Association Between Polypharmacy and Self-Reported Hearing Disability: An Observational Study Using ATC Classification and HHIE-S-It Questionnaire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Classification and Quantification of Drugs Taken According to the ATC System
2.3. Self-Reported Hearing Impairment
3. Statistical Analysis
4. Results
4.1. Assessment of Self-Reported Hearing Impairment
4.2. Self-Assessed Hearing Impairment Related to a Specific ATC Category
4.3. Assessing Self-Reported Hearing Impairment in Relation to the Number of Medications Used
5. Discussion
6. Conclusions
7. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anastasiadou, S.; Al Khalili, Y. Hearing Loss; StatPearls Publishing: Orlando, FL, USA, 2025. [Google Scholar]
- Stephenson, J. WHO Report Predicts Hearing Loss for 1 in 4 People Worldwide by 2050. JAMA Health Forum 2021, 2, e210357. [Google Scholar] [CrossRef]
- Huddle, M.G.; Goman, A.M.; Kernizan, F.C.; Foley, D.M.; Price, C.; Frick, K.D.; Lin, F.R. The Economic Impact of Adult Hearing Loss. JAMA Otolaryngol.–Head Neck Surg. 2017, 143, 1040. [Google Scholar] [CrossRef] [PubMed]
- Neitzel, R.L.; Swinburn, T.K.; Hammer, M.S.; Eisenberg, D. Economic Impact of Hearing Loss and Reduction of Noise-Induced Hearing Loss in the United States. J. Speech Lang. Hear. Res. 2017, 60, 182–189. [Google Scholar] [CrossRef]
- Fornaro, G.; Armeni, P.; Albera, A.; Barbara, M. The Value of Hearing Aids for the Italian NHS: A Cost-Utility Analysis. Otol. Neurotol. Open 2022, 2, e018. [Google Scholar] [CrossRef]
- Censis. Available online: https://www.censis.it/Welfare-e-Salute/Sentirsi-Bene/i-Problemi-Di-Udito-Italia-Ampiezza-e-Complessit%C3%A0-Del-Fenomeno (accessed on 6 July 2025).
- Sindhusake, D.; Mitchell, P.; Smith, W.; Golding, M.; Newall, P.; Hartley, D.; Rubin, G. Validation of Self-Reported Hearing Loss. The Blue Mountains Hearing Study. Int. J. Epidemiol. 2001, 30, 1371–1378. [Google Scholar] [CrossRef]
- de Andrade, A.N.; Soares, A.; Skarzynska, M.B.; Skarzynski, P.H.; Sanfins, M.D.; Gil, D. Self-Perception of Hearing Difficulties and Quality of Life in Individuals with Hearing Loss. Audiol. Res. 2022, 12, 527–538. [Google Scholar] [CrossRef]
- Kiely, K.M.; Khalatbari-Soltani, S.; Blyth, F.M.; Naganathan, V.; Handelsman, D.J.; Waite, L.M.; Le Couteur, D.G.; Mortby, M.E.; Cumming, R.G.; Anstey, K.J. Mixed Evidence of an Association between Self-Rated Hearing Difficulties and Falls: Prospective Analysis of Two Longitudinal Studies. Gerontology 2023, 69, 98–108. [Google Scholar] [CrossRef]
- Cheslock, M.; De Jesus, O. Presbycusis; StatPearls Publishing: Orlando, FL, USA, 2025. [Google Scholar]
- Plescia, F.; Cirrincione, L.; Martorana, D.; Ledda, C.; Rapisarda, V.; Castelli, V.; Martines, F.; Vinnikov, D.; Cannizzaro, E. Alcohol Abuse and Insomnia Disorder: Focus on a Group of Night and Day Workers. Int. J. Environ. Res. Public Health 2021, 18, 13196. [Google Scholar] [CrossRef]
- Ohgami, N.; Iida, M.; Yajima, I.; Tamura, H.; Ohgami, K.; Kato, M. Hearing Impairments Caused by Genetic and Environmental Factors. Environ. Health Prev. Med. 2013, 18, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Momi, S.K.; Wolber, L.E.; Fabiane, S.M.; MacGregor, A.J.; Williams, F.M.K. Genetic and Environmental Factors in Age-Related Hearing Impairment. Twin Res. Hum. Genet. 2015, 18, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xie, H.; Su, S.; Zou, H.; Zhou, L.-F.; Xu, Q.-L.; Wei, F.; Zhang, M. Investigation of Critical Factors Influencing the Underestimation of Hearing Loss Predicted by the ISO 1999 Predicting Model. BMC Public Health 2023, 23, 2239. [Google Scholar] [CrossRef]
- Lin, P.-T.; Li, I.-H.; Yang, H.-W.; Chiang, K.-W.; Wang, C.-H.; Kao, L.-T. Illegal Drug Use and Risk of Hearing Loss in the United States: A National Health and Nutrition Examination Survey. Int. J. Environ. Res. Public Health 2021, 18, 11945. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, E.; Cirrincione, L.; Malta, G.; Fruscione, S.; Mucci, N.; Martines, F.; Plescia, F. The Influence of the COVID-19 Pandemic Emergency on Alcohol Use: A Focus on a Cohort of Sicilian Workers. Int. J. Environ. Res. Public Health 2023, 20, 4613. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Zhao, Z.; Liu, S.; Xin, J.; Liu, Y.; Hao, Y.; Wang, Y.; Yang, L. Alcohol as a Risk Factor for Hearing Loss: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0280641. [Google Scholar] [CrossRef]
- Horikawa, C.; Kodama, S.; Tanaka, S.; Fujihara, K.; Hirasawa, R.; Yachi, Y.; Shimano, H.; Yamada, N.; Saito, K.; Sone, H. Diabetes and Risk of Hearing Impairment in Adults: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2013, 98, 51–58. [Google Scholar] [CrossRef]
- Samocha-Bonet, D.; Wu, B.; Ryugo, D.K. Diabetes Mellitus and Hearing Loss: A Review. Ageing Res. Rev. 2021, 71, 101423. [Google Scholar] [CrossRef]
- Helvik, A.-S.; Jacobsen, G.; Hallberg, L.R.-M. Psychological Well-Being of Adults with Acquired Hearing Impairment. Disabil. Rehabil. 2006, 28, 535–545. [Google Scholar] [CrossRef]
- Nachtegaal, J.; Smit, J.H.; Smits, C.; Bezemer, P.D.; van Beek, J.H.M.; Festen, J.M.; Kramer, S.E. The Association Between Hearing Status and Psychosocial Health Before the Age of 70 Years: Results From an Internet-Based National Survey on Hearing. Ear Hear. 2009, 30, 302–312. [Google Scholar] [CrossRef]
- Pronk, M.; Deeg, D.J.H.; Smits, C.; Twisk, J.W.; van Tilburg, T.G.; Festen, J.M.; Kramer, S.E. Hearing Loss in Older Persons. J. Aging Health 2014, 26, 703–723. [Google Scholar] [CrossRef]
- Tan, H.E.; Lan, N.S.R.; Knuiman, M.W.; Divitini, M.L.; Swanepoel, D.W.; Hunter, M.; Brennan-Jones, C.G.; Hung, J.; Eikelboom, R.H.; Santa Maria, P.L. Associations between Cardiovascular Disease and Its Risk Factors with Hearing Loss—A Cross-sectional Analysis. Clin. Otolaryngol. 2018, 43, 172–181. [Google Scholar] [CrossRef]
- Friedland, D.R.; Cederberg, C.; Tarima, S. Audiometric Pattern as a Predictor of Cardiovascular Status: Development of a Model for Assessment of Risk. Laryngoscope 2009, 119, 473–486. [Google Scholar] [CrossRef]
- Vilayur, E.; Gopinath, B.; Harris, D.C.; Burlutsky, G.; McMahon, C.M.; Mitchell, P. The Association Between Reduced GFR and Hearing Loss: A Cross-Sectional Population-Based Study. Am. J. Kidney Dis. 2010, 56, 661–669. [Google Scholar] [CrossRef]
- Liu, W.; Meng, Q.; Wang, Y.; Yang, C.; Liu, L.; Wang, H.; Su, Z.; Kong, G.; Zhao, Y.; Zhang, L. The Association between Reduced Kidney Function and Hearing Loss: A Cross-Sectional Study. BMC Nephrol. 2020, 21, 145. [Google Scholar] [CrossRef]
- Na Takuathung, M.; Sakuludomkan, W.; Khatsri, R.; Dukaew, N.; Kraivisitkul, N.; Ahmadmusa, B.; Mahakkanukrauh, C.; Wangthaweesap, K.; Onin, J.; Srichai, S.; et al. Adverse Effects of Angiotensin-Converting Enzyme Inhibitors in Humans: A Systematic Review and Meta-Analysis of 378 Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 8373. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tian, E.; Liu, Z.; Zhou, C.; Yang, P.; Tian, K.; Liao, W.; Li, J.; Ren, C. Small Molecule Angiotensin Converting Enzyme Inhibitors: A Medicinal Chemistry Perspective. Front. Pharmacol. 2022, 13, 968104. [Google Scholar] [CrossRef] [PubMed]
- Menne, J.; Haller, H. Fixed-Dose Lercanidipine/Enalapril for Hypertension. Drugs Today 2008, 44, 261. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Brandolini, C.; Prandin, M.G.; Dormi, A.; Modugno, G.C.; Pirodda, A. Prevalence of Tinnitus in Patients Withhypertension and the Impact of Different Anti Hypertensive Drugs on the Incidence of Tinnitus: A Prospective, Single-Blind, Observational Study. Curr. Ther. Res. 2005, 66, 420–432. [Google Scholar] [CrossRef]
- Muri, L.; Le, N.D.; Zemp, J.; Grandgirard, D.; Leib, S.L. Metformin Mediates Neuroprotection and Attenuates Hearing Loss in Experimental Pneumococcal Meningitis. J. Neuroinflamm. 2019, 16, 156. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Choo, O.; Kim, Y.J.; Gil, E.S.; Jang, J.H.; Kang, Y.; Choung, Y.-H. Atorvastatin Prevents Hearing Impairment in the Presence of Hyperlipidemia. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118850. [Google Scholar] [CrossRef]
- Dumbreck, S.; Flynn, A.; Nairn, M.; Wilson, M.; Treweek, S.; Mercer, S.W.; Alderson, P.; Thompson, A.; Payne, K.; Guthrie, B. Drug-Disease and Drug-Drug Interactions: Systematic Examination of Recommendations in 12 UK National Clinical Guidelines. BMJ 2015, 350, h949. [Google Scholar] [CrossRef]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What Is Polypharmacy? A Systematic Review of Definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef]
- Wise, J. Polypharmacy: A Necessary Evil. BMJ 2013, 347, f7033. [Google Scholar] [CrossRef]
- Narayan, S.W.; Nishtala, P.S. Decade-Long Temporal Trends in the Utilization of Preventive Medicines by Centenarians. J. Clin. Pharm. Ther. 2017, 42, 165–169. [Google Scholar] [CrossRef]
- Morin, L.; Vetrano, D.L.; Rizzuto, D.; Calderón-Larrañaga, A.; Fastbom, J.; Johnell, K. Choosing Wisely? Measuring the Burden of Medications in Older Adults near the End of Life: Nationwide, Longitudinal Cohort Study. Am. J. Med. 2017, 130, 927–936.e9. [Google Scholar] [CrossRef]
- Lanvers-Kaminsky, C.; Zehnhoff-Dinnesen, A.A.; Parfitt, R.; Ciarimboli, G. Drug-induced Ototoxicity: Mechanisms, Pharmacogenetics, and Protective Strategies. Clin. Pharmacol. Ther. 2017, 101, 491–500. [Google Scholar] [CrossRef]
- Rizk, H.G.; Lee, J.A.; Liu, Y.F.; Endriukaitis, L.; Isaac, J.L.; Bullington, W.M. Drug-Induced Ototoxicity: A Comprehensive Review and Reference Guide. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 1265–1275. [Google Scholar] [CrossRef]
- Hakkaart-van Roijen, L. Trimbos/IMTA Questionnaire for Costs Associated with Psychiatric Illness (TiC-P) Handleiding; Rotterdam, Institute for Medical Technology Assessment, Erasmus Universiteit Rotterdam: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Wang, X.; Wang, Y.; Xu, Z.; Xiong, Y.; Wei, D.-Q. ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method. Front. Pharmacol. 2019, 10, 971. [Google Scholar] [CrossRef] [PubMed]
- Apa, E.; Sacchetto, L.; Palma, S.; Cocchi, C.; Gherpelli, C.; Genovese, E.; Monzani, D.; Nocini, R. Italian Validation of the Hearing Handicap Inventory for Elderly–Screening Version (HHIE-S-It). Acta Otorhinolaryngol. Ital. 2023, 43, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Petrini, E.; Caviglia, G.P.; Pellicano, R.; Saracco, G.M.; Morino, M.; Ribaldone, D.G. Risk of Drug Interactions and Prescription Appropriateness in Elderly Patients. Ir. J. Med. Sci. 2020, 189, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.S.; Chen, T.; Timor, T.A.; Busch, A.L.; Meyer, T.A.; Nguyen, S.A.; Rizk, H.G. Prevalence of Polypharmacy in Patients With Vestibular and Balance Complaints. Ear Hear. 2023, 44, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Gates, G.A.; Mills, J.H. Presbycusis. Lancet 2005, 366, 1111–1120. [Google Scholar] [CrossRef]
- Yamasoba, T.; Lin, F.R.; Someya, S.; Kashio, A.; Sakamoto, T.; Kondo, K. Current Concepts in Age-Related Hearing Loss: Epidemiology and Mechanistic Pathways. Hear. Res. 2013, 303, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Maher, R.L.; Hanlon, J.; Hajjar, E.R. Clinical Consequences of Polypharmacy in Elderly. Expert. Opin. Drug Saf. 2014, 13, 57–65. [Google Scholar] [CrossRef]
- Fried, T.R.; O’Leary, J.; Towle, V.; Goldstein, M.K.; Trentalange, M.; Martin, D.K. Health Outcomes Associated with Polypharmacy in Community-Dwelling Older Adults: A Systematic Review. J. Am. Geriatr. Soc. 2014, 62, 2261–2272. [Google Scholar] [CrossRef]
- Kurczewska-Michalak, M.; Lewek, P.; Jankowska-Polańska, B.; Giardini, A.; Granata, N.; Maffoni, M.; Costa, E.; Midão, L.; Kardas, P. Polypharmacy Management in the Older Adults: A Scoping Review of Available Interventions. Front. Pharmacol. 2021, 12, 734045. [Google Scholar] [CrossRef]
- Baiduc, R.R.; Sun, J.W.; Berry, C.M.; Anderson, M.; Vance, E.A. Relationship of Cardiovascular Disease Risk and Hearing Loss in a Clinical Population. Sci. Rep. 2023, 13, 1642. [Google Scholar] [CrossRef]
- Reed, N.S.; Huddle, M.G.; Betz, J.; Power, M.C.; Pankow, J.S.; Gottesman, R.; Richey Sharrett, A.; Mosley, T.H.; Lin, F.R.; Deal, J.A. Association of Midlife Hypertension with Late-Life Hearing Loss. Otolaryngol.–Head Neck Surg. 2019, 161, 996–1003. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.-J.; Kim, M.-S.; Park, B.; Kim, J.-H.; Choi, H.G. Discrepancy between Self-Assessed Hearing Status and Measured Audiometric Evaluation. PLoS ONE 2017, 12, e0182718. [Google Scholar] [CrossRef]
- Joo, Y.; Cruickshanks, K.J.; Klein, B.E.K.; Klein, R.; Hong, O.; Wallhagen, M.I. The Contribution of Ototoxic Medications to Hearing Loss Among Older Adults. J. Gerontol. Ser. A 2020, 75, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Helzner, E.P.; Cauley, J.A.; Pratt, S.R.; Wisniewski, S.R.; Zmuda, J.M.; Talbott, E.O.; de Rekeneire, N.; Harris, T.B.; Rubin, S.M.; Simonsick, E.M.; et al. Race and Sex Differences in Age-Related Hearing Loss: The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2005, 53, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.A.; Cicala, G.; Cutroneo, P.M.; Mocciaro, E.; Sottosanti, L.; Freni, F.; Galletti, F.; Arcoraci, V.; Spina, E. Ototoxic Adverse Drug Reactions: A Disproportionality Analysis Using the Italian Spontaneous Reporting Database. Front. Pharmacol. 2019, 10, 1161. [Google Scholar] [CrossRef]
- Ryback, L.P. Ototoxicity of Loop Diuretics. Otolaryngol. Clin. N. Am. 1993, 26, 829–844. [Google Scholar] [CrossRef]
- Al-Ghamdi, B.S.; Rohra, D.K.; Abuharb, G.A.I.; Alkofide, H.A.; AlRuwaili, N.S.; Shoukri, M.M.; Cahusac, P.M.B. Use of Beta Blockers Is Associated with Hearing Loss. Int. J. Audiol. 2018, 57, 213–220. [Google Scholar] [CrossRef]
- Dulin, B.; Abraham, W.T. Pharmacology of Carvedilol. Am. J. Cardiol. 2004, 93, 3–6. [Google Scholar] [CrossRef]
- Sheppard, A.; Hayes, S.H.; Chen, G.D.; Ralli, M.; Salvi, R. Review of Salicylate-Induced Hearing Loss, Neurotoxicity, Tinnitus and Neuropathophysiology. Acta Otorhinolaryngol. Ital. 2014, 34, 79–93. [Google Scholar]
- Stypulkowski, P.H. Mechanisms of Salicylate Ototoxicity. Hear. Res. 1990, 46, 113–145. [Google Scholar] [CrossRef] [PubMed]
- Shehata, W.E.; Brownell, W.E.; Dieler, R. Effects of Salicylate on Shape, Electromotility and Membrane Characteristics of Isolated Outer Hair Cells from Guinea Pig Cochlea. Acta Otolaryngol. 1991, 111, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Liberman, M.C.; Gao, J.; He, D.Z.Z.; Wu, X.; Jia, S.; Zuo, J. Prestin Is Required for Electromotility of the Outer Hair Cell and for the Cochlear Amplifier. Nature 2002, 419, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Stolzberg, D.; Chen, G.-D.; Allman, B.L.; Salvi, R.J. Salicylate-Induced Peripheral Auditory Changes and Tonotopic Reorganization of Auditory Cortex. Neuroscience 2011, 180, 157–164. [Google Scholar] [CrossRef]
- Zheng, J.; Takahashi, S.; Zhou, Y.; Cheatham, M.A. Prestin and Electromotility May Serve Multiple Roles in Cochlear Outer Hair Cells. Hear. Res. 2022, 423, 108428. [Google Scholar] [CrossRef]
- Peng, B.-G.; Chen, S.; Lin, X. Aspirin Selectively Augmented N-Methyl-d-Aspartate Types of Glutamate Responses in Cultured Spiral Ganglion Neurons of Mice. Neurosci. Lett. 2003, 343, 21–24. [Google Scholar] [CrossRef]
- Raza, H.; John, A. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells. PLoS ONE 2012, 7, e36325. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, C.H.; Min, C.; Yoo, D.M.; Choi, H.G. Association between Proton Pump Inhibitors and Hearing Impairment: A Nested Case-Control Study. Curr. Issues Mol. Biol. 2021, 43, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.; Han, H.W.; Gwak, H.S. Proton Pump Inhibitor Use and Hearing Loss in Patients with Type 2 Diabetes: Evidence from a Hospital-based Case-control Study and a Population-based Cohort Study. Br. J. Clin. Pharmacol. 2022, 88, 2738–2746. [Google Scholar] [CrossRef] [PubMed]
- Wiciński, M.; Malinowski, B.; Puk, O.; Górski, K.; Adamkiewicz, D.; Chojnacki, G.; Walczak, M.; Wódkiewicz, E.; Szambelan, M.; Adamska, P.; et al. Possible Effects of Proton Pump Inhibitors on Hearing Loss Development. Biomed. Res. Int. 2019, 2019, 4853695. [Google Scholar] [CrossRef]
- Sukhovershin, R.A.; Cooke, J.P. How May Proton Pump Inhibitors Impair Cardiovascular Health? Am. J. Cardiovasc. Drugs 2016, 16, 153–161. [Google Scholar] [CrossRef]
- Lu, T.-M.; Chung, M.-Y.; Lin, M.-W.; Hsu, C.-P.; Lin, S.-J. Plasma Asymmetric Dimethylarginine Predicts Death and Major Adverse Cardiovascular Events in Individuals Referred for Coronary Angiography. Int. J. Cardiol. 2011, 153, 135–140. [Google Scholar] [CrossRef]
- Ghebremariam, Y.T.; LePendu, P.; Lee, J.C.; Erlanson, D.A.; Slaviero, A.; Shah, N.H.; Leiper, J.M.; Cooke, J.P. Response to Letters Regarding Article, “Unexpected Effect of Proton Pump Inhibitors: Elevation of the Cardiovascular Risk Factor Asymmetric Dimethylarginine. ” Circulation 2014, 129, e428. [Google Scholar] [CrossRef]
- Termanini, B.; Gibril, F.; Sutliff, V.E.; Yu, F.; Venzon, D.J.; Jensen, R.T. Effect of Long-Term Gastric Acid Suppressive Therapy on Serum Vitamin B12 Levels in Patients with Zollinger-Ellison Syndrome. Am. J. Med. 1998, 104, 422–430. [Google Scholar] [CrossRef]
- Ito, T.; Jensen, R.T. Association of Long-Term Proton Pump Inhibitor Therapy with Bone Fractures and Effects on Absorption of Calcium, Vitamin B12, Iron, and Magnesium. Curr. Gastroenterol. Rep. 2010, 12, 448–457. [Google Scholar] [CrossRef]
- Elzen, W.P.J.D.; Groeneveld, Y.; DE Ruijter, W.; Souverijn, J.H.M.; LE Cessie, S.; Assendelft, W.J.J.; Gussekloo, J. Long-term Use of Proton Pump Inhibitors and Vitamin B12 Status in Elderly Individuals. Aliment. Pharmacol. Ther. 2008, 27, 491–497. [Google Scholar] [CrossRef]
- Lecain, E.; Robert, J.-C.; Thomas, A.; Tran Ba Huy, P. Gastric Proton Pump Is Expressed in the Inner Ear and Choroid Plexus of the Rat. Hear. Res. 2000, 149, 147–154. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhang, Q.; Yu, L.; Chen, W.; Xue, Y.; Zhai, Q. Meta-Analysis of the Effects of Proton Pump Inhibitors on the Human Gut Microbiota. BMC Microbiol. 2023, 23, 171. [Google Scholar] [CrossRef] [PubMed]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton Pump Inhibitors Affect the Gut Microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Badiola, N.; Alcalde, V.; Pujol, A.; Münter, L.-M.; Multhaup, G.; Lleó, A.; Coma, M.; Soler-López, M.; Aloy, P. The Proton-Pump Inhibitor Lansoprazole Enhances Amyloid Beta Production. PLoS ONE 2013, 8, e58837. [Google Scholar] [CrossRef] [PubMed]
- Vaezi, M.F.; Yang, Y.-X.; Howden, C.W. Complications of Proton Pump Inhibitor Therapy. Gastroenterology 2017, 153, 35–48. [Google Scholar] [CrossRef]
- Oh, I.-H.; Lee, J.H.; Park, D.C.; Kim, M.; Chung, J.H.; Kim, S.H.; Yeo, S.G. Hearing Loss as a Function of Aging and Diabetes Mellitus: A Cross Sectional Study. PLoS ONE 2014, 9, e116161. [Google Scholar] [CrossRef]
- Zou, M.; Wu, Y. AMP-activated protein kinase activation as a strategy for protecting vascular endothelial function. Clin. Exp. Pharmacol. Physiol. 2008, 35, 535–545. [Google Scholar] [CrossRef]
- Chang, J.; Jung, H.H.; Yang, J.Y.; Lee, S.; Choi, J.; Im, G.J.; Chae, S.W. Protective Effect of Metformin Against Cisplatin-Induced Ototoxicity in an Auditory Cell Line. J. Assoc. Res. Otolaryngol. 2014, 15, 149–158. [Google Scholar] [CrossRef]
- Föller, M.; Jaumann, M.; Dettling, J.; Saxena, A.; Pakladok, T.; Munoz, C.; Ruth, P.; Sopjani, M.; Seebohm, G.; Rüttiger, L.; et al. AMP-activated Protein Kinase in BK-channel Regulation and Protection against Hearing Loss Following Acoustic Overstimulation. FASEB J. 2012, 26, 4243–4253. [Google Scholar] [CrossRef]
Total Population n = 1651 R Plus Pz1 Plus Pz+) | Use of at Least One Drug in the Last 28 Days (n = 363) Pz1 | Use of More than One Drug for at Least 28 Days (n = 861) Pz+ | |||
---|---|---|---|---|---|
Sociodemographic descriptives | n | % | % | % | |
Gender | |||||
Male | 905 | 54.82 | 50.96 | 57.03 | |
Female | 746 | 45.18 | 20.67 | 42.97 | |
Age | |||||
18–29 | 10 | 0.61 | 66.67 | 33.33 | |
30–39 | 20 | 1.21 | 100.00 | 0.00 | |
40–49 | 87 | 5.27 | 37.04 | 62.96 | |
50–59 | 301 | 18.23 | 43.50 | 56.50 | |
60–69 | 433 | 26.23 | 32.98 | 67.02 | |
70–79 | 485 | 29.38 | 22.77 | 77.23 | |
80–89 | 282 | 17.08 | 21.84 | 78.16 | |
90–99 | 33 | 2.00 | 31.25 | 68.75 | |
Level of Schooling | |||||
Low | 378 | 22.90 | 33.21 | 66.79 | |
Mid | 611 | 37.01 | 28.19 | 71.81 | |
High | 320 | 19.38 | 32.22 | 67.78 | |
Unknown | 342 | 20.71 | 25.97 | 74.03 |
ATC Use Category | Subjects | Adjusted Models | ||||
---|---|---|---|---|---|---|
Main Group | Sub-Group | n° | OR | 95% CI | p Value | |
A | Alimentary tract and metabolism | |||||
A02 | Drugs for acid-related disorders | 157 | 3.336 | 1.732–6.53 | 0.001 | |
A06 | Drugs for constipation | 8 | - | - | - | |
A07 | Antidiarrheals, intestinal anti-inflammatory/anti-infective agents | 8 | - | - | - | |
A10 | Drugs used in diabetes | 479 | 0.734 | 0.542–0.994 | 0.046 | |
A11 | Vitamins | 10 | - | - | - | |
B | Blood and blood-forming organs | |||||
B01 | Antithrombotic agents | 367 | 3.540 | 2.280–5.50 | 0.001 | |
B03 | Antianemic preparations | 4 | - | - | - | |
C | Cardiovascular System | |||||
C01 | Cardiac therapy | 42 | 4.082 | 0.974–17.11 | 0.054 | |
C02 | Antihypertensives | 62 | 6.005 | 1.449–24.89 | 0.013 | |
C03 | Diuretics | 234 | 4.164 | 2.321–7.47 | 0.001 | |
C07 | Beta blocking agents | 386 | 4.135 | 2.645–6.46 | 0.001 | |
C08 | Calcium channel blockers | 253 | 3.287 | 1.951–5.54 | 0.001 | |
C09 | Agents acting on the renin-angiotensin system | 556 | 4.084 | 2.843–5.86 | 0.001 | |
C10 | Lipid-modifying agents | 362 | 3.425 | 2.218–5.288 | 0.001 | |
G | Genito urinary system and sex hormones | |||||
G04 | Urologicals | 70 | 1.046 | 0.761–1.438 | 0.783 | |
H | Systemic hormonal preparations, excl. Sex hormones and insulins | |||||
H03 | Thyroid therapy | 80 | 0.8701 | 0.6359–1.191 | 0.358 | |
H05 | Calcium homeostasis | 2 | - | - | - | |
L | Antineoplastic products, insecticides and repellents | |||||
L01 | Antineoplastic agents | 6 | - | - | - | |
L02 | Endocrine therapy | 8 | 0.630 | 0.125–3.18 | 0.575 | |
M | Musculoskeletal system | |||||
M01 | Anti-inflammatory and antirheumatic products | 6 | 0.358 | 0.0640–2.00 | 0.242 | |
M04 | Antigout preparations | 20 | 0.460 | 0.173–1.22 | 0.119 | |
M05 | Drugs for the treatment of bone diseases | 6 | - | - | - | |
N | Nervous system | |||||
N02 | Analgesics | 2 | - | - | - | |
N03 | Antiepileptics | 14 | 1.213 | 0.267–5.51 | 0.802 | |
N04 | Anti-Parkinson drugs | 16 | 1.205 | 0.265–5.48 | 0.809 | |
N05 | Psycholeptics | 19 | 0.739 | 0.241–2.26 | 0.596 | |
N06 | Psychoanaleptics | 20 | 0.451 | 0.167–1.22 | 0.117 | |
R | Respiratory system | |||||
R03 | Drugs for obstructive airway diseases | 40 | 1.126 | 0.464–2.273 | 0.793 | |
R05 | Cough and cold preparations | 2 | - | - | - | |
R06 | Antihistamines for systemic use | 6 | 0.399 | 0.0719–2.21 | 0.293 | |
S | Sensory organs | |||||
S01 | Ophthalmologicals | 12 | 1.040 | 0.225–4.80 | 0.960 |
HHIE-S-It | Variable | OR | 95% CI | p Value |
---|---|---|---|---|
1-0 | Intercept | 5.269 | 2.077–13.36 | 0.001 |
Gender | 0.921 | 0.664–1.279 | 0.626 | |
Age | 0.982 | 0.968–0.996 | 0.012 | |
Level of Schooling | 1.051 | 0.893–1.237 | 0.548 | |
Number of drugs used | ||||
2-1 | 3.196 | 2.107–4.848 | 0.001 | |
3-1 | 6.299 | 3.998–9.926 | 0.001 | |
4-1 | 23.478 | 8.486–64.956 | 0.001 | |
5-1 | 12.111 | 4.289–34.200 | 0.001 | |
6-1 | 5.12 × 107 | 2.49 × 107–1.05 ×108 | 0.001 | |
7-1 | 622,074 | 622,074–622,074 | 0.001 | |
8-1 | 1.14 × 106 | 1.14 × 106–1.14 × 106 | 0.001 | |
9-1 | 1.09 × 106 | 1.09 × 106–1.09 × 106 | 0.001 | |
2-0 | Intercept | 0.004 | 2.85 × 10−4–0.0626 | 0.001 |
Gender | 0.804 | 0.395–1.638 | 0.548 | |
Age | 1.039 | 1.002–1.078 | 0.038 | |
Level of Schooling | 0.748 | 0.523–1.059 | 0.102 | |
Number of drugs used | ||||
2-1 | 6.45 × 10−8 | 6.45 × 10−8–6.45 × 10−8 | 0.001 | |
3-1 | 4.204 | 0.979–18.054 | 0.053 | |
4-1 | 122.55 | 27.783–540.58 | 0.001 | |
5-1 | 112.75 | 25.191–540.70 | 0.001 | |
6-1 | 1.26 × 104 | 6.11 × 107–2.58 × 108 | 0.001 | |
7-1 | 1.276 | 1.276–1.276 | 0.001 | |
8-1 | 0.593 | 0.594–0.5936 | 0.001 | |
9-1 | 0.526 | 0.526–0.526 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martines, F.; Salvago, P.; Lavanco, G.; Malta, G.; Plescia, F. Association Between Polypharmacy and Self-Reported Hearing Disability: An Observational Study Using ATC Classification and HHIE-S-It Questionnaire. Audiol. Res. 2025, 15, 135. https://doi.org/10.3390/audiolres15050135
Martines F, Salvago P, Lavanco G, Malta G, Plescia F. Association Between Polypharmacy and Self-Reported Hearing Disability: An Observational Study Using ATC Classification and HHIE-S-It Questionnaire. Audiology Research. 2025; 15(5):135. https://doi.org/10.3390/audiolres15050135
Chicago/Turabian StyleMartines, Francesco, Pietro Salvago, Gianluca Lavanco, Ginevra Malta, and Fulvio Plescia. 2025. "Association Between Polypharmacy and Self-Reported Hearing Disability: An Observational Study Using ATC Classification and HHIE-S-It Questionnaire" Audiology Research 15, no. 5: 135. https://doi.org/10.3390/audiolres15050135
APA StyleMartines, F., Salvago, P., Lavanco, G., Malta, G., & Plescia, F. (2025). Association Between Polypharmacy and Self-Reported Hearing Disability: An Observational Study Using ATC Classification and HHIE-S-It Questionnaire. Audiology Research, 15(5), 135. https://doi.org/10.3390/audiolres15050135