Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies?
Abstract
:1. Introduction
2. The Physiological Role of Hepcidin and Erythroferrone in Iron Metabolism
3. The Influence of Polymorphisms of the Hepcidin Gene on the Course of Beta Thalassemia
4. Recent Clinical Studies on the Influence of Hepcidin in Patients with Beta Thalassemia
4.1. Clinical Study 1
4.2. Clinical Study 2
5. Latest Treatment and Potential Theoretical Treatment Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajwa, H.; Basit, H. Thalassemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- De Sanctis, V.; Kattamis, C.; Canatan, D.; Soliman, A.T.; Elsedfy, H.; Karimi, M.; Daar, S.; Wali, Y.; Yassin, M.; Soliman, N.; et al. β-Thalassemia Distribution in the Old World: An Ancient Disease Seen from a Historical Standpoint. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017018. [Google Scholar] [CrossRef] [PubMed]
- Thein, S.L. Pathophysiology of Beta Thalassemia—A Guide to Molecular Therapies. Hematol. Am. Soc. Hematol. Educ. Program 2005, 2005, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Needs, T.; Gonzalez-Mosquera, L.F.; Lynch, D.T. Beta Thalassemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gupta, R.; Musallam, K.M.; Taher, A.T.; Rivella, S. Ineffective Erythropoiesis: Anemia and Iron Overload. Hematol. Oncol. Clin. N. Am. 2018, 32, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.; Melchiori, L.; Gardenghi, S.; Van-Roijen, N.; Grady, R.W.; Ginzburg, Y.; Rivella, S. Iron Metabolism and Ineffective Erythropoiesis in β-Thalassemia Mouse Models. Ann. N. Y. Acad. Sci. 2010, 1202, 24–30. [Google Scholar] [CrossRef]
- Rivella, S. Ineffective Erythropoiesis and Thalassemias. Curr. Opin. Hematol. 2009, 16, 187–194. [Google Scholar] [CrossRef]
- El-Beshlawy, A.; Rabah, F.; Hamed, H.M.; Mahmoud, A.A.-S.; Al-Wakeel, H.A.-H.; Abdelhamid, E.M.; El-Sonbaty, M.M.; El Sissy, M. Navigating Hemostasis of Bleeding Among Children with β-Thalassemia. J. Pediatr. Hematol. Oncol. 2022, 44, e855–e858. [Google Scholar] [CrossRef]
- Wang, X.; Thein, S.L. Switching from Fetal to Adult Hemoglobin. Nat. Genet. 2018, 50, 478–480. [Google Scholar] [CrossRef]
- Khavari, M.; Hamidi, A.; Haghpanah, S.; Bagheri, M.H.; Bardestani, M.; Hantooshzadeh, R.; Karimi, M. Frequency of Cholelithiasis in Patients with Beta-Thalassemia Intermedia with and without Hydroxyurea. Iran. Red Crescent Med. J. 2014, 16, e18712. [Google Scholar] [CrossRef]
- Wojciechowska, M.; Wisniewski, O.W.; Kolodziejski, P.; Krauss, H. Role of Hepcidin in Physiology and Pathophysiology. Emerging Experimental and Clinical Evidence. J. Physiol. Pharm. 2021, 72, 23–33. [Google Scholar] [CrossRef]
- Bou-Fakhredin, R.; Bazarbachi, A.-H.; Chaya, B.; Sleiman, J.; Cappellini, M.D.; Taher, A.T. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia. Int. J. Mol. Sci. 2017, 18, 2778. [Google Scholar] [CrossRef] [Green Version]
- Rachmilewitz, E.A.; Weizer-Stern, O.; Adamsky, K.; Amariglio, N.; Rechavi, G.; Breda, L.; Rivella, S.; Cabantchik, Z.I. Role of Iron in Inducing Oxidative Stress in Thalassemia: Can It Be Prevented by Inhibition of Absorption and by Antioxidants? Ann. N. Y. Acad. Sci. 2005, 1054, 118–123. [Google Scholar] [CrossRef]
- Mishra, A.K.; Tiwari, A. Iron Overload in Beta Thalassaemia Major and Intermedia Patients. Maedica 2013, 8, 328–332. [Google Scholar]
- McDowell, L.A.; Kudaravalli, P.; Sticco, K.L. Iron Overload. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Taher, A.T.; Saliba, A.N. Iron Overload in Thalassemia: Different Organs at Different Rates. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 265–271. [Google Scholar] [CrossRef]
- Saad, H.K.M.; Abd Rahman, A.A.; Ab Ghani, A.S.; Taib, W.R.W.; Ismail, I.; Johan, M.F.; Al-Wajeeh, A.S.; Al-Jamal, H.A.N. Activation of STAT and SMAD Signaling Induces Hepcidin Re-Expression as a Therapeutic Target for β-Thalassemia Patients. Biomedicines 2022, 10, 189. [Google Scholar] [CrossRef]
- Guimarães, J.S.; Cominal, J.G.; Silva-Pinto, A.C.; Olbina, G.; Ginzburg, Y.Z.; Nandi, V.; Westerman, M.; Rivella, S.; de Souza, A.M. Altered Erythropoiesis and Iron Metabolism in Carriers of Thalassemia. Eur. J. Haematol. 2015, 94, 511–518. [Google Scholar] [CrossRef]
- Kautz, L.; Jung, G.; Du, X.; Gabayan, V.; Chapman, J.; Nasoff, M.; Nemeth, E.; Ganz, T. Erythroferrone Contributes to Hepcidin Suppression and Iron Overload in a Mouse Model of β-Thalassemia. Blood 2015, 126, 2031–2037. [Google Scholar] [CrossRef]
- Chambers, K.; Ashraf, M.A.; Sharma, S. Physiology, Hepcidin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Girelli, D.; Nemeth, E.; Swinkels, D.W. Hepcidin in the Diagnosis of Iron Disorders. Blood 2016, 127, 2809–2813. [Google Scholar] [CrossRef]
- Ismail, N.A.; Habib, S.A.; Talaat, A.A.; Mostafa, N.O.; Elghoroury, E.A. The Relation between Serum Hepcidin, Ferritin, Hepcidin: Ferritin Ratio, Hydroxyurea and Splenectomy in Children with β-Thalassemia. Open Access Maced. J. Med. Sci. 2019, 7, 2434–2439. [Google Scholar] [CrossRef]
- Pratummo, K.; Jetsrisuparb, A.; Fucharoen, S.; Tripatara, A. Hepcidin Expression from Monocyte of Splenectomized and Non-Splenectomized Patients with HbE-β-Thalassemia. Hematology 2014, 19, 175–180. [Google Scholar] [CrossRef]
- Jones, E.; Pasricha, S.-R.; Allen, A.; Evans, P.; Fisher, C.A.; Wray, K.; Premawardhena, A.; Bandara, D.; Perera, A.; Webster, C.; et al. Hepcidin Is Suppressed by Erythropoiesis in Hemoglobin E β-Thalassemia and β-Thalassemia Trait. Blood 2015, 125, 873–880. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, Y.; Liu, R.; Liu, J.; Yang, G.; Xiang, Z.; Liang, Y.; Lai, Y. Imbalance of Erythropoiesis and Iron Metabolism in Patients with Thalassemia. Int. J. Med. Sci. 2019, 16, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, E. Hepcidin in β-Thalassemia. Ann. N. Y. Acad. Sci. 2010, 1202, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Srole, D.N.; Ganz, T. Erythroferrone Structure, Function, and Physiology: Iron Homeostasis and Beyond. J. Cell. Physiol. 2021, 236, 4888–4901. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.; Ganz, T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. Hemasphere 2018, 2, e35. [Google Scholar] [CrossRef]
- El-Gamal, R.A.E.-R.; Abdel-Messih, I.Y.; Habashy, D.M.; Zaiema, S.E.G.; Pessar, S.A. Erythroferrone, the New Iron Regulator: Evaluation of Its Levels in Egyptian Patients with Beta Thalassemia. Ann. Hematol. 2020, 99, 31–39. [Google Scholar] [CrossRef]
- Musallam, K.M.; Cappellini, M.D.; Taher, A.T. Iron Overload in β-Thalassemia Intermedia: An Emerging Concern. Curr. Opin. Hematol. 2013, 20, 187–192. [Google Scholar] [CrossRef]
- Tanno, T.; Bhanu, N.V.; Oneal, P.A.; Goh, S.-H.; Staker, P.; Lee, Y.T.; Moroney, J.W.; Reed, C.H.; Luban, N.L.C.; Wang, R.-H.; et al. High Levels of GDF15 in Thalassemia Suppress Expression of the Iron Regulatory Protein Hepcidin. Nat. Med. 2007, 13, 1096–1101. [Google Scholar] [CrossRef]
- Tanno, T.; Porayette, P.; Sripichai, O.; Noh, S.-J.; Byrnes, C.; Bhupatiraju, A.; Lee, Y.T.; Goodnough, J.B.; Harandi, O.; Ganz, T.; et al. Identification of TWSG1 as a Second Novel Erythroid Regulator of Hepcidin Expression in Murine and Human Cells. Blood 2009, 114, 181–186. [Google Scholar] [CrossRef]
- Casanovas, G.; Vujić Spasic, M.; Casu, C.; Rivella, S.; Strelau, J.; Unsicker, K.; Muckenthaler, M.U. The Murine Growth Differentiation Factor 15 Is Not Essential for Systemic Iron Homeostasis in Phlebotomized Mice. Haematologica 2013, 98, 444–447. [Google Scholar] [CrossRef]
- Andreani, M.; Radio, F.C.; Testi, M.; De Bernardo, C.; Troiano, M.; Majore, S.; Bertucci, P.; Polchi, P.; Rosati, R.; Grammatico, P. Association of Hepcidin Promoter c.-582 A>G Variant and Iron Overload in Thalassemia Major. Haematologica 2009, 94, 1293–1296. [Google Scholar] [CrossRef]
- Zarghamian, P.; Azarkeivan, A.; Arabkhazaeli, A.; Mardani, A.; Shahabi, M. Hepcidin Gene Polymorphisms and Iron Overload in β-Thalassemia Major Patients Refractory to Iron Chelating Therapy. BMC Med. Genet. 2020, 21, 75. [Google Scholar] [CrossRef] [Green Version]
- Parajes, S.; González-Quintela, A.; Campos, J.; Quinteiro, C.; Domínguez, F.; Loidi, L. Genetic Study of the Hepcidin Gene (HAMP) Promoter and Functional Analysis of the c.-582A > G Variant. BMC Genet. 2010, 11, 110. [Google Scholar] [CrossRef]
- Duca, L.; Delbini, P.; Nava, I.; Cappellini, M.D.; Meo, A. Hepcidin Mutation in a Beta-Thalassemia Major Patient with Persistent Severe Iron Overload despite Chelation Therapy. Intern. Emerg. Med. 2010, 5, 83–85. [Google Scholar] [CrossRef]
- Athiyarath, R.; George, B.; Mathews, V.; Srivastava, A.; Edison, E.S. Association of Growth Differentiation Factor 15 (GDF15) Polymorphisms with Serum GDF15 and Ferritin Levels in β-Thalassemia. Ann. Hematol. 2014, 93, 2093–2095. [Google Scholar] [CrossRef]
- Bharadwaj, N.; Peyam, S.; Bhatia, P.; Bhatia, A.; Das, R.; Singh, M.; Bansal, D.; Trehan, A.; Jain, R. Impact of HFE-2 and HAMP Gene Variations on Iron Overload in Pediatric Patients with Non-Transfusion Dependent Thalassemia: A Pilot Study. Indian J. Hematol. Blood Transfus. 2022, 38, 158–163. [Google Scholar] [CrossRef]
- Pasricha, S.-R.; Frazer, D.M.; Bowden, D.K.; Anderson, G.J. Transfusion Suppresses Erythropoiesis and Increases Hepcidin in Adult Patients with β-Thalassemia Major: A Longitudinal Study. Blood 2013, 122, 124–133. [Google Scholar] [CrossRef]
- Richard, F.; van Lier, J.J.; Roubert, B.; Haboubi, T.; Göhring, U.-M.; Dürrenberger, F. Oral Ferroportin Inhibitor VIT-2763: First-in-Human, Phase 1 Study in Healthy Volunteers. Am. J. Hematol. 2020, 95, 68–77. [Google Scholar] [CrossRef]
- Porter, J.B.; Cappellini, M.D.; Kattamis, A.; Viprakasit, V.; Musallam, K.M.; Zhu, Z.; Taher, A.T. Iron Overload across the Spectrum of Non-Transfusion-Dependent Thalassaemias: Role of Erythropoiesis, Splenectomy and Transfusions. Br. J. Haematol. 2017, 176, 288–299. [Google Scholar] [CrossRef]
- Smesam, H.N.K.; Albuthabhak, H.A.Q.; Arjmand, S.; Al-Hakeim, H.K.; Siadat, S.O.R. Evaluation of Erythroferrone, Hepcidin, and Iron Overload Status in Iraqi Transfusion-Dependent β-Thalassemia Major Patients. Hemoglobin 2020, 44, 272–277. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. The Hepcidin-Ferroportin System as a Therapeutic Target in Anemias and Iron Overload Disorders. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 538–542. [Google Scholar] [CrossRef]
- Manolova, V.; Nyffenegger, N.; Flace, A.; Altermatt, P.; Varol, A.; Doucerain, C.; Sundstrom, H.; Dürrenberger, F. Oral Ferroportin Inhibitor Ameliorates Ineffective Erythropoiesis in a Model of β-Thalassemia. J. Clin. Investig. 2019, 130, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Preza, G.C.; Ruchala, P.; Pinon, R.; Ramos, E.; Qiao, B.; Peralta, M.A.; Sharma, S.; Waring, A.; Ganz, T.; Nemeth, E. Minihepcidins Are Rationally Designed Small Peptides That Mimic Hepcidin Activity in Mice and May Be Useful for the Treatment of Iron Overload. J. Clin. Investig. 2011, 121, 4880–4888. [Google Scholar] [CrossRef] [PubMed]
- Casu, C.; Chessa, R.; Liu, A.; Gupta, R.; Drakesmith, H.; Fleming, R.; Ginzburg, Y.Z.; MacDonald, B.; Rivella, S. Minihepcidins Improve Ineffective Erythropoiesis and Splenomegaly in a New Mouse Model of Adult β-Thalassemia Major. Haematologica 2020, 105, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Casu, C.; Oikonomidou, P.R.; Chen, H.; Nandi, V.; Ginzburg, Y.; Prasad, P.; Fleming, R.E.; Shah, Y.M.; Valore, E.V.; Nemeth, E.; et al. Minihepcidin Peptides as Disease Modifiers in Mice Affected by β-Thalassemia and Polycythemia Vera. Blood 2016, 128, 265–276. [Google Scholar] [CrossRef]
- Porter, J.; Kowdley, K.; Taher, A.; Vacirca, J.; Shen, Z.; Chen, S.; Chawla, L.; Tidmarsh, G. Effect of Ljpc-401 (Synthetic Human Hepcidin) on Iron Parameters in Healthy Adults. Blood 2018, 132, 2336. [Google Scholar] [CrossRef]
- Taranath, R.; Bourne, G.; Zhao, L.; Frederick, B.; King, C.; Liu, D. Regulation of Iron Homeostasis By PTG-300 Improves Disease Parameters in Mouse Models for Beta-Thalassemia and Hereditary Hemochromatosis. Blood 2019, 134, 3540. [Google Scholar] [CrossRef]
- Bourne, G.; Zhao, L.; Bhandari, A.; Frederick, B.; McMahon, J.; Tran, V.; Zhang, J.; Stephenson, A.; Taranath, R.; Tovera, J.; et al. Hepcidin Mimetic Ptg-300 for Treatment of Ineffective Erythropoiesis and Chronic Anemia in Hemoglobinopathy Diseases. In Proceedings of the 23rd Congress of European Hematology Association, Stockholm, Sweden, 14–17 June 2018. [Google Scholar]
- Lal, A.; Voskaridou, E.; Flevari, P.; Taher, A.; Chew, L.P.; Valone, F.; Gupta, S.; Viprakasit, V. A Hepcidin Mimetic, Ptg-300, Demonstrates Pharmacodynamic Effects Indicating Reduced Iron Availability in Transfusion-Dependent Beta-Thalassemia Subjects. Available online: https://library.ehaweb.org/eha/2020/eha25th/295117/ashutosh.lal.a.hepcidin.mimetic.ptg-300.demonstrates.pharmacodynamic.effects.html?f=menu%3D6%2Abrowseby%3D8%2Asortby%3D2%2Amedia%3D3%2Ace_id%3D1766%2Aot_id%3D23241%2Amarker%3D756 (accessed on 5 September 2022).
- McCaleb, M.; Lickliter, J.; Dibble, A.; Schneider, E.; Aghajan, M.; Guo, S.; Hughes, S.; Geary, R.S.; Monia, B.P. Transmembrane Protease, Serine 6 (TMPRSS6) Antisense Oligonucleotide (IONIS-TMPRSS6-LRX) Reduces Plasma Iron Levels of Healthy Volunteers in a Phase 1 Clinical Study. Blood 2018, 132, 3634. [Google Scholar] [CrossRef]
- Guo, S.; Casu, C.; Gardenghi, S.; Booten, S.; Aghajan, M.; Peralta, R.; Watt, A.; Freier, S.; Monia, B.P.; Rivella, S. Reducing TMPRSS6 Ameliorates Hemochromatosis and β-Thalassemia in Mice. J. Clin. Investig. 2013, 123, 1531–1541. [Google Scholar] [CrossRef]
- Ramsay, A.J.; Hooper, J.D.; Folgueras, A.R.; Velasco, G.; López-Otín, C. Matriptase-2 (TMPRSS6): A Proteolytic Regulator of Iron Homeostasis. Haematologica 2009, 94, 840–849. [Google Scholar] [CrossRef]
- Vadolas, J.; Ng, G.Z.; Kysenius, K.; Crouch, P.J.; Dames, S.; Eisermann, M.; Nualkaew, T.; Vilcassim, S.; Schaeper, U.; Grigoriadis, G. SLN124, a GalNac-SiRNA Targeting Transmembrane Serine Protease 6, in Combination with Deferiprone Therapy Reduces Ineffective Erythropoiesis and Hepatic Iron-Overload in a Mouse Model of β-Thalassaemia. Br. J. Haematol. 2021, 194, 200–210. [Google Scholar] [CrossRef]
- Schmidt, P.J.; Liu, K.; Visner, G.; Fitzgerald, K.; Fishman, S.; Racie, T.; Hettinger, J.L.; Butler, J.S.; Fleming, M.D. RNAi-Mediated Reduction of Hepatic Tmprss6 Diminishes Anemia and Secondary Iron Overload in a Splenectomized Mouse Model of β-Thalassemia Intermedia. Am. J. Hematol. 2018, 93, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Arezes, J.; Foy, N.; McHugh, K.; Quinkert, D.; Benard, S.; Sawant, A.; Frost, J.N.; Armitage, A.E.; Pasricha, S.-R.; Lim, P.J.; et al. Antibodies against the Erythroferrone N-Terminal Domain Prevent Hepcidin Suppression and Ameliorate Murine Thalassemia. Blood 2020, 135, 547–557. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Guo, W.; Liu, X.; Liu, S.; Yin, H. Icariin Regulates Systemic Iron Metabolism by Increasing Hepatic Hepcidin Expression through Stat3 and Smad1/5/8 Signaling. Int. J. Mol. Med. 2016, 37, 1379–1388. [Google Scholar] [CrossRef]
- Ren, F.; Qian, X.-H.; Qian, X.-L. Astragalus Polysaccharide Upregulates Hepcidin and Reduces Iron Overload in Mice via Activation of P38 Mitogen-Activated Protein Kinase. Biochem. Biophys. Res. Commun. 2016, 472, 163–168. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Taher, A.T. The Use of Luspatercept for Thalassemia in Adults. Blood Adv. 2021, 5, 326–333. [Google Scholar] [CrossRef]
- Shah, Y.M.; Xie, L. Hypoxia-Inducible Factors Link Iron Homeostasis and Erythropoiesis. Gastroenterology 2014, 146, 630–642. [Google Scholar] [CrossRef]
- Parrow, N.L.; Fleming, R.E. Bone Morphogenetic Proteins as Regulators of Iron Metabolism. Annu. Rev. Nutr. 2014, 34, 77–94. [Google Scholar] [CrossRef]
Study Classification | Number of Participants | Methods | Key Findings | References |
---|---|---|---|---|
Name: Clinical study 1 Type: Cross-sectional study | Test group: n = 70 (n = 55: ferritin ≥ 1000 ng/mL; n = 15: ferritin < 1000 ng/mL) control group: n = 30 | Serum concentrations of hepcidin and erythroferrone were measured along with other hematological parameters after 1 day cessation of chelation therapy |
| El-Rahman El-Gamal et al. [29] |
Name: Clinical study 2 Type: Cross-sectional study | n = 166 (n = 95: beta thalassemia intermedia; n = 49: Hb E/β thalassemia; n = 22: Hb H syndromes) | Liver iron concentration (LIC), serum ferritin (SF), hepcidin, transferrin saturation (TfSat), growth differentiation factor 15 (GDF15), erythropoietin (EPO), and nontransferrin-bound iron (NTBI) were measured in thalassemia patients |
| Porter et al. [42] |
Name of Therapeutic Agent | Type of Agent | Current Stage of Research |
---|---|---|
VIT-2763 | Oral ferroportin inhibitor | Phase 1 clinical trial performed with positive results |
Minihepcidin | Hepcidin agonist composed of 7–9 N-terminal amino acids | Preclinical animal study performed with positive results |
LJPC-401 | Synthetic human hepcidin | Phase 2 clinical trial NCT03381833 terminated due to lack of efficacy |
PTG-300 | Hepcidin peptidomimetic | Preclinical animal study performed with positive results |
IONIS-TMPRSS6-L | TMPRSS6 antisense oligonucleotide | Preclinical animal study performed with positive results |
SLN124 | Small interfering RNA that reduces TMPRSS6 gene expression | Preclinical animal study performed with positive results |
Antierythroferrone antibody | An antibody that binds to the N-terminal domain of erythroferrone, preventing the interaction of erythroferrone and bone morphogenetic protein | Preclinical animal study performed with positive results |
Icariin | A natural agent that stimulates hepcidin expression | Preclinical molecular and animal study performed with positive results |
Astragalus polysaccharide | A natural agent that stimulates hepcidin expression | Preclinical molecular and animal study performed with positive results |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Au, T.Y.; Benjamin, S.; Wiśniewski, O.W. Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies? Thalass. Rep. 2022, 12, 123-134. https://doi.org/10.3390/thalassrep12030017
Au TY, Benjamin S, Wiśniewski OW. Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies? Thalassemia Reports. 2022; 12(3):123-134. https://doi.org/10.3390/thalassrep12030017
Chicago/Turabian StyleAu, Tsz Yuen, Shamiram Benjamin, and Oskar Wojciech Wiśniewski. 2022. "Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies?" Thalassemia Reports 12, no. 3: 123-134. https://doi.org/10.3390/thalassrep12030017
APA StyleAu, T. Y., Benjamin, S., & Wiśniewski, O. W. (2022). Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies? Thalassemia Reports, 12(3), 123-134. https://doi.org/10.3390/thalassrep12030017