Neutropenia in Childhood—A Narrative Review and Practical Diagnostic Approach
Abstract
:1. Introduction
2. Neutropenia with Reduced Bone Marrow Reserve
2.1. Cyclic Neutropenia
2.2. Shwachman–Diamond Syndrome
2.3. Kostmann Syndrome
2.4. Chédiak–Higashi Syndrome
2.5. Myelokathexis
2.6. Reticular Dysgenesis
2.7. Dyskeratosis Congenita
3. Secondary Neutropenia with Reduced Bone Marrow Reserve
3.1. Drug-Induced Neutropenia
3.2. T-Cell Large Granular Lymphocytic Leukemia
3.3. Nutritional Deficiency
3.4. Viral Infections
4. Neutropenia with Normal Bone Marrow Reserve
4.1. Chronic Benign Neutropenia of Infancy and Childhood
4.2. Non-Immune Chronic Benign Neutropenia
4.3. Benign Familial Neutropenia
4.4. Autoimmune Neutropenia
4.4.1. Primary Autoimmune Neutropenia
4.4.2. Secondary Autoimmune Neutropenia
4.5. Alloimmune Neutropenia
4.6. Drug-Induced Neutropenia (Antibody-Mediated)
4.7. Infection-Related Neutropenia (Antibody-Mediated)
4.8. Hypersplenism
4.9. Maternal Hypertension
5. Diagnostic Approach to Neutropenia
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Celkan, T.; Koc, B.S. Approach to the Patient with Neutropenia in Childhood. Türk. Pediatr. Arşivi 2015, 50, 136–144. [Google Scholar] [CrossRef]
- Boxer, L.; Dale, D.C. Neutropenia: Causes and Consequences. Semin. Hematol. 2002, 39, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Kruger, P.; Saffarzadeh, M.; Weber, A.N.R.; Rieber, N.; Radsak, M.; von Bernuth, H.; Benarafa, C.; Roos, D.; Skokowa, J.; Hartl, D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathog. 2015, 11, e1004651. [Google Scholar] [CrossRef]
- Frater, J.L. How I Investigate Neutropenia. Int. J. Lab. Hematol. 2020, 42 (Suppl. S1), 121–132. [Google Scholar] [CrossRef]
- Denic, S.; Showqi, S.; Klein, C.; Takala, M.; Nagelkerke, N.; Agarwal, M.M. Prevalence, Phenotype and Inheritance of Benign Neutropenia in Arabs. BMC Blood Disord. 2009, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Haddy, T.B.; Rana, S.R.; Castro, O. Benign Ethnic Neutropenia: What Is a Normal Absolute Neutrophil Count? J. Lab. Clin. Med. 1999, 133, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Walkovich, K.; Boxer, L.A. How to Approach Neutropenia in Childhood. Pediatr. Rev. 2013, 34, 173–184. [Google Scholar] [CrossRef]
- Bellanné-Chantelot, C.; Clauin, S.; Leblanc, T.; Cassinat, B.; Rodrigues-Lima, F.; Beaufils, S.; Vaury, C.; Barkaoui, M.; Fenneteau, O.; Maier-Redelsperger, M.; et al. Mutations in the ELA2 Gene Correlate with More Severe Expression of Neutropenia: A Study of 81 Patients from the French Neutropenia Register. Blood 2004, 103, 4119–4125. [Google Scholar] [CrossRef]
- Dale, D.C.; Bolyard, A.A.; Aprikyan, A. Cyclic Neutropenia. Semin. Hematol. 2002, 39, 89–94. [Google Scholar] [CrossRef]
- Fink-Puches, R.; Kainz, J.T.; Kahr, A.; Urban, C.; Smolle, J.; Kerl, H. Granulocyte Colony-Stimulating Factor Treatment of Cyclic Neutropenia with Recurrent Oral Aphthae. Arch. Dermatol. 1996, 132, 1399–1400. [Google Scholar] [CrossRef]
- Hammond, W.P.; Price, T.H.; Souza, L.M.; Dale, D.C. Treatment of Cyclic Neutropenia with Granulocyte Colony-Stimulating Factor. N. Engl. J. Med. 1989, 320, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Goobie, S.; Popovic, M.; Morrison, J.; Ellis, L.; Ginzberg, H.; Boocock, G.R.; Ehtesham, N.; Bétard, C.; Brewer, C.G.; Roslin, N.M.; et al. Shwachman-Diamond Syndrome with Exocrine Pancreatic Dysfunction and Bone Marrow Failure Maps to the Centromeric Region of Chromosome 7. Am. J. Hum. Genet. 2001, 68, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Coccia, P.; Ruggiero, A.; Attinà, G.; Maurizi, P.; Lazzareschi, I.; Molinari, F.; Riccardi, R.; Ruggiero, A. Shwachman Diamond Syndrome: An Emergency Challenge. Signa Vitae 2007, 2, 10. [Google Scholar] [CrossRef]
- Dror, Y.; Freedman, M.H. Shwachman-Diamond Syndrome. Br. J. Haematol. 2002, 118, 701–713. [Google Scholar] [CrossRef]
- Skokowa, J.; Dale, D.C.; Touw, I.P.; Zeidler, C.; Welte, K. Severe Congenital Neutropenias. Nat. Rev. Dis. Prim. 2017, 3, 17032. [Google Scholar] [CrossRef]
- Lyu, B.; Lyu, W.; Zhang, X. Kostmann Syndrome with Neurological Abnormalities: A Case Report and Literature Review. Front. Pediatr. 2020, 8, 586859. [Google Scholar] [CrossRef]
- Roques, G.; Munzer, M.; Barthez, M.-A.C.; Beaufils, S.; Beaupain, B.; Flood, T.; Keren, B.; Bellanné-Chantelot, C.; Donadieu, J. Neurological Findings and Genetic Alterations in Patients with Kostmann Syndrome and HAX1 Mutations. Pediatr. Blood Cancer 2014, 61, 1041–1048. [Google Scholar] [CrossRef]
- Donadieu, J.; Fenneteau, O.; Beaupain, B.; Mahlaoui, N.; Chantelot, C. Congenital Neutropenia: Diagnosis, Molecular Bases and Patient Management. Orphanet J. Rare Dis. 2011, 6, 26. [Google Scholar] [CrossRef]
- Kaplan, J.; De Domenico, I.; Ward, D.M. Chediak-Higashi Syndrome. Curr. Opin. Hematol. 2008, 15, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Ajitkumar, A.; Yarrarapu, S.; Ramphul, K. Higashi Syndrome. [Updated 2023 Feb 13]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507881/ (accessed on 6 July 2023).
- Aprikyan, A.A.G.; Liles, W.C.; Park, J.R.; Jonas, M.; Chi, E.Y.; Dale, D.C. Myelokathexis, a Congenital Disorder of Severe Neutropenia Characterized by Accelerated Apoptosis and Defective Expression Ofbcl-x in Neutrophil Precursors. Blood 2000, 95, 320–327. [Google Scholar] [CrossRef]
- Hoenig, M.; Lagresle-Peyrou, C.; Pannicke, U.; Notarangelo, L.D.; Porta, F.; Gennery, A.R.; Slatter, M.; Cowan, M.J.; Stepensky, P.; Al-Mousa, H.; et al. Reticular Dysgenesis: International Survey on Clinical Presentation, Transplantation, and Outcome. Blood 2017, 129, 2928–2938. [Google Scholar] [CrossRef]
- Uria-Oficialdegui, M.L.; Navarro, S.; Murillo-Sanjuan, L.; Rodriguez-Vigil, C.; Benitez-Carbante, M.I.; Blazquez-Goñi, C.; Salinas, J.A.; Diaz-de-Heredia, C. Dyskeratosis Congenita: Natural History of the Disease through the Study of a Cohort of Patients Diagnosed in Childhood. Front. Pediatr. 2023, 11, 1182476. [Google Scholar] [CrossRef] [PubMed]
- Hauck, F.; Klein, C. Pathogenic Mechanisms and Clinical Implications of Congenital Neutropenia Syndromes. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 596–606. [Google Scholar] [CrossRef]
- Andrès, E.; Villalba, N.L.; Zulfiqar, A.-A.; Serraj, K.; Mourot-Cottet, R.; Gottenberg, A.J.-E. State of Art of Idiosyncratic Drug-Induced Neutropenia or Agranulocytosis, with a Focus on Biotherapies. J. Clin. Med. 2019, 8, 1351. [Google Scholar] [CrossRef]
- Moore, D.C. Drug-Induced Neutropenia: A Focus on Rituximab-Induced Late-Onset Neutropenia. Pharm. Ther. 2016, 41, 765–768. [Google Scholar]
- Budhathoki, P.; Shah, A.; Karki, U.; Neupane, N.; Shah, S.; Kariamanickam, K. Incidence, Clinical Features, and Outcomes of Large Granular Lymphocyte Leukemia. Blood 2023, 142, 1712. [Google Scholar] [CrossRef]
- Rose, M.G.; Berliner, N. T-Cell Large Granular Lymphocyte Leukemia and Related Disorders. Oncologist 2004, 9, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Newburger, P.E.; Dale, D.C. Evaluation and Management of Patients with Isolated Neutropenia. Semin. Hematol. 2013, 50, 198–206. [Google Scholar] [CrossRef]
- Ozdemir, Z.C.; Kar, Y.D.; Kasaci, B.; Bor, O. Etiological Causes and Prognosis in Children with Neutropenia. North. Clin. Istanb. 2021, 8, 236–242. [Google Scholar] [CrossRef]
- Bhat, R.Y.; Varma, C.P.V.; Bhatt, S. An Infant with Chronic Severe Neutropenia. BMJ Case Rep. 2014, 2014, bcr2013202908. [Google Scholar] [CrossRef]
- Papadaki, H.A.; Charoulakis, N.Z.; Eliopoulos, D.G.; Psyllaki, M.; Eliopoulos, G.D. Patients with Non-Immune Chronic Idiopathic Neutropenia Syndrome Have Increased Splenic Volume on Ultrasonography. Clin. Lab. Haematol. 2001, 23, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Atallah-Yunes, S.A.; Ready, A.; Newburger, P.E. Benign Ethnic Neutropenia. Blood Rev. 2019, 37, 100586. [Google Scholar] [CrossRef]
- Fioredda, F.; Dufour, C.; Höglund, P.; Papadaki, H.A.; Palmblad, J. Autoimmune Neutropenias: Update on Clinical and Biological Features in Children and Adults. HemaSphere 2023, 7, e814. [Google Scholar] [CrossRef]
- Autrel-Moignet, A.; Lamy, T. Autoimmune Neutropenia. Presse Med. 2014, 43, e105–e118. [Google Scholar] [CrossRef]
- Capsoni, F.; Sarzi-Puttini, P.; Zanella, A. Primary and Secondary Autoimmune Neutropenia. Arthritis Res. Ther. 2005, 7, 208–214. [Google Scholar] [CrossRef]
- Ioannidou, M.; Hatzipantelis, E.; Tragiannidis, A. A Case Report of Neonatal Alloimmune Neutropenia in a Neonate. Hippokratia 2019, 23, 143. [Google Scholar]
- Dale, D.C. How I Manage Children with Neutropenia. Br. J. Haematol. 2017, 178, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Marks, P.W. Hematologic Manifestations of Liver Disease. Semin. Hematol. 2013, 50, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.D.; Yoder, B.A.; Baer, V.L.; Snow, G.L.; Butler, A. Early-Onset Neutropenia in Small-for-Gestational-Age Infants. Pediatrics 2015, 136, e1259-67. [Google Scholar] [CrossRef]
- Mouzinho, A.; Rosenfeld, C.R.; Sanchez, P.J.; Risser, R. Effect of Maternal Hypertension on Neonatal Neutropenia and Risk of Nosocomial Infection. Pediatrics 1992, 90, 430–435. [Google Scholar] [CrossRef]
- Gosselin, R.C.; Adcock, D.; Dorgalaleh, A.; Favaloro, E.J.; Lippi, G.; Pego, J.M.; Regan, I.; Siguret, V. International Council for Standardization in Haematology Recommendations for Hemostasis Critical Values, Tests, and Reporting. Semin. Thromb. Hemost. 2020, 46, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.; Julia, N. Hematology. In The Harriet Lane Handbook; Tschudy, M.M., Arcara, K.M., Eds.; Elsevier Mosby: Philadelphia, PA, USA, 2012; p. 333. [Google Scholar]
- Toro, C.; Morimoto, M.; Malicdan, M.C.; Adams, D.R.; Introne, W.J. Chediak-Higashi Syndrome; GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Andrès, E.; Mourot-Cottet, R.; Maloisel, F.; Séverac, F.; Keller, O.; Vogel, T.; Tebacher, M.; Weber, J.-C.; Kaltenbach, G.; Gottenberg, J.-E.; et al. Idiosyncratic Drug-Induced Neutropenia & Agranulocytosis. QJM 2017, 110, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Andersohn, F.; Bronder, E.; Klimpel, A.; Thomae, M.; Konzen, C.; Meyer, O.; Salama, A.; Schrezenmeier, H.; Hildebrandt, M.; et al. Drug-Induced Agranulocytosis in the Berlin Case-Control Surveillance Study. Eur. J. Clin. Pharmacol. 2014, 70, 339–345. [Google Scholar] [CrossRef]
- Medrano-Casique, N.; Tong, H.Y.; Borobia, A.M.; Carcas, A.J.; Frías, J.; Ramírez, E. Non-Chemotherapy-Induced Agranulocytosis Detected by a Prospective Pharmacovigilance Program in a Tertiary Hospital. Basic Clin. Pharmacol. Toxicol. 2015, 117, 399–408. [Google Scholar] [CrossRef]
- Curtis, B.R. Non-Chemotherapy Drug-Induced Neutropenia: Key Points to Manage the Challenges. Hematol. Am. Soc. Hematol. Educ. Progr. 2017, 2017, 187–193. [Google Scholar] [CrossRef]
- Donadieu, J.; Beaupain, B.; Fenneteau, O.; Bellanné-Chantelot, C. Congenital Neutropenia in the Era of Genomics: Classification, Diagnosis, and Natural History. Br. J. Haematol. 2017, 179, 557–574. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases, Congenital Neutropenia Syndromes. Available online: https://www.niaid.nih.gov/diseases-conditions/congenital-neutropenia-syndromes (accessed on 12 June 2023).
- Wang, J.; Zhang, H.; Wang, Y.; Liang, L.; Yang, Z. Severe Congenital Neutropenia Caused by ELANE Gene Mutation: A Case Report and Literature Review. Medicine 2022, 101, e31357. [Google Scholar] [CrossRef]
- ELANE Elastase, Neutrophil Expressed [Homo Sapiens (Human)] Gene ID: 1991. Available online: https://www.ncbi.nlm.nih.gov/gene/1991 (accessed on 15 May 2023).
- Horwitz, M.; Benson, K.F.; Person, R.E.; Aprikyan, A.G.; Dale, D.C. Mutations in ELA2, Encoding Neutrophil Elastase, Define a 21-Day Biological Clock in Cyclic Haematopoiesis. Nat. Genet. 1999, 23, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Dale, D.C.; Person, R.E.; Bolyard, A.A.; Aprikyan, A.G.; Bos, C.; Bonilla, M.A.; Boxer, L.A.; Kannourakis, G.; Zeidler, C.; Welte, K.; et al. Mutations in the Gene Encoding Neutrophil Elastase in Congenital and Cyclic Neutropenia. Blood 2000, 96, 2317–2322. [Google Scholar] [CrossRef]
- Triot, A.; Järvinen, P.M.; Arostegui, J.I.; Murugan, D.; Kohistani, N.; Dapena Díaz, J.L.; Racek, T.; Puchałka, J.; Gertz, E.M.; Schäffer, A.A.; et al. Inherited Biallelic CSF3R Mutations in Severe Congenital Neutropenia. Blood 2014, 123, 3811–3817. [Google Scholar] [CrossRef]
- Devriendt, K.; Kim, A.S.; Mathijs, G.; Frints, S.G.; Schwartz, M.; Van Den Oord, J.J.; Verhoef, G.E.; Boogaerts, M.A.; Fryns, J.P.; You, D.; et al. Constitutively Activating Mutation in WASP Causes X-Linked Severe Congenital Neutropenia. Nat. Genet. 2001, 27, 313–317. [Google Scholar] [CrossRef]
- Auer, P.L.; Teumer, A.; Schick, U.; O’Shaughnessy, A.; Lo, K.S.; Chami, N.; Carlson, C.; de Denus, S.; Dubé, M.-P.; Haessler, J.; et al. Rare and Low-Frequency Coding Variants in CXCR2 and Other Genes Are Associated with Hematological Traits. Nat. Genet. 2014, 46, 629–634. [Google Scholar] [CrossRef]
- Boocock, G.R.B.; Morrison, J.A.; Popovic, M.; Richards, N.; Ellis, L.; Durie, P.R.; Rommens, J.M. Mutations in SBDS Are Associated with Shwachman-Diamond Syndrome. Nat. Genet. 2003, 33, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Stepensky, P.; Chacón-Flores, M.; Kim, K.H.; Abuzaitoun, O.; Bautista-Santos, A.; Simanovsky, N.; Siliqi, D.; Altamura, D.; Méndez-Godoy, A.; Gijsbers, A.; et al. Mutations in EFL1, an SBDS Partner, Are Associated with Infantile Pancytopenia, Exocrine Pancreatic Insufficiency and Skeletal Anomalies in AShwachman-Diamond like Syndrome. J. Med. Genet. 2017, 54, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Dickinson, R.; Bigley, V. Haematopoietic and Immune Defects Associated with GATA2 Mutation. Br. J. Haematol. 2015, 169, 173–187. [Google Scholar] [CrossRef]
- Boztug, K.; Appaswamy, G.; Ashikov, A.; Schäffer, A.A.; Salzer, U.; Diestelhorst, J.; Germeshausen, M.; Brandes, G.; Lee-Gossler, J.; Noyan, F.; et al. A Syndrome with Congenital Neutropenia and Mutations in G6PC3. N. Engl. J. Med. 2009, 360, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Veiga-da-Cunha, M.; Gerin, I.; Chen, Y.T.; Lee, P.J.; Leonard, J.V.; Maire, I.; Wendel, U.; Vikkula, M.; Van Schaftingen, E. The Putative Glucose 6-Phosphate Translocase Gene Is Mutated in Essentially All Cases of Glycogen Storage Disease Type I Non-A. Eur. J. Hum. Genet. 1999, 7, 717–723. [Google Scholar] [CrossRef]
- Barth, P.G.; Wanders, R.J.; Vreken, P.; Janssen, E.A.; Lam, J.; Baas, F. X-Linked Cardioskeletal Myopathy and Neutropenia (Barth Syndrome) (MIM 302060). J. Inherit. Metab. Dis. 1999, 22, 555–567. [Google Scholar] [CrossRef]
- Gorlin, R.J.; Gelb, B.; Diaz, G.A.; Lofsness, K.G.; Pittelkow, M.R.; Fenyk, J.R. WHIM Syndrome, an Autosomal Dominant Disorder: Clinical, Hematological, and Molecular Studies. Am. J. Med. Genet. 2000, 91, 368–376. [Google Scholar] [CrossRef]
- Boztug, K.; Järvinen, P.M.; Salzer, E.; Racek, T.; Mönch, S.; Garncarz, W.; Gertz, E.M.; Schäffer, A.A.; Antonopoulos, A.; Haslam, S.M.; et al. JAGN1 Deficiency Causes Aberrant Myeloid Cell Homeostasis and Congenital Neutropenia. Nat. Genet. 2014, 46, 1021–1027. [Google Scholar] [CrossRef]
- Kolehmainen, J.; Black, G.C.M.; Saarinen, A.; Chandler, K.; Clayton-Smith, J.; Träskelin, A.-L.; Perveen, R.; Kivitie-Kallio, S.; Norio, R.; Warburg, M.; et al. Cohen Syndrome Is Caused by Mutations in a Novel Gene, COH1, Encoding a Transmembrane Protein with a Presumed Role in Vesicle-Mediated Sorting and Intracellular Protein Transport. Am. J. Hum. Genet. 2003, 72, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Person, R.E.; Li, F.-Q.; Duan, Z.; Benson, K.F.; Wechsler, J.; Papadaki, H.A.; Eliopoulos, G.; Kaufman, C.; Bertolone, S.J.; Nakamoto, B.; et al. Mutations in Proto-Oncogene GFI1 Cause Human Neutropenia and Target ELA2. Nat. Genet. 2003, 34, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Kostmann, R. Infantile Genetic Agranulocytosis; Agranulocytosis Infantilis Hereditaria. Acta Paediatr. Suppl. 1956, 45, 309–310. [Google Scholar] [CrossRef]
- Klein, C.; Grudzien, M.; Appaswamy, G.; Germeshausen, M.; Sandrock, I.; Schäffer, A.A.; Rathinam, C.; Boztug, K.; Schwinzer, B.; Rezaei, N.; et al. HAX1 Deficiency Causes Autosomal Recessive Severe Congenital Neutropenia (Kostmann Disease). Nat. Genet. 2007, 39, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Wenham, M.; Grieve, S.; Cummins, M.; Jones, M.L.; Booth, S.; Kilner, R.; Ancliff, P.J.; Griffiths, G.M.; Mumford, A.D. Two Patients with Hermansky Pudlak Syndrome Type 2 and Novel Mutations in AP3B1. Haematologica 2010, 95, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Clericuzio, C.; Larizza, L.; Concolino, D. Poikiloderma with Neutropenia; GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Parisi, X.; Bledsoe, J.R. Discerning Clinicopathological Features of Congenital Neutropenia Syndromes: An Approach to Diagnostically Challenging Differential Diagnoses. J. Clin. Pathol. Published Online First: 08 April 2024. 2024. [Google Scholar] [CrossRef] [PubMed]
- Makaryan, V.; Rosenthal, E.A.; Bolyard, A.A.; Kelley, M.L.; Below, J.E.; Bamshad, M.J.; Bofferding, K.M.; Smith, J.D.; Buckingham, K.; Boxer, L.A.; et al. TCIRG1-Associated Congenital Neutropenia. Hum. Mutat. 2014, 35, 824–827. [Google Scholar] [CrossRef]
- Delépine, M.; Nicolino, M.; Barrett, T.; Golamaully, M.; Lathrop, G.M.; Julier, C. EIF2AK3, Encoding Translation Initiation Factor 2-Alpha Kinase 3, Is Mutated in Patients with Wolcott-Rallison Syndrome. Nat. Genet. 2000, 25, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.; Smith, L.; Wibrand, F.; Ravn, K.; Bross, P.; Thiffault, I.; Christensen, M.; Atherton, A.; Farrow, E.; Miller, N.; et al. CLPB Variants Associated with Autosomal-Recessive Mitochondrial Disorder with Cataract, Neutropenia, Epilepsy, and Methylglutaconic Aciduria. Am. J. Hum. Genet. 2015, 96, 258–265. [Google Scholar] [CrossRef]
- Wortmann, S.B.; Ziętkiewicz, S.; Kousi, M.; Szklarczyk, R.; Haack, T.B.; Gersting, S.W.; Muntau, A.C.; Rakovic, A.; Renkema, G.H.; Rodenburg, R.J.; et al. CLPB Mutations Cause 3-Methylglutaconic Aciduria, Progressive Brain Atrophy, Intellectual Disability, Congenital Neutropenia, Cataracts, Movement Disorder. Am. J. Hum. Genet. 2015, 96, 245–257. [Google Scholar] [CrossRef]
- Abdollahpour, H.; Appaswamy, G.; Kotlarz, D.; Diestelhorst, J.; Beier, R.; Schäffer, A.A.; Gertz, E.M.; Schambach, A.; Kreipe, H.H.; Pfeifer, D.; et al. The Phenotype of Human STK4 Deficiency. Blood 2012, 119, 3450–3457. [Google Scholar] [CrossRef] [PubMed]
- Witzel, M.; Petersheim, D.; Fan, Y.; Bahrami, E.; Racek, T.; Rohlfs, M.; Puchałka, J.; Mertes, C.; Gagneur, J.; Ziegenhain, C.; et al. Chromatin-Remodeling Factor SMARCD2 Regulates Transcriptional Networks Controlling Differentiation of Neutrophil Granulocytes. Nat. Genet. 2017, 49, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Alter, B.P.; Rosenberg, P.S.; Brody, L.C. Clinical and Molecular Features Associated with Biallelic Mutations in FANCD1/BRCA2. J. Med. Genet. 2007, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
Age | WBC | Neu * | Lymph | Mono | Eos |
---|---|---|---|---|---|
Mean (95% CI) | Mean (95% CI) (%) | Mean (95% CI) (%) | Mean (%) | Mean (%) | |
Birth | 18,100 (9000–30,000) | 11,000 (6000–26,000) (61) | 5500 (2000–11,000) (31) | 1100 (6) | 400 (2) |
12 hr | 22,800 (13,000–38,000) | 15,500 (6000–28,000) (68) | 5501 (2000–11,000) (24) | 1200 (5) | 500 (2) |
24 hr | 18,900 (9400–34,000) | 11,500 (5000–21,000) (61) | 5800 (2000–11,500) (31) | 1100 (6) | 500 (2) |
1 wk | 12,200 (5000–21,000) | 5500 (1500–10,000) (45) | 5000 (2000–17,000) (41) | 1100 (9) | 500 (4) |
2 wk | 11,400 (5000–20,000) | 4500 (1000–9500) (40) | 5500 (2000–17,000) (48) | 1000 (9) | 400 (3) |
1 mo | 10,800 (5000–19,500) | 3800 (1000–8500) (35) | 6000 (2500–16,500) (56) | 700 (7) | 300 (3) |
6 mo | 11,900 (6000–17,500) | 3800 (1000–8500) (32) | 7300 (4000–13,500) (61) | 600 (5) | 300 (3) |
1 yr | 11,400 (6000–17,500) | 3500 (1500–8500) (31) | 7000 (4000–10,500) (61) | 600 (5) | 300 (3) |
2 yr | 10,600 (6000–17,000) | 3500 (1500–8500) (33) | 6300 (3000–9500) (59) | 500 (5) | 300 (3) |
4 yr | 9100 (5500–15,500) | 3800 (1500–8500) (42) | 4500 (2000–8000) (50) | 500 (5) | 300 (3) |
6 yr | 8500 (5000–14,500) | 4300 (1500–8000) (51) | 3500 (1500–7000) (42) | 400 (5) | 200 (3) |
8 yr | 8300 (4500–13,500) | 4400 (1500–8000) (53) | 3300 (1500–6800) (39) | 400 (4) | 200 (2) |
10 yr | 8100 (4500–13,500) | 4400 (1500–8500) (54) | 3100 (1500–6500) (38) | 400 (4) | 200 (2) |
16 yr | 7800 (4500–13,000) | 4400 (1800–8000) (57) | 2800 (1200–5200) (35) | 400 (5) | 200 (3) |
21 yr | 7400 (4500–11,000) | 4400 (1800–7700) (59) | 2500 (1000–4800) (34) | 300 (4) | 200 (3) |
Finding | Disorders |
---|---|
Blasts | Leukemia |
Nucleated erythrocytes | Hemolytic anemia, blood loss |
Hypersegmented neutrophils | Vitamin B12 deficiency, folic acid deficiency |
Giant granules in the cytoplasm of myeloid precursors | Chediak–Higashi syndrome |
Neutrophils with pycnotic nuclei | Myelokathexis |
Neonate | Infant/Child | Adult |
---|---|---|
Infection | Infection | Idiosyncratic drug reactions |
Maternal hypertension | Autoimmune neutropenia | Infections |
Maternal antibodies | Neoplasms replacing the bone marrow | Neoplasms replacing the bone marrow |
Constitutional neutropenia disorders | Idiosyncratic drug reactions | Chemotherapies |
Cyclic neutropenia | Collagen vascular disorders | Collagen vascular disorders |
Kostmann syndrome | Immunodeficiency disorders | Immunodeficiency disorders |
Chédiak–Higashi syndrome | Myeloablative therapies | |
Constitutional neutropenia disorders | ||
Megaloblastic anemia | ||
Copper deficiency |
Medications | |
---|---|
Amoxicillin | Metronidazole |
Benzylpenicillin | Noramidopyrine |
Carbamazepine | Piperacillin/tazobactam |
Carbimazole | Quetiapine |
Cefepime | Salazopyrine |
Cefotaxime | Sulfamethoxazole/trimethoprim |
Ceftriaxone | Sulfasalazine |
Ciprofloxacin | Tacrolimus |
Clindamycin | Teicoplanin |
Clozapine | Thiamazole |
Cotrimoxazole | Ticlopidine |
Ibuprofen | Tobramycin |
Levetiracetam | Torsemide |
Linezolid | Valganciclovir |
Meropenem | Vancomycin |
Metamizole (dipyrone) | Venlafaxine |
Gene | Inheritance/Location | Syndromes |
---|---|---|
ELANE [53,54] | Dominant/19q13.3 | Severe congenital neutropenia, cyclic neutropenia |
CSF3R [55] | Dominant/1p35-p34.3 | Germline mutation of CSF3R |
WAS [56] | X-linked/Xp11.4-p11.21 | Severe congenital neutropenia |
CXCR2 [57] | Recessive/2q35 | Chronic neutropenia |
SBDS [58] | Recessive/7q11.22 | Shwachman–Diamond syndrome |
EFL1 [59] | Recessive/15q25.2 | EFL1 syndrome |
GATA2 [60] | Dominant/3q21.3 | GATA2 syndrome |
G6PC3 [61] | Recessive/17q21 | Severe congenital neutropenia |
SLC37A4 [62] | Recessive/11q23.3 | Glycogen storage type Ib |
TAZ [63] | X-linked/Xq28 | Barth disease |
CXCR4 [64] | Dominant/2q21 | WHIM syndrome |
JAGN1 [65] | Recessive/3p25.3 | Severe congenital neutropenia |
VPS13B [66] | Recessive/8q22-q23 | Cohen syndrome |
GFI1 [67] | Dominant/1p22 | Severe congenital neutropenia |
HAX1 [68,69] | Recessive/1q21.3 | Kostmann disease |
AP3B1 [70] | Recessive/5q14.1 | Hermansky–Pudlak syndrome type 2 |
LAMTOR2 [49] | Recessive/1q21 | Chronic neutropenia |
USB1 [71] | Recessive/16q21 | Clericuzio-type poikiloderma |
VPS45 [72] | Recessive/1q21.2 | Severe congenital neutropenia |
TCIRG1 [73] | Dominant/11q13.2 | Severe congenital neutropenia |
EIF2AK3 [74] | Recessive/2p11.2 | EIF2AK3/Wolcott–Rallison syndrome |
CLPB [75,76] | Recessive/11q13.4 | CLPB syndrome |
STK4 [77] | Recessive/20q13 | STK4 (MST1) syndrome |
SMARCD2 [78] | Recessive/17q23 | SMARCD2 |
System | Findings | Disorders |
Eyes | Congenital cataract | CLPB syndrome Charcot–Marie–Tooth |
Retinochoroidal dystrophy | Cohen disease | |
Heart | Arrhythmias | G6PC3 neutropenia |
Dilated cardiomyopathy | Barth disease | |
Cardiomyopathy | Shwachman–Diamond syndrome | |
Various cardiac abnormalities | Shwachman–Diamond syndrome WHIM syndrome (tetralogy of Fallot) G6PC3 neutropenia STK4 (MST1) deficiency | |
Skin | Skin xerosis eczema | Shwachman–Diamond syndrome |
Prominent superficial veins | G6PC3 neutropenia | |
Poikiloderma | SCN with Clericuzio-type poikiloderma | |
Partial or complete albinism | Hermansky–Pudlak type 2 AP14 defect Chédiak–Higashi disease Griscelli disease | |
Fine, sparse, and light-colored hair | Cartilage hair hypoplasia GATA2 | |
Lymphoedema | GATA2 syndrome | |
Skin angiomatosis | TCIRG1 SCN | |
Petechiae (thrombocytopenia) | Shwachman–Diamond syndrome GATA2 syndrome | |
Hyperpigmentation on the trunk, neck, and intertriginous areas, café au lait spots, and hypopigmented areas | Fanconi anemia | |
Musculoskeletal system | Weakness | G6PC3 neutropenia Axonal Charcot–Marie–Tooth disease Shwachman–Diamond syndrome |
Metaphyseal dysplasia | Shwachman–Diamond syndrome Cartilage-hair hypoplasia | |
Facial dysmorphia | Cohen disease | |
Palatal cleft | Shwachman–Diamond syndrome | |
Hyperlaxity | Cohen disease | |
Short stature and various skeletal abnormalities | Fanconi anemia | |
Central nervous system | Mental retardation | Kostmann disease |
Epilepsy | Shwachman–Diamond syndrome Cohen disease CLPB syndrome VPS45 syndrome | |
Metabolic system | Type I diabetes | Wolcott–Rallison |
Fasting intolerance and glycogenesis | Glycogen storage disease type Ib | |
3-methylglutaconic acid | Barth disease CLPB syndrome | |
Ear | Inner ear defect | GFI1/severe chronic neutropenia GATA2 syndrome |
Urogenital system | Uropathy | G6PC3 neutropenia GATA2 syndrome |
Cryptorchidism | Cohen disease G6PC3 neutropenia | |
Nephromegaly | VPS45 syndrome | |
Findings of non-bacterial infections | HPV | WHIM syndrome GATA2 syndrome STK4 deficiency |
Mycobacterial | GATA2 syndrome WHIM syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsaras, G.; Koutsi, S.; Psaroulaki, E.; Gouni, D.; Tsitsani, P. Neutropenia in Childhood—A Narrative Review and Practical Diagnostic Approach. Hematol. Rep. 2024, 16, 375-389. https://doi.org/10.3390/hematolrep16020038
Katsaras G, Koutsi S, Psaroulaki E, Gouni D, Tsitsani P. Neutropenia in Childhood—A Narrative Review and Practical Diagnostic Approach. Hematology Reports. 2024; 16(2):375-389. https://doi.org/10.3390/hematolrep16020038
Chicago/Turabian StyleKatsaras, Georgios, Silouani Koutsi, Evdokia Psaroulaki, Dimitra Gouni, and Pelagia Tsitsani. 2024. "Neutropenia in Childhood—A Narrative Review and Practical Diagnostic Approach" Hematology Reports 16, no. 2: 375-389. https://doi.org/10.3390/hematolrep16020038
APA StyleKatsaras, G., Koutsi, S., Psaroulaki, E., Gouni, D., & Tsitsani, P. (2024). Neutropenia in Childhood—A Narrative Review and Practical Diagnostic Approach. Hematology Reports, 16(2), 375-389. https://doi.org/10.3390/hematolrep16020038