Role of Daratumumab, Lenalidomide, and Dexamethasone in Transplantation-Eligible Patients with Multiple Myeloma After the Failure of Bortezomib-Based Induction Therapy †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASCT | autologous stem cell transplantation |
| DRd | daratumab, lenalidomide, and dexamethasone |
| EPd | elotuzumab, pomalidomide, and dexamethasone |
| Kd | carfilzomib and dexamethasone |
| KRd | carfilzomib lenalidomide, and dexamethasone |
| NDMM | newly diagnosed multiple myeloma |
| OS | overall survival |
| MM | multiple myeloma |
| MRD | measurable residual disease |
| Rd | lenalidomide and dexamethasone |
| PR | partial response |
| PFS | progression-free survival |
| PD | progressive disease |
| RRMM | relapsed or refractory multiple myeloma |
| sCR | stringent complete response |
| TTNT | time to next treatment |
| VCd | bortezomib–cyclophosphamide–dexamethasone |
| VGPR | very good partial response |
| VRd | bortezomib, lenalidomide, and dexamethasone |
References
- Rajkumar, S.V. Multiple myeloma: 2024 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Reeder, C.B.; Reece, D.E.; Kukreti, V.; Chen, C.; Trudel, S.; Hentz, J.; Noble, B.; Pirooz, N.A.; Spong, J.E.; Piza, J.G.; et al. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: High response rates in a phase II clinical trial. Leukemia 2009, 23, 1337–1341. [Google Scholar] [CrossRef]
- Einsele, H.; Engelhardt, M.; Tapprich, C.; Müller, J.; Liebisch, P.; Langer, C.; Kropff, M.; Mügge, L.O.; Jung, W.; Wolf, H.H.; et al. Phase II study of bortezomib, cyclophosphamide, and dexamethasone as induction therapy in multiple myeloma: The DSMM XI trial. Br. J. Haematol. 2017, 179, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet therapy, transplantation, and maintenance until myeloma progression. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef]
- Handa, H.; Ishida, T.; Ozaki, S.; Mori, A.; Kato, K.; Iida, S. Treatment pattern and clinical outcomes in multiple myeloma patients in Japan using the Medical Data Vision claims database. PLoS ONE 2023, 18, e0283931. [Google Scholar] [CrossRef]
- Yadav, S.; Gundeti, S.; Bhave, A.; Deb, U.; Dixit, J.; Mishra, K. Role of daratumumab in the frontline management of multiple myeloma: A narrative review. Expert. Rev. Hematol. 2023, 16, 743–760. [Google Scholar] [CrossRef]
- Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, W.C.J.N.; Weiss, M.B.; et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef] [PubMed]
- van der Veer, M.S.; de Weers, M.; van Kessel, B.; Bakker, M.J.; Wittebol, S.; Parren, W.H.I.P.; Lokhorst, M.H.; Mutis, T. Towards effective immunotherapy of myeloma enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011, 96, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, lenalidomide, and dexamethasone for multiple treatment. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef]
- Facon, T.; Kumar, S.K.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (Maia): Overall survival results from a randomized, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 1582–1596. [Google Scholar] [CrossRef]
- Xu, T.; Roose, J.; Williamson, M.; Sawas, A.; Hong, W.J.; Jin, H.; Maignan, K.; Rocci, A.; Yousefi, K.; Kumar, S.; et al. RWD-derived responses in multiple myeloma. PLoS ONE 2023, 18, e0285125. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for the response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Sato, K.; Okazuka, K.; Ishida, T.; Sakamoto, J.; Kaneko, S.; Nashimoto, J.; Uto, Y.; Ogura, M.; Yoshiki, Y.; Abe, Y.; et al. Minimal residual disease detection in multiple myeloma: Comparison between BML single-tube 10-color multiparameter flow cytometry and EuroFlow multiparameter flow cytometry. Ann. Hematol. 2021, 100, 2989–2995. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised international staging system for multiple myelomas: A report from the International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.C.; Joffe, E.; Benyamini, N.; Dimopoulos, M.A.; Terpos, E.; Trestman, S.; Held-Kuznetsov, V.; Avivi, I.; Kastritis, E. Primary failure of bortezomib in newly diagnosed multiple myeloma understanding the magnitude, predictors, and significance. Leuk. Lymphoma 2016, 57, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Badros, A.; Foster, L.; Anderson, L.D.; Chaulagain, C.P.; Pettijohn, E.; Cowan, A.J.; Costello, C.; Larson, S.; Sborov, D.W.; Shain, K.H.; et al. Daratumumab with lenalidomide as maintenance therapy after transplantation in newly diagnosed multiple myeloma: The AURIGA study. Blood 2025, 145, 300–310. [Google Scholar] [CrossRef]
- Medina-Herrera, A.; Sarasquete, M.E.; Jiménez, C.; Puig, N.; García-Sanz, R. Minimal residual disease in multiple myeloma: Past, Present, and future. Cancers 2023, 15, 3687. [Google Scholar] [CrossRef]
- Szalat, R.; Anderson, K.; Munshi, N. Role of minimal residual disease assessment in multiple myeloma. Haematologica 2024, 109, 2049–2059. [Google Scholar] [CrossRef]
- Kawamura, K.; Kikuchi, M.; Terasako, K.; Wada, H.; Yamasaki, R.; Ishihara, Y.; Sakamoto, K.; Ashizawa, M.; Sato, M.; Machishima, T.; et al. Comparison of the efficacy of peripheral blood stem cell mobilization using G-CSF alone between healthy donors and patients with haematological malignancies. Transfus. Apher. Sci. 2013, 49, 334–340. [Google Scholar] [CrossRef]
- Duan, H.; Jiang, Q.; Liu, L.; Deng, M.; Lai, Q.; Jiang, Y.; Li, Z.; Xu, B.; Lin, Z. Effect of prior lenalidomide or daratumumab exposure on hematopoietic stem cell collection and reconstitution in multiple myeloma. Ann. Hematol. 2024, 103, 3839–3853. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Suzuki, K.; Plesner, T.; et al. Overall survival with daratumumab, lenalidomide, and dexamethasone in previously treated multiple myeloma (POLLUX): A randomized, open-label, Phase III trial. J. Clin. Oncol. 2023, 41, 1590–1599. [Google Scholar] [CrossRef]
- Wonnaparhown, A.; Hilal, T.; Squire, J.; Freeman, C.; Fonseca, R. IgG replacement in multiple myeloma. Blood Cancer J. 2024, 14, 124. [Google Scholar] [CrossRef]
- Lim, S.; Reynolds, J.; Quach, H.; Hutchinson, A.; Kerridge, I.; Janowski, W.; Bergin, K.; Spencer, A. Response adaptive salvage treatment with daratumumab–lenalidomide–dexamethasone for newly diagnosed transplant-eligible multiple myeloma patients failing front-line bortezomib-based induction therapy—ALLG MM21. Br. J. Haematol. 2024, 205, 900–914. [Google Scholar] [CrossRef]
- Afrough, A.; Pasvolsky, O.; Ma, J.; Srour, S.; Bashir, Q.; Saini, N.; Hosing, C.; Popat, U.R.; Kebriaei, P.; Delgado, R.; et al. Impact of induction with VCD versus VRD induction on the outcomes of patients with multiple myeloma after autologous hematopoietic stem cell transplantation. Transplant. Cell Ther. 2022, 28, 307.e1–307.e8. [Google Scholar] [CrossRef]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple treatment. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef]
- Sidana, S.; Kumar, S.; Fraser, R.; Estrada-Merly, N.; Giralt, S.; Agrawal, V.; Anderson, L.D.; Aljurf, M.; Banerjee, R.; Bashey, A.; et al. Impact of Induction Therapy with VRD versus VCD on Outcomes in Patients with Multiple Myeloma in Partial Response or Better Undergoing Upfront Autologous Stem Cell Transplantation. Transplant. Cell Ther. 2022, 28, 83.e1–83.e9. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.; Hayden, P.; Pawlyn, C.; McLornan, D.; Garderet, L. The role of maintenance therapy following autologous stem cell transplantation in newly diagnosed multiple myeloma: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Br. J. Haematol. 2024, 204, 1159–1175. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Lou, Y.; Fan, X.; Yang, W.; Tang, F.; Zhao, Z.; Dong, H. Autologous stem cell transplantation and maintenance therapy for transplant-eligible multiple myeloma patients: Cost-effectiveness analysis based on a network meta-analysis. Expert. Rev. Pharmacoecon Outcomes Res. 2025, 25, 697–707. [Google Scholar] [CrossRef]
- Martino, E.A.; Vigna, E.; Labanca, C.; Bruzzese, A.; Mendicino, F.; Caridà, G.; Lucia, E.; Olivito, V.; Puccio, N.; Amodio, N.; et al. Maintenance therapy after ASCT in newly diagnosed multiple myeloma patients: Single agent versus combination drugs. Expert Rev. Hematol. 2025, 18, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.W.; Kim, D.S.; Lee, S.R.; Heo, M.H.; Eom, H.S.; Jung, J.; Lee, J.H.; Kim, S.H.; Koh, Y.; Min, C.K.; et al. Real-world outcomes of maintenance therapy post-autologous stem cell transplantation in newly diagnosed multiple myeloma. BMC Cancer 2025, 25, 204. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Hamada, T.; Nakagawa, M.; Ichinohe, T.; Nukariya, H.; Endo, T.; Kurihara, K.; Takeuchi, Y.; Otake, S.; Takahashi, H.; et al. Improving 1-Year MRD Negativity with DRd Therapy in VCd-Refractory Transplant-Eligible Multiple Myeloma Patients. In Proceedings of the 50th Annual Meeting of the Japanese Society of Myeloma, Gunma, Japan, 23–25 May 2025. [Google Scholar]



| Items | Salvage Group (n = 8) | Control Group (n = 13) | p Value |
|---|---|---|---|
| Men/women, n | 6/2 | 6/7 | 0.367 |
| Median age, y (range) | 61 (36–68) | 60 (44–64) | 0.828 |
| R-ISS stage, n (%) | 1.000 | ||
| Stage I or II | 5 (63%) | 9 (69%) | |
| Stage III | 3 (38%) | 4 (31%) | |
| Performance status, n (%) | 0.618 | ||
| 0–1 | 6 (75%) | 11 (85%) | |
| ≥2 | 2 (25%) | 2 (15%) | |
| High-risk karyotype *, n (%) | 1.000 | ||
| Present | 5 (63%) | 7 (54%) | |
| Absent | 3 (38%) | 6 (46%) | |
| Bone lysis, n (%) | 0.618 | ||
| Present | 6 (75%) | 11 (85%) | |
| Absent | 2 (25%) | 2 (15%) | |
| Extramedullary involvement, n (%) | |||
| Present | 2 (25%) | 4 (31%) | 1.000 |
| Absent | 6 (75%) | 9 (69%) | |
| Best response to (re)induction, n (%) | 1.000 | ||
| PR | 2 (25%) | 4 (31%) | |
| ≥VGPR | 6 (75%) | 9 (69%) | |
| Post-ASCT treatment, n (%) | 1.000 | ||
| Present | 7 (88%) | 11 (85%) | |
| Absent | 1 (13%) | 2 (15%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Hamada, T.; Nakagawa, M.; Ichinohe, T.; Nukariya, H.; Endo, T.; Kurihara, K.; Takeuchi, Y.; Otake, S.; Takahashi, H.; et al. Role of Daratumumab, Lenalidomide, and Dexamethasone in Transplantation-Eligible Patients with Multiple Myeloma After the Failure of Bortezomib-Based Induction Therapy. Hematol. Rep. 2025, 17, 57. https://doi.org/10.3390/hematolrep17060057
Ito S, Hamada T, Nakagawa M, Ichinohe T, Nukariya H, Endo T, Kurihara K, Takeuchi Y, Otake S, Takahashi H, et al. Role of Daratumumab, Lenalidomide, and Dexamethasone in Transplantation-Eligible Patients with Multiple Myeloma After the Failure of Bortezomib-Based Induction Therapy. Hematology Reports. 2025; 17(6):57. https://doi.org/10.3390/hematolrep17060057
Chicago/Turabian StyleIto, Shun, Takashi Hamada, Masaru Nakagawa, Takashi Ichinohe, Hironao Nukariya, Toshihide Endo, Kazuya Kurihara, Yuichi Takeuchi, Shimon Otake, Hiromichi Takahashi, and et al. 2025. "Role of Daratumumab, Lenalidomide, and Dexamethasone in Transplantation-Eligible Patients with Multiple Myeloma After the Failure of Bortezomib-Based Induction Therapy" Hematology Reports 17, no. 6: 57. https://doi.org/10.3390/hematolrep17060057
APA StyleIto, S., Hamada, T., Nakagawa, M., Ichinohe, T., Nukariya, H., Endo, T., Kurihara, K., Takeuchi, Y., Otake, S., Takahashi, H., Nakamura, H., & Miura, K. (2025). Role of Daratumumab, Lenalidomide, and Dexamethasone in Transplantation-Eligible Patients with Multiple Myeloma After the Failure of Bortezomib-Based Induction Therapy. Hematology Reports, 17(6), 57. https://doi.org/10.3390/hematolrep17060057

