100588. [Google Scholar] [CrossRef]
- Gaziev, J.; Sodani, P.; Polchi, P.; Andreani, M.; Lucarelli, G. Bone marrow transplantation in adults with thalassemia: Treatment and long-term follow-up. Ann. N. Y. Acad. Sci. 2005, 1054, 196–205. [Google Scholar] [CrossRef]
- Lucarelli, G.; Isgrò, A.; Sodani, P.; Gaziev, J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb. Perspect. Med. 2012, 2, a011825. [Google Scholar] [CrossRef]
- Khiabani, A.; Kohansal, M.H.; Keshavarzi, A.; Shahraki, H.; Kooshesh, M.; Karimzade, M.; Gholizadeh Navashenaq, J. CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: A systematic review. Mol. Genet. Genomics. 2023, 298, 1–11. [Google Scholar] [CrossRef]
- Asghar, A.A.; Khabir, Y.; Hashmi, M.R. Zynteglo: Betibeglogene autotemcel—An innovative therapy for β-thalassemia patients. Ann. Med. Surg. 2022, 82, 104624. [Google Scholar] [CrossRef] [PubMed]
- Giardina, B.; Messana, I.; Scatena, R.; Castagnola, M. The multiple functions of hemoglobin. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 165–196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoj, K.M. What Is the Relevance of Murburn Concept in Thalassemia and Respiratory Diseases? Thalass. Rep. 2023, 13, 144-151. https://doi.org/10.3390/thalassrep13020013
Manoj KM. What Is the Relevance of Murburn Concept in Thalassemia and Respiratory Diseases? Thalassemia Reports. 2023; 13(2):144-151. https://doi.org/10.3390/thalassrep13020013
Chicago/Turabian StyleManoj, Kelath Murali. 2023. "What Is the Relevance of Murburn Concept in Thalassemia and Respiratory Diseases?" Thalassemia Reports 13, no. 2: 144-151. https://doi.org/10.3390/thalassrep13020013