Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carsote, M.; Vasiliu, C.; Trandafir, A.I.; Albu, S.E.; Dumitrascu, M.C.; Popa, A.; Mehedintu, C.; Petca, R.C.; Petca, A.; Sandru, F. New Entity—Thalassemic Endocrine Disease: Major Beta-Thalassemia and Endocrine Involvement. Diagnostics 2022, 12, 1921. [Google Scholar] [CrossRef]
- Nienhuis, A.W.; Nathan, D.G. Pathophysiology and Clinical Manifestations of the β-Thalassemias. Cold Spring Harb. Perspect. Med. 2012, 2, a011726. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.; Daar, S.; Tzoulis, P.; Yassin, M.A.; Di Maio, S.; Kattamis, C. Insulin-like Growth Factor-1 (IGF-1) and Glucose Dysregulation in Young Adult Patients with β-Thalassemia Major: Causality or Potential Link? Acta Biomed. 2022, 93, e2022331. [Google Scholar] [CrossRef]
- Viprakasit, V.; Ekwattanakit, S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol. Oncol. Clin. N. Am. 2018, 32, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Porter, J.; Taher, A.; Cappellini, M.D.; Angastiniotis, M.; Eleftheriou, A.; Alassaf, A.; Angastiniotis, M.; Angelucci, E.; Aydinok, Y.; et al. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-Dependent Thalassemia. Hemasphere 2022, 6, e732. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.-D.; Cohen, A.; Eleftheriou, A.; Piga, A.; Porter, J.; Taher, A. Chapter 2—Blood Transfusion Therapy in β-Thalassaemia Major. In Guidelines for the Clinical Management of Thalassaemia, 2nd Revised ed.; Thalassaemia International Federation: Nicosia, Cyprus, 2008. Available online: https://www.ncbi.nlm.nih.gov/books/nbk173967/ (accessed on 10 December 2023).
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Al Yaarubi, S.; Skordis, N.; Khater, D.; El Kholy, M.; Stoeva, I.; Fiscina, B.; Angastiniotis, M.; et al. The ICET-A Recommendations for the Diagnosis and Management of Disturbances of Glucose Homeostasis in Thalassemia Major Patients. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016058. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Daar, S.; Soliman, A.T.; Tzoulis, P.; Karimi, M.; Di Maio, S.; Kattamis, C. Screening for Glucose Dysregulation in β-Thalassemia Major (β-TM): An Update of Current Evidences and Personal Experience. Acta Biomed. 2022, 93, e2022158. [Google Scholar] [CrossRef]
- Ricchi, P.; Meloni, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Allo, M.; Putti, M.C.; Spasiano, A.; Rosso, R.; Cecinati, V.; et al. Longitudinal Prospective Comparison of Pancreatic Iron by Magnetic Resonance in Thalassemia Patients Transfusion-Dependent since Early Childhood Treated with Combination Deferiprone- Desferrioxamine vs Deferiprone or Deferasirox Monotherapy. Blood Transfus. 2024, 22. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Coates, T.D.; Wood, J.C. Pancreatic Iron Loading in Chronically Transfused Sickle Cell Disease Is Lower than in Thalassaemia Major. Br. J. Haematol. 2011, 152, 229–233. [Google Scholar] [CrossRef] [PubMed]
- de Sanctis, V.; Soliman, A.; Tzoulis, P.; Daar, S.; Pozzobon, G.C.; Kattamis, C. A Study of Isolated Hyperglycemia (Blood Glucose ≥155 Mg/Dl) at 1-Hour of Oral Glucose Tolerance Test (OGTT) in Patients with β-Transfusion Dependent Thalassemia (β-TDT) Followed for 12 Years. Acta Biomed. 2021, 92, e2021322. [Google Scholar] [CrossRef]
- Karamanou, M. Milestones in the History of Diabetes Mellitus: The Main Contributors. World J. Diabetes 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Skoczek, D.; Dulak, J.; Kachamakova-Trojanowska, N. Maturity Onset Diabetes of the Young—New Approaches for Disease Modelling. Int. J. Mol. Sci. 2021, 22, 7553. [Google Scholar] [CrossRef] [PubMed]
- Kaul, K.; Tarr, J.M.; Ahmad, S.I.; Kohner, E.M.; Chibber, R. Introduction to Diabetes Mellitus. In Diabetes: An Old Disease, a New Insight; Ahmad, S.I., Ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Caro, J.J.; Huybrechts, K.F.; Green, T.C. Estimates of the Effect on Hepatic Iron of Oral Deferiprone Compared with Subcutaneous Desferrioxamine for Treatment of Iron Overload in Thalassemia Major: A Systematic Review. BMC Hematol. 2002, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Pistoia, L.; Gamberini, M.R.; Ricchi, P.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Allò, M.; Righi, R.; Fina, P.; et al. The Link of Pancreatic Iron with Glucose Metabolism and Cardiac Iron in Thalassemia Intermedia: A Large, Multicenter Observational Study. J. Clin. Med. 2021, 10, 5561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, Z.; Jiang, Z.; Liu, Z.; Hou, L.; Cai, G.; Ou, H.; Huang, S.; Song, Q.; Fang, J.; et al. Indicators of Glucose Dysregulation and the Relationship with Iron Overload in Chinese Children with Beta Thalassemia Major. Pediatr. Diabetes 2022, 23, 562–568. [Google Scholar] [CrossRef]
- El-Samahy, M.H.; Tantawy, A.A.; Adly, A.A.; Abdelmaksoud, A.A.; Ismail, E.A.; Salah, N.Y. Evaluation of Continuous Glucose Monitoring System for Detection of Alterations in Glucose Homeostasis in Pediatric Patients with β-Thalassemia Major. Pediatr. Diabetes 2019, 20, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bazi, A.; Sharifi-Rad, J.; Rostami, D.; Sargazi-Aval, O.; Safa, A. Diabetes Mellitus in Thalassaemia Major Patients: A Report from the Southeast of Iran. J. Clin. Diagn. Res. 2017, 11, BC01–BC04. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.; Youssry, L.; El-Hamed, F.A.; Ibrahim, A. Abnormal Glucose Tolerance in Βthalassemia: Assessment of Risk Factors. Hemoglobin 2009, 33, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.S.; Abd El-Fatah, A.H.; Abd El-Halim, A.F.; Mohamed, F.F. Serum Ferritin Levels and Other Associated Parameters with Diabetes Mellitus in Adult Patients Suffering from Beta Thalassemia Major. J. Blood Med. 2023, 14, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Chern, J.P.S.; Lin, K.-H.; Lu, M.-Y.; Lin, D.-T.; Lin, K.-S.; Chen, J.-D.; Fu, C.-C. Abnormal Glucose Tolerance in Transfusion-Dependent-Thalassemic Patients. Diabetes Care 2001, 24, 850–854. [Google Scholar] [CrossRef]
- Jaruratanasirikul, S.; Chareonmuang, R.; Wongcharnchailert, M.; Laosombat, V.; Sangsupavanich, P.; Leetanaporn, K. Prevalence of Impaired Glucose Metabolism in β-Thalassemic Children Receiving Hypertransfusions with a Suboptimal Dosage of Iron-Chelating Therapy. Eur. J. Pediatr. 2008, 167, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Farmaki, K.; Angelopoulos, N.; Anagnostopoulos, G.; Gotsis, E.; Rombopoulos, G.; Tolis, G. Effect of Enhanced Iron Chelation Therapy on Glucose Metabolism in Patients with β-Thalassaemia Major. Br. J. Haematol. 2006, 134, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi, M.A.; Sepehri, Z.; Heidari, Z.; Kaykhaei, M.A.; Sargazi, A.; Kohan, F.; Heidari, H. A Cross-Sectional Study of Glycemic Status and Zinc Level in Patients with Beta-Thalassemia Major. Int. J. Hematol.-Oncol. Stem Cell Res. 2017, 11, 273. [Google Scholar] [PubMed]
- Suvarna, J.; Ingle, H.; Deshmukh, C.T. Insulin Resistance and Beta Cell Function in Chronically Transfused Patients of Thalassemia Major. Indian Pediatr. 2006, 43, 393. [Google Scholar] [PubMed]
- Chatterjee, R.; Bajoria, R. New Concept in Natural History and Management of Diabetes Mellitus in Thalassemia Major Diabetes and Thalassaemia. Hemoglobin 2009, 33 (Suppl. S1), S127–S130. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.T.; Daar, S.; Di Maio, S.; Elsedfy, H.; Kattamis, C. A Transfusion Dependent Thalassemia and HbA1c Assessment and Evaluation. Pediatr. Endocrinol. 2020, 17, 26–234. [Google Scholar] [CrossRef]
- Ke, P.; Liu, J.; Chao, Y.; Wu, X.; Xiong, Y.; Lin, L.; Wan, Z.; Wu, X.; Xu, J.; Zhuang, J.; et al. Measurement of HbA1c and HbA2 by Capillarys 2 Flex Piercing HbA1c Programme for Simultaneous Management of Diabetes and Screening for Thalassemia. Biochem. Med. 2017, 27, 030704. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.C.; Ehlert, L.R.; Camargo, J.L. Glycated Albumin: A Potential Biomarker in Diabetes. Arch. Endocrinol. Metab. 2017, 61, 296–304. [Google Scholar] [CrossRef]
- Candrarukmi, D.; Moelyo, A.G.; Riza, M. Glycated Albumin as Marker for Early Hyperglycemia Detection in Adolescent with β Thalassemia Major. Indones. Biomed. J. 2021, 13, 281–288. [Google Scholar] [CrossRef]
- Christoforidis, A.; Perifanis, V.; Athanassiou-Metaxa, M. Combined Chelation Therapy Improves Glucose Metabolism in Patients with β-Thalassaemia Major. Br. J. Haematol. 2006, 135, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.M.; Bacigalupo, L.; Gianesin, B.; Balocco, M.; De Franceschi, L.; Malagò, R.; Wood, J.; Forni, G.L. Lack of Correlation between Heart, Liver and Pancreas MRI-R2*: Results from Long-Term Follow-up in a Cohort of Adult β-Thalassemia Major Patients. Am. J. Hematol. 2018, 93, E79–E82. [Google Scholar] [CrossRef]
- Farmaki, K.; Tzoumari, I.; Pappa, C.; Chouliaras, G.; Berdoukas, V. Normalisation of Total Body Iron Load with Very Intensive Combined Chelation Reverses Cardiac and Endocrine Complications of Thalassaemia Major. Br. J. Haematol. 2010, 148, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Paulo, M.S.; Abdo, N.M.; Bettencourt-Silva, R.; Al-Rifai, R.H. Gestational Diabetes Mellitus in Europe: A Systematic Review and Meta-Analysis of Prevalence Studies. Front. Endocrinol. 2021, 12, 691033. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Abbasi, A.; Adler, A.I. Gamma-Glutamyl Transferase and Risk of Type II Diabetes: An Updated Systematic Review and Dose-Response Meta-Analysis. Ann. Epidemiol. 2014, 24, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Nano, J.; Muka, T.; Ligthart, S.; Hofman, A.; Murad, S.D.; Janssen, H.L.A.; Franco, O.H.; Dehghan, A. Gamma-Glutamyltransferase Levels, Prediabetes and Type 2 Diabetes: A Mendelian Randomization Study. Int. J. Epidemiol. 2017, 46, 1400–1409. [Google Scholar] [CrossRef]
- Fraser, A.; Harris, R.; Sattar, N.; Ebrahim, S.; Smith, G.D.; Lawlor, D.A. Alanine Aminotransferase, γ-Glutamyltransferase, and Incident Diabetes. Diabetes Care 2009, 32, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.Y.; Fawzi, M.; Al-Maloul, S.R.; El-Banna, N.; Tayyem, R.F.; Ahmad, I.M. Increased Oxidative Stress and Iron Overload in Jordanian β-Thalassemic Children. Hemoglobin 2011, 35, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Dana, M. Oxidative Stress in β-Thalassemia. Mol. Diagn. Ther. 2019, 23, 245–261. [Google Scholar] [CrossRef]
- Zhang, P.; Li, H.; Tan, X.; Chen, L.; Wang, S. Association of Metformin Use with Cancer Incidence and Mortality: A Meta-Analysis. Cancer Epidemiol. 2013, 37, 207–218. [Google Scholar] [CrossRef]
- Casale, M.; Cinque, P.; Ricchi, P.; Costantini, S.; Spasiano, A.; Prossomariti, L.; Minelli, S.; Frega, V.; Filosa, A. Effect of Splenectomy on Iron Balance in Patients with β-Thalassemia Major: A Long-Term Follow-Up. Eur. J. Haematol. 2013, 91, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kosaryan, M.; Rahimi, M.; Darvishi-Khezri, H.; Gholizadeh, N.; Akbarzadeh, R.; Aliasgharian, A. Correlation of Pancreatic Iron Overload Measured by T2*-Weighted Magnetic Resonance Imaging in Diabetic Patients with β-Thalassemia Major. Hemoglobin 2017, 41, 151–156. [Google Scholar] [CrossRef]
- Hashemieh, M.; Radfar, M.; Azarkeivan, A.; Noghabaei, G.; Sheibani, K. T2* Magnetic Resonance Imaging Study of Pancreatic Iron Overload and Its Relation With the Diabetic State in Thalassemic Patients. J. Pediatr. Hematol./Oncol. 2017, 39, 337–340. [Google Scholar] [CrossRef]
- Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Peluso, A.; Messina, G.; Spasiano, A.; Allò, M.; Bisconte, M.G.; Putti, M.C.; et al. The Close Link of Pancreatic Iron with Glucose Metabolism and with Cardiac Complications in Thalassemia Major: A Large, Multicenter Observational Study. Diabetes Care 2020, 43, 2830–2839. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Cappellini, M.D. How I Treat Sickle Cell Disease and Thalassemia: How I Manage Medical Complications of B-Thalassemia in Adults. Blood 2018, 132, 1781–1791. [Google Scholar] [CrossRef]
- Fularska, K.; Oleszko, M.; Wąsiewicz, E.; Kuźniar, A.; Szawica, D. Beta-Blockers Used in Cardiac Failure and Blood Glucose Level Impairment—A Literature Review. J. Educ. Health Sport 2023, 23, 40–51. [Google Scholar] [CrossRef]
SF (ng/mL) | Cardiac MRI T2* (ms) | Hepatic MRI T2* (ms) | |
---|---|---|---|
Normal | <1000 | >20 | >8 |
Mild | 1000–2000 | 14–20 | 4–8 |
Moderate | 2000–4000 | 10–14 | 2–4 |
Severe | >4000 | <10 | <2 |
Groups | ||
---|---|---|
Group 1 | 46/64 (71.8%) | |
Group 2 | 18/64 (28.1%) | Diabetes Mellitus: 8/64 (12.5%) |
Impaired Glucose Tolerance: 10/64 (15.6%) |
Normal Distribution: Mean (SD) Non-Normal Distribution: Media (IQR) | p-Value | ||
---|---|---|---|
Group 1 | Group 2 | ||
Age | 39 (9) | 45 (10) | 0.02 |
Body weight | 65 (18) | 72 (20) | 0.9 |
Hemoglobin | 9.8 (0.5) | 9.8 (0.7) | 0.82 |
Annual transfused Blood volume | 10,453 (3336) | 9793 (2342) | 0.48 |
WBC | 9300 (7900) | 12,300 (7770) | 0.38 |
NEU | 5258 (2713) | 5822 (3675) | 0.74 |
LYM | 2896 (1871) | 3233 (1843) | 0.4 |
MON | 770 (860) | 690 (635) | 0.9 |
PLT | 421,520 (235,700) | 455,100 (237,210) | 0.5 |
GLU | 88 (10) | 104 (42) | <0.001 |
Urea | 39.3 (9) | 39.8 (10) | 0.93 |
Serum creatinine | 0.8 (0.16) | 0.83 (0.2) | 0.6 |
LDH | 233 (111) | 238 (62) | 0.99 |
Total bil | 1.93 (1.17) | 1.63 (1.6) | 0.34 |
Direct bil | 0.4 (0.32) | 0.27 (0.23) | 0.63 |
Indirect bil | 1.55 (1.1) | 1.3 (1.25) | 0.2 |
GGT | 14 (8) | 22 (18) | 0.02 |
AST | 19 (19) | 17 (36) | 0.6 |
ALT | 21 (13) | 20 (17) | 0.7 |
Amylase | 54 (24) | 45 (28) | 0.98 |
CRP | 1.7 (2.8) | 1.9 (3.8) | 0.4 |
MRI—liver | 11.2 (9.6) | 8 (9) | 0.7 |
LIC | 2.4 (2.35) | 3.3 (4.5) | 0.82 |
MRI—heart | 35.3 (5) | 33 (7) | 0.41 |
EF | 62.3 (5.6) | 61.9 (4.5) | 0.96 |
Serum ferritin | 720 (506) | 620 (620) | 0.36 |
Treatment | YES | NO | |
---|---|---|---|
Hormonal replacement therapy | 16 (25%) | 48 (75%) | 0.75 |
Corticosteroids | 2 (3.1%) | 62 (96.9%) | 0.49 |
Beta-blocker | 13 (20.3%) Group 1:6 Group 2:7 | 51 (79.7%) Group 1:40 Group 2:11 | 0.02 |
Zinc | 14 (21.9%) | 50 (78.1%) | 0.96 |
n | 64 | 64 |
Hypothyroidism | HCV Infection | Splenectomy | |
---|---|---|---|
Group 1 | Present: 7 (15.2%) Absent: 39 (84.7%) | Present: 8 (17.3%) Absent: 38 (82.6%) | Positive: 18 (39.1%) Negative: 28 (60.8%) |
Group 2 | Present: 6 (33.3%) Absent: 12 (66.6%) | Present: 5 (27.7%) Absent: 13 (72.2%) | Positive: 10 (55.5%) Negative: 8 (44.4%) |
p | 0.1 | 0.35 | 0.23 |
Variables (Univariate Logistic Regression Analysis) | p-Value |
---|---|
Age | 0.03 |
Gender | 0.63 |
Blood volume (per year) | 0.45 |
Blood type | 0.66 |
Hemoglobin | 0.86 |
Urea | 0.85 |
Creatinine | 0.53 |
Neutrophils | 0.71 |
Lymphocytes | 0.51 |
Monocytes | 0.9 |
Glu | <0.01 |
LDH | 0.52 |
Total bilirubin | 0.32 |
Direct bilirubin | 0.62 |
Indirect bilirubin | 0.36 |
GGT | 0.05 |
AST | 0.11 |
ALT | 0.11 |
Amylase | 0.8 |
CPK | 0.21 |
CRP | 0.2 |
Type of iron chelation | 0.33 |
Liver MRI T2* | 0.48 |
Heart MRI T2* | 0.15 |
LIC | 0.72 |
EF | 0.76 |
Hormonal replacement therapy | 0.74 |
Beta-blocker | 0.03 |
Corticosteroids | 0.5 |
Zinc | 0.96 |
HCV infection | 0.35 |
Splenectomy | 0.23 |
Serum Ferritin | 0.43 |
Variables (Multivariate Logistic Regres-Sion Analysis) | p-Value | OR | 95% CI |
---|---|---|---|
Age | 0.16 | 1 | 0.97–1.1 |
ALT | 0.71 | 0.98 | 0.91–1.06 |
AST | 0.64 | 1 | 0.96–1.05 |
GGT | 0.14 | 1 | 0.99–1.07 |
Heart MRI T2* | 0.19 | 0.9 | 0.81–1.04 |
Beta-blocker | 0.18 | 2.4 | 0.63–1.7 |
Pancreatic MRI T2* | Pearson Coefficient | p-Value |
---|---|---|
Liver MRI T2* | −0.27 | 0.24 |
Heart MRI T2* | 0.45 | 0.04 |
LIC | 0.16 | 0.49 |
Fasting serum glucose (mg/dl) | −0.33 | 0.15 |
Serum ferritin (μg/L) | −0.05 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venou, T.M.; Kyriakidis, F.; Barmpageorgopoulou, F.; Theodoridou, S.; Vyzantiadis, A.; Klonizakis, P.; Gavriilaki, E.; Vlachaki, E. Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study. Hematol. Rep. 2025, 17, 6. https://doi.org/10.3390/hematolrep17010006
Venou TM, Kyriakidis F, Barmpageorgopoulou F, Theodoridou S, Vyzantiadis A, Klonizakis P, Gavriilaki E, Vlachaki E. Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study. Hematology Reports. 2025; 17(1):6. https://doi.org/10.3390/hematolrep17010006
Chicago/Turabian StyleVenou, Theodora Maria, Filippos Kyriakidis, Fani Barmpageorgopoulou, Stamatia Theodoridou, Athanasios Vyzantiadis, Philippos Klonizakis, Eleni Gavriilaki, and Efthymia Vlachaki. 2025. "Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study" Hematology Reports 17, no. 1: 6. https://doi.org/10.3390/hematolrep17010006
APA StyleVenou, T. M., Kyriakidis, F., Barmpageorgopoulou, F., Theodoridou, S., Vyzantiadis, A., Klonizakis, P., Gavriilaki, E., & Vlachaki, E. (2025). Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study. Hematology Reports, 17(1), 6. https://doi.org/10.3390/hematolrep17010006