Sound Localization with Hearables in Transparency Mode
Abstract
:1. Introduction
2. Methods
2.1. Listeners
2.2. Hearable Device
2.3. Setup
2.4. Objective HRIR Measures
Stimuli and Procedures
2.5. Behavioral Localization Measures
2.5.1. Procedures
2.5.2. Test Conditions
2.5.3. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Objective HRIR Measures in Quiet
3.2. Sound Localization in Quiet
3.3. Objective HRIR Measures in Background Noise
3.4. Sound Localization in Background Noise
3.5. Sound Localization Promptness
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plazak, J.; Kersten-Oertel, M. A Survey on the Affordances of “Hearables”. Inventions 2018, 3, 48. [Google Scholar] [CrossRef]
- Crum, P. Hearables: Here Come the: Technology Tucked inside Your Ears Will Augment Your Daily Life. IEEE Spectr. 2019, 56, 38–43. [Google Scholar] [CrossRef]
- IDC. Wearable Devices Market Insights. Available online: https://www.idc.com/promo/wearablevendor (accessed on 14 January 2025).
- FDA. FDA Authorizes First Over-the-Counter Hearing Aid Software. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-over-counter-hearing-aid-software (accessed on 14 January 2025).
- Kayser, H.; Ewert, S.D.; Anemüller, J.; Rohdenburg, T.; Hohmann, V.; Kollmeier, B. Database of Multichannel In-Ear and Behind-the-Ear Head-Related and Binaural Room Impulse Responses. EURASIP J. Adv. Signal Process. 2009, 2009, 298605. [Google Scholar] [CrossRef]
- Durin, V.; Carlile, S.; Guillon, P.; Best, V.; Kalluri, S. Acoustic Analysis of the Directional Information Captured by Five Different Hearing Aid Styles. J. Acoust. Soc. Am. 2014, 136, 818–828. [Google Scholar] [CrossRef]
- Zimpfer, V.; Sarafian, D. Impact of Hearing Protection Devices on Sound Localization Performance. Front. Neurosci. 2014, 8, 135. [Google Scholar] [CrossRef]
- Kroener, L.; Garcia, A.; Zimpfer, V.; Langrenne, C. Hearing Protections: Effects on HRTFs and Localization Accuracy. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Denk, F.; Kollmeier, B. The Hearpiece Database of Individual Transfer Functions of an In-the-Ear Earpiece for Hearing Device Research. Acta Acust. 2021, 5, 2. [Google Scholar] [CrossRef]
- Liebich, S.; Vary, P. Occlusion Effect Cancellation in Headphones and Hearing Devices—The Sister of Active Noise Cancellation. IEEE ACM Trans. Audio Speech Lang. Process. 2022, 30, 35–48. [Google Scholar] [CrossRef]
- Watanabe, H.; Terada, T. Transparency Mode of Hearable Reduces Your Spatial Hearing: Evaluation and Cancelling Method to Restore Spatial Hearing. IEEE Access 2023, 11, 97952–97960. [Google Scholar] [CrossRef]
- Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localization, 6th ed.; MIT Press: Cambridge, MA, USA, 1996; ISBN 978-0-262-02413-6. [Google Scholar]
- Snapp, H.; Vogt, K.; Agterberg, M.J.H. Bilateral bone conduction stimulation provides reliable binaural cues for localization. Hear. Res. 2020, 388, 107881. [Google Scholar] [CrossRef]
- Denk, F.; Ernst, S.M.A.; Ewert, S.D.; Kollmeier, B. Adapting Hearing Devices to the Individual Ear Acoustics: Database and Target Response Correction Functions for Various Device Styles. Trends Hear. 2018, 22, 2331216518779313. [Google Scholar] [CrossRef]
- Denk, F.; Heeren, J.; Ewert, S.D.; Kollmeier, B.; Ernst, S.M.A. Controlling the Head Position during Individual HRTF Measurements and Its Effect on Accuracy. In Proceedings of the Fortschritte der Akustik—DAGA, Kiel, Germany, 6–9 March 2017. [Google Scholar]
- Härmä, A.; Jakka, J.; Tikander, M.; Karjalainen, M.; Lokki, T.; Hiipakka, J.; Lorho, G. Augmented Reality Audio for Mobile and Wearable Appliances. J. Audio Eng. Soc. 2004, 52, 618–639. [Google Scholar]
- Hoffmann, P.F.; Christensen, F.; Hammershøi, D. Insert Earphone Calibration for Hear-Through Options. In Proceedings of the AES 51st Conference on Loudspeakers and Headphones, Helsinki, Finland, 21–24 August 2013; pp. 3–4. [Google Scholar]
- Killion, M.C. Design and Evaluation of High-Fidelity Hearing Aids. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 1979. [Google Scholar]
- Rämö, J.; Välimäki, V. Digital Augmented Reality Audio Headset. J. Electr. Comput. Eng. 2012, 2012, 457374. [Google Scholar] [CrossRef]
- Denk, F.; Schepker, H.; Doclo, S.; Kollmeier, B. Acoustic Transparency in Hearables—Technical Evaluation. J. Audio Eng. Soc. 2020, 68, 508–521. [Google Scholar] [CrossRef]
- Schlieper, R.; Preihs, S.; Peissig, J. An Open Dataset of Measured HRTFs Perturbed by Headphones. In Audio Engineering Society Convention 152; Audio Engineering Society: New York, NY, USA, 2022; pp. 593–598. [Google Scholar]
- Schepker, H.; Denk, F.; Kollmeier, B.; Doclo, S. Acoustic Transparency in Hearables—Perceptual Sound Quality Evaluations. J. Audio Eng. Soc. 2020, 68, 495–507. [Google Scholar] [CrossRef]
- ISO 8253-1; Acoustics-Audiometric Test Methods–Part 1: Pure-Tone Air and Bone Conduction Audiometry. International Organization for Standardization: Geneva, Switzerland, 2010.
- Brainard, D.H. The Psychophysics Toolbox Short Title: The Psychophysics Toolbox Corresponding Author. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis. 1997, 10, 437–442. [Google Scholar] [CrossRef]
- Kleiner, M.; Brainard, D.; Pelli, D.; Ingling, A.; Murray, R.; Broussard, C. What’s new in Psychtoolbox-3? Perception 2007, 36, 14. [Google Scholar]
- Farina, A. Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique. J. Audio Eng. Soc. 2000, 48, 331–342. [Google Scholar]
- Dietz, M.; Ewert, S.D.; Hohmann, V. Auditory Model Based Direction Estimation of Concurrent Speakers from Binaural Signals. Speech Commun. 2011, 53, 592–605. [Google Scholar] [CrossRef]
- Katz, B.F.G.; Noisternig, M. A Comparative Study of Interaural Time Delay Estimation Methods. J. Acoust. Soc. Am. 2014, 135, 352w–3540. [Google Scholar] [CrossRef]
- Tollin, D.J.; Yin, T.C.T. Sound Localization: Neural Mechanisms. In Encyclopedia of Neuroscience; Elsevier: Amsterdam, The Netherlands, 2009; pp. 137–144. ISBN 978-0-08-045046-9. [Google Scholar]
- Carpenter, R.H.; Reddi, B.A.; Anderson, A.J. A simple two-stage model predicts response time distributions. J. Physiol. 2009, 587 Pt 16, 4051–4062. [Google Scholar] [CrossRef]
- Carpenter, R.H.; Williams, M.L.L. Neural computation of log likelihood in control of saccadic eye movements. Nature 1995, 377, 59–62. [Google Scholar] [CrossRef]
- Ausili, S.A.; Backus, B.; Agterberg, M.J.H.; van Opstal, A.J.; van Wanrooij, M.M. Sound Localization in Real-Time Vocoded Cochlear-Implant Simulations with Normal-Hearing Listeners. Trends Hear. 2019, 23, 2331216519847332. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P Values: Data Analysis with Estimation Graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Van Wanrooij, M.M.; Bell, A.H.; Munoz, D.P.; Van Opstal, A.J. The effect of spatial-temporal audiovisual disparities on saccades in a complex scene. Exp. Brain Res. 2009, 198, 425–437. [Google Scholar] [CrossRef]
- Ohlenforst, B.; Zekveld, A.A.; Jansma, E.P.; Wang, Y.; Naylor, G.; Lorens, A.; Lunner, T.; Kramer, S.E. Effects of hearing impairment and hearing aid amplification on listening effort: A systematic review. Ear Hear. 2017, 38, 267–281. [Google Scholar] [CrossRef]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.Y.; Humes, L.E.; Lemke, U.; Lunner, T.; Matthen, M.; Mackersie, C.L.; et al. Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef] [PubMed]
- Best, V.; Kalluri, S.; McLachlan, S.; Valentine, S.; Edwards, B.; Carlile, S. A Comparison of CIC and BTE Hearing Aids for Three-Dimensional Localization of Speech. Int. J. Audiol. 2010, 49, 723–732. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Zgheib, J. Haptic Sound-Localisation for Use in Cochlear Implant and Hearing-Aid Users. Sci. Rep. 2020, 10, 14171. [Google Scholar] [CrossRef]
- Zheng, Y.; Swanson, J.; Koehnke, J.; Guan, J. Sound Localization of Listeners With Normal Hearing, Impaired Hearing, Hearing Aids, Bone-Anchored Hearing Instruments, and Cochlear Implants: A Review. Am. J. Audiol. 2022, 31, 819–834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausili, S.A.; Erthal, N.; Bennett, C.; Snapp, H.A. Sound Localization with Hearables in Transparency Mode. Audiol. Res. 2025, 15, 48. https://doi.org/10.3390/audiolres15030048
Ausili SA, Erthal N, Bennett C, Snapp HA. Sound Localization with Hearables in Transparency Mode. Audiology Research. 2025; 15(3):48. https://doi.org/10.3390/audiolres15030048
Chicago/Turabian StyleAusili, Sebastian A., Nathan Erthal, Christopher Bennett, and Hillary A. Snapp. 2025. "Sound Localization with Hearables in Transparency Mode" Audiology Research 15, no. 3: 48. https://doi.org/10.3390/audiolres15030048
APA StyleAusili, S. A., Erthal, N., Bennett, C., & Snapp, H. A. (2025). Sound Localization with Hearables in Transparency Mode. Audiology Research, 15(3), 48. https://doi.org/10.3390/audiolres15030048