Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Pure-Tone Audiometry and NIHL Definition
2.3. Field Occupational Noise Level Detection
2.4. Machine Learning Models
2.5. Covariates
2.6. Data Analysis
3. Result
3.1. General Information
3.2. Analysis Results of Related Factors
3.3. Multivariate Logistic Regression Analysis Results
3.4. Joint and Interaction Associations Analysis Results
3.5. Machine Learning Model Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIHL | Noise-induced hearing loss |
ARHL | Age-related hearing loss |
HFHL | High-frequency hearing loss |
NID | Noise-induced deafness |
PTA | Pure-tone audiometry |
BHFTA | Binaural high-frequency threshold average |
RCS | Restricted cubic spline |
RFC | Random forest classification model |
RERI | Relative Excess Risk due to Interaction |
AP | Attributable Proportion |
SI | Synergy Index |
NBC | Naive Bayesian classification model |
References
- Stucken, E.Z.; Hong, R.S. Noise-induced hearing loss: An occupational medicine perspective. Curr. Opin. Otolaryngol. Head Neck Surg. 2024, 22, 388–393. [Google Scholar] [CrossRef]
- Ryan, A.F.; Kujawa, S.G.; Hammill, T.; Le Prell, C.; Kil, J. Temporary and Permanent Noise-induced Threshold Shifts: A Review of Basic and Clinical Observations. Otol. Neurotol. 2016, 37, e271–e275. [Google Scholar] [CrossRef]
- Nelson, D.I.; RNelson, Y.; Concha-Barrientos, M.; Fingerhut, M. The global burden of occupational noise-induced hearing loss. Am. J. Ind. Med. 2005, 48, 446–458. [Google Scholar] [CrossRef]
- Śliwińska-Kowalska, M.; Zaborowski, K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Permanent Hearing Loss and Tinnitus. Int. J. Environ. Res. Public Health 2017, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Kamenov, K.; Cieza, A. The world report on hearing, 2021. Bull. World Health Organ. 2021, 99, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shi, Z.; Zhou, L.; Hu, Y.; Zhang, M. Occupational noise-induced hearing loss in China: A systematic review and meta-analysis. BMJ Open 2020, 10, e039576. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, J.X.; Zhang, M.B. Research progress on non-steady state noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2021, 39, 550–554. [Google Scholar] [CrossRef]
- Kiely, K.M.; Gopinath, B.; Mitchell, P.; Luszcz, M.; Anstey, K.J. Cognitive, Health, and Sociodemographic Predictors of Longitudinal Decline in Hearing Acuity Among Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 997–1003. [Google Scholar] [CrossRef]
- Mick, P.; Kawachi, I.; Lin, F.R. The Association between Hearing Loss and Social Isolation in Older Adults. Otolaryngol. Head Neck Surg. 2014, 150, 378–384. [Google Scholar] [CrossRef]
- Arjmandi, M.K.; Neils-Strunjas, J.; Nemati, S.; Fridriksson, J.; Newman-Norlund, S.; Newman-Norlund, R.; Bonilha, L. Age-Related Hearing Loss, Cognitive Decline, and Social Interaction: Testing a Framework. J. Speech Lang. Hear. Res. 2024, 67, 2743–2760. [Google Scholar] [CrossRef]
- McMahon, C.M.; Gopinath, B.; Schneider, J.; Reath, J.; Hickson, L.; Leeder, S.R.; Mitchell, P.; Cowan, R. The Need for Improved Detection and Management of Adult-Onset Hearing Loss in Australia. Int. J. Otolaryngol. 2013, 2013, 308509. [Google Scholar] [CrossRef]
- Lin, F.R.; Niparko, J.K.; Ferrucci, L. Hearing Loss Prevalence in the United States. Available online: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1106004 (accessed on 13 June 2025).
- ISO 1999:2013; Acoustics—Estimation of Noise-Induced Hearing Loss. International Organization for Standardization: Geneva, Switzerland, 2013.
- Keithley, E.M. Pathology and mechanisms of cochlear aging. J. Neurosci. Res. 2020, 98, 1674–1684. [Google Scholar] [CrossRef]
- Hawkins, J.E. Comparative otopathology: Aging, noise, and ototoxic drugs. Adv. Otorhinolaryngol. 1973, 20, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Gates, G.A. The effect of noise on cochlear aging. Ear Hear. 2006, 27, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Viana, L.M.; Neils-Strunjas, J.; Nemati, S.; Fridriksson, J.; Newman-Norlund, S.; Newman-Norlund, R.; Bonilha, L. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear. Res. 2015, 327, 78–88. [Google Scholar] [CrossRef]
- Möhrle, D.; Ni, K.; Varakina, K.; Bing, D.; Lee, S.C.; Zimmermann, U.; Knipper, M.; Rüttiger, L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol. Aging 2016, 44, 173–184. [Google Scholar] [CrossRef]
- Wu, P.Z.; Liberman, L.D.; Bennett, K.; de Gruttola, V.; O’Malley, J.T.; Liberman, M.C. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience 2019, 407, 8–20. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Yang, L.; Han, K.; Huang, Z.; Wu, H. Sex differences in noise-induced hearing loss: A cross-sectional study in China. Biol. Sex Differ. 2021, 12, 24. [Google Scholar] [CrossRef]
- Charitidi, K.; Meltser, I.; Tahera, Y.; Canlon, B. Functional responses of estrogen receptors in the male and female auditory system. Hear. Res. 2009, 252, 71–78. [Google Scholar] [CrossRef]
- Reavis, K.M.; Bisgaard, N.; Canlon, B.; Dubno, J.R.; Frisina, R.D.; Hertzano, R.; Humes, L.E.; Mick, P.; Phillips, N.A.; Pichora-Fuller, M.K.; et al. Sex-Linked Biology and Gender-Related Research Is Essential to Advancing Hearing Health. Ear Hear. 2023, 44, 10. [Google Scholar] [CrossRef]
- Rouhbakhsh, N.A.; Al-Mnaseer, R.A.D.; Mohamadkhani, G. Occupational Noise-Induced Hearing Loss in Cotton mill workers in Baghdad, Iraq. J. Paramed. Sci. Rehabil. 2025, 14, 42–56. [Google Scholar] [CrossRef]
- Nieman, C.L.; Suen, J.J.; Dean, L.T.; Chandran, A. Foundational Approaches to Advancing Hearing Health Equity: A Primer in Social Epidemiology. Ear Hear. 2022, 43 (Suppl. S1), 5S. [Google Scholar] [CrossRef]
- Meira, T.C.; Santana, V.S.; Ferrite, S. Gender and other factors associated with the use of hearing protection devices at work. Rev. Saúde Pública 2015, 49, 76. [Google Scholar] [CrossRef] [PubMed]
- GB 12348—2008; Emisson Standard for Industrial Enterprises Noise at Boundary. China Environmental Science Press: Beijing, China, 2008.
- GB/T 16296.1-2018; Acoustics—Audiometric Test Methods. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration: Beijing, China, 2018.
- GBZ 49–2014; Diagnosis of Occupational Noise-Induced Deafness. National Health and Family Planning Commission of PRC: Beijing, China, 2014.
- Wang, D.; Xiao, Y.; Feng, X.; Wang, B.; Li, W.; He, M.; Zhang, X.; Yuan, J.; Yi, G.; Chen, Z.; et al. Association of occupational noise exposure, bilateral hearing loss with atherosclerotic cardiovascular disease risk in Chinese adults. Int. J. Hyg. Environ. Health 2021, 235, 113776. Available online: https://www.sciencedirect.com/science/article/pii/S1438463921000912?via%3Dihub (accessed on 25 August 2018). [CrossRef]
- GBZ/T 189.8–2007; Measurement of Physical Agents in Workplace Part 8: Noise. Ministry of Health of the People’s Republic of China: Beijing, China, 2007.
- 29 CFR 1910.95; Occupational Noise Exposure. Occupational Safety and Health Administration (OSHA): Washington, DC, USA, 2022.
- Imani, M.; Beikmohammadi, A.; Arabnia, H.R. Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under Varying Imbalance Levels. Technologies 2025, 13, 88. [Google Scholar] [CrossRef]
- Ali, J. Random Forests and Decision Trees.Pdf. Random For. Decis. Trees 2012, 9, 272–278. Available online: https://www.academia.edu/38130177/random_forests_and_decision_trees_pdf (accessed on 13 June 2025).
- Sethi, J.K.; Mittal, M. Efficient weighted naive bayes classifiers to predict air quality index. Earth Sci. Inform. 2022, 15, 541–552. [Google Scholar] [CrossRef]
- Variable selection for Naïve Bayes classification. Comput. Oper. Res. 2021, 135, 105456. [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Zamzam, Y.F.; Saragih, T.H.; Herteno, R.; Muliadi; Nugrahadi, D.T.; Huynh, P.-H. Comparison of CatBoost and Random Forest Methods for Lung Cancer Classification using Hyperparameter Tuning Bayesian Optimization-based. J. Electron. Electromed. Eng. Med. Inform. 2024, 6, 125–136. [Google Scholar] [CrossRef]
- Tanha, J.; Abdi, Y.; Samadi, N.; Razzaghi, N.; Asadpour, M. Boosting methods for multi-class imbalanced data classification: An experimental review. J. Big Data 2020, 7, 70. [Google Scholar] [CrossRef]
- Song, Y.; Yin, Z.; Zhang, C.; Hao, S.; Li, H.; Wang, S.; Yang, X.; Li, Q.; Zhuang, D.; Zhang, X.; et al. Random forest classifier improving phenylketonuria screening performance in two Chinese populations. Front. Mol. Biosci. 2022, 9, 986556. [Google Scholar] [CrossRef] [PubMed]
- Gote, P.M.; Kumar, P.; Kumar, H.; Verma, P.; Jiet, M.M. Integrating Machine Learning Algorithms: A Hybrid Model for Lung Cancer Outcome Improvement. Appl. Sci. 2025, 15, 4637. [Google Scholar] [CrossRef]
- Stefano, A.; Bini, F.; Giovagnoli, E.; Dimarco, M.; Lauciello, N.; Narbonese, D.; Pasini, G.; Marinozzi, F.; Russo, G.; D’Angelo, I. Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography. Diagnostics 2025, 15, 953. [Google Scholar] [CrossRef]
- Yang, T.; Chen, H.J.; Zhang, C.Y.; He, D.; Yuan, W. Association of blood heavy metal concentrations with hearing loss: A systematic review and meta-analysis. Public Health 2024, 227, 95–102. [Google Scholar] [CrossRef]
- Muthaiah, V.P.K.; Chen, G.D.; Ding, D.; Salvi, R.; Roth, J.A. Effect of manganese and manganese plus noise on auditory function and cochlear structures. NeuroToxicology 2016, 55, 65–73. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Zhang, H.; Huang, X.; Tao, Y.; Lang, K.; Zhang, M.; Chen, W.; Wang, D. Association of noise exposure, plasma microRNAs with metabolic syndrome and its components among Chinese adults. Sci. Total Environ. 2024, 921, 171123. [Google Scholar] [CrossRef]
- Lie, A.; Skogstad, M.; Johannessen, H.A.; Tynes, T.; Mehlum, I.S.; Nordby, K.C.; Engdahl, B.; Tambs, K. Occupational noise exposure and hearing: A systematic review. Int. Arch. Occup. Environ. Health 2016, 89, 351–372. [Google Scholar] [CrossRef]
- Gopinath, B.; McMahon, C.; Tang, D.; Burlutsky, G.; Mitchell, P. Workplace noise exposure and the prevalence and 10-year incidence of age-related hearing loss. PLoS ONE 2021, 16, e0255356. [Google Scholar] [CrossRef]
- Persic, D.; Thomas, M.E.; Pelekanos, V.; Ryugo, D.K.; Takesian, A.E.; Krumbholz, K.; Pyott, S.J. Regulation of auditory plasticity during critical periods and following hearing loss. Hear. Res. 2020, 397, 107976. [Google Scholar] [CrossRef]
- Fu, X.; Sun, X.; Zhang, L.; Jin, Y.; Chai, R.; Yang, L.; Zhang, A.; Liu, X.; Bai, X.; Li, J.; et al. Tuberous sclerosis complex–mediated mTORC1 overactivation promotes age-related hearing loss. J. Clin. Investig. 2018, 128, 4938–4955. [Google Scholar] [CrossRef]
- Pinheiro, B.P.; Vona, B.; Löwenheim, H.; Rüttiger, L.; Knipper, M.; Adel, Y. Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflug. Arch. Eur. J. Physiol. 2021, 473, 823–840. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Song, L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear. Res. 2023, 434, 108783. [Google Scholar] [CrossRef]
- Wan, H.; Wang, W.; Liu, J.; Zhang, Y.; Yang, B.; Hua, R.; Chen, H.; Chen, S.; Hua, Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear. Res. 2023, 440, 108913. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Zhao, C.-L.; Liang, W.-Q.; Chen, Z.-R.; Du, Z.-D.; Gong, S.-S. ROS-induced oxidative stress and mitochondrial dysfunction: A possible mechanism responsible for noise-induced ribbon synaptic damage. Am. J. Transl. Res. 2024, 16, 272–284. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, T.; Cao, S.; Liu, Z.; Pang, W.; Li, M.; Liu, J.; Li, W.; Wu, Y.; Liu, C.; et al. Presbycusis: Pathology, Signal Pathways, and Therapeutic Strategy. Adv. Sci. 2025, 2410413. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Giffen, K.P.; Chen, L.; Henderson, H.J.; Cao, T.A.; Kozeny, G.A.; Beisel, K.W.; Li, Y.; He, D.Z. Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells. Cell Rep. 2022, 39, 110665. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Santamaría, V.; Alvarado, J.C.; Mellado, S.; Melgar-Rojas, P.; Gabaldón-Ull, M.C.; Cabanes-Sanchis, J.J.; Juiz, J.M. Age-Related Inflammation and Oxidative Stress in the Cochlea Are Exacerbated by Long-Term, Short-Duration Noise Stimulation. Front. Aging Neurosci. 2022, 14, 853320. [Google Scholar] [CrossRef]
- Zou, S.; Liu, Y.; Xu, B.; Li, J.; He, Z. Age-related hearing loss: The complex interaction of carbohydrate metabolism in auditory and cognitive dysfunction during aging. Ageing Neur. Dis. 2025, 5, 7. [Google Scholar] [CrossRef]
- Villavisanis, D.F.; Berson, E.R.; Lauer, A.M.; Cosetti, M.K.; Schrode, K.M. Sex-Based Differences in Hearing Loss: Perspectives from Non-Clinical Research to Clinical Outcomess. Otol. Neurotol. 2020, 41, 290. [Google Scholar] [CrossRef]
- Lien, K.-H.; Yang, C.-H. Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int. J. Mol. Sci. 2021, 22, 8111. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.S. Age-related hearing loss: Why we need to think about sex as a biological variable. J. Neurosci. Res. 2020, 98, 1705–1720. [Google Scholar] [CrossRef]
- Mirmohammadi, S.; Khanjani, N.; Nazarkhani, F.; Abediankenari, S.; Yazdani, J.; Tilaki, R.A.D. The effect of noise and dust exposure on oxidative stress among livestock and poultry feed industry workers. Toxicol. Ind. Health 2020, 36, 908–915. [Google Scholar] [CrossRef]
- Duan, D.; Leng, P.; Li, X.; Mao, G.; Wang, A.; Zhang, D. Characteristics and occupational risk assessment of occupational silica-dust and noise exposure in ferrous metal foundries in Ningbo, China. Front. Public Health 2023, 11, 1049111. [Google Scholar] [CrossRef]
- Safinejad, M.; Azari, M.R.; Zendehdel, R.; Rafieepour, A.; Khodakarim, S.; Khodarahmi, B. Occupational and biological monitoring of workers exposed to airborne dust in Gol-e-Gohar Iron Ore mine: A Case-Control Study. Iran. Occup. Health 2019, 16, 23–32. [Google Scholar]
Characteristics | Level | All Participants | Non-Noise Exposure | Noise Exposure | p |
---|---|---|---|---|---|
No. participants | 135,251 | 24,441 | 110,810 | ||
Gender, n (%) | Male | 98,996(73.2) | 16,886(69.1) | 82,110(74.1) | <0.01 |
Female | 36,255(26.8) | 7555(30.9) | 28,700(25.9) | ||
Age, year, mean ± SD | 38.8(10.6) | 32.3(8.8) | 40.3(10.4) | <0.01 | |
Duration of noise exposure, year, mean ± SD | 5.3(6.4) | - | 6.4(6.5) | <0.01 | |
BHFTA, dB | 24.0(11.7) | 23.4(8.8) | 24.1(12.2) | <0.01 | |
High temperature exposure, n (%) | No | 125,481(92.8) | 24,410(99.9) | 101,071(91.2) | <0.01 |
Yes | 9770(7.2) | 31(0.1) | 9739(8.8) | ||
Dust exposure, n (%) | No | 79,982(59.1) | 24,329(99.5) | 55,653(50.2) | <0.01 |
Yes | 55,269(40.9) | 112(0.5) | 55,157(49.8) | ||
Yes | 6328(4.7) | 42(0.2) | 6286(5.7) | ||
Manganese exposure, n (%) | No | 130,486(96.5) | 24,398(99.8) | 106,088(95.7) | <0.01 |
Yes | 4765(3.5) | 43(0.2) | 4722(4.3) |
Noise-Exposed and Control Groups (n = Number of Participants) | ||
---|---|---|
Age Categories and Gender (Males (M) and Females (W)) | Noise Group | Control Group |
N16–76years = 135,251 | NNoise group = 110,810 | NControl group = 24,441 |
16 to 30 years | N16–30years = 22,728 | N16–30years = 11,998 |
M | 19,399 | 8857 |
F | 3329 | 3141 |
31 to 40 years | N31–40years = 33,905 | N31–40years = 8073 |
M | 24,806 | 5179 |
F | 9099 | 2894 |
41 to 50 years | N41–50years = 33,109 | N41–50years = 3411 |
M | 21,134 | 2016 |
F | 11,975 | 1395 |
51 to 60 years | N51–60years = 19,141 | N51–60years = 915 |
M | 15,166 | 800 |
F | 3975 | 115 |
61 to 76 years | N61–76years = 1927 | N61–76years = 44 |
M | 1605 | 34 |
F | 322 | 10 |
Control Group: Male (n = 16,891) Female (n = 7556) | ||||||
Median Values for Thresholds (dB) Per Frequency for the Control Group | ||||||
0.5 kHz | 1 kHz | 2 kHz | 3 kHz | 4 kHz | 6 kHz | |
Males | 22.5 | 21.0 | 20.0 | 20.5 | 22.5 | 22.5 |
Females | 23.0 | 22.5 | 22.0 | 21.0 | 21.5 | 23.0 |
95th percentile values for thresholds (dB) per frequency for the control group | ||||||
0.5 kHz | 1 kHz | 2 kHz | 3 kHz | 4 kHz | 6 kHz | |
Males | 26.5 | 25.5 | 26.5 | 38.0 | 48.0 | 50.0 |
Females | 28.0 | 25.5 | 26.5 | 31.0 | 33.5 | 36.5 |
Characteristics | Male | Famale | |||
---|---|---|---|---|---|
OR (95% Cl) | p | OR (95% Cl) | p | ||
Age | 1.047(1.045–1.049) | <0.001 | 1.049(1.044–1.053) | <0.001 | |
Noise exposure | No | Reference | Reference | ||
Yes | 1.079(1.033–1.126) | 0.001 | 1.102(1.021–1.190) | 0.013 | |
Manganese exposure | No | Reference | Reference | ||
Yes | 1.954(1.831–2.084) | <0.001 | 1.698(1.404–2.053) | <0.001 | |
High temperature exposure | No | Reference | Reference | ||
Yes | 0.968(0.922–1.017) | 0.197 | 1.035(0.913–1.173) | 0.592 | |
Dust exposure | No | Reference | Reference | ||
Yes | 0.989(0.958–1.02) | 0.466 | 0.966(0.911–1.024) | 0.24 |
Characteristics | All | Male | Famale | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |||
Age | Low level | Non-NE | Reference | Reference | Reference | |||
NE | 1.064(1.017–1.113) | 0.007 | 1.028(0.977–1.081) | 0.291 | 1.151(1.039–1.274) | 0.007 | ||
High level | Non-NE | 1.906(1.783–2.038) | <0.001 | 1.998(1.847–2.160) | <0.001 | 2.028(1.782–2.308) | <0.001 | |
NE | 2.564(2.456–2.677) | <0.001 | 2.659(2.659–2.933) | <0.001 | 2.547(2.327–2.787) | <0.001 |
Additive Interactive | Multiplicative Interactive | ||||
---|---|---|---|---|---|
Measure | Estimate | Lower | Upper | OR (95% CI) | p |
RERI | 2.075 | 1.803 | 2.347 | 1.265(1.176–1.36) | <0.001 |
AP | 0.502 | 0.484 | 0.521 | ||
SI | 2.967 | 2.818 | 3.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Mei, P.; Zhao, Y.; Lu, J.; Zhang, H.; Zhang, Z.; Zhao, Y.; Zhu, B.; Wang, B. Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China. Audiol. Res. 2025, 15, 91. https://doi.org/10.3390/audiolres15040091
Wang Y, Mei P, Zhao Y, Lu J, Zhang H, Zhang Z, Zhao Y, Zhu B, Wang B. Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China. Audiology Research. 2025; 15(4):91. https://doi.org/10.3390/audiolres15040091
Chicago/Turabian StyleWang, Yixiao, Peng Mei, Yunfei Zhao, Jie Lu, Hongbing Zhang, Zhi Zhang, Yuan Zhao, Baoli Zhu, and Boshen Wang. 2025. "Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China" Audiology Research 15, no. 4: 91. https://doi.org/10.3390/audiolres15040091
APA StyleWang, Y., Mei, P., Zhao, Y., Lu, J., Zhang, H., Zhang, Z., Zhao, Y., Zhu, B., & Wang, B. (2025). Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China. Audiology Research, 15(4), 91. https://doi.org/10.3390/audiolres15040091