Skin Hypopigmentation in Hematology Disorders
Abstract
:1. Introduction
2. Vitiligo
2.1. Definition and Pathogenesis
2.2. Drug-Induced Vitiligo
2.2.1. Leukoderma Related to Monoclonal Antibodies
2.2.2. Hypomelanosis Related to Small-Molecule Inhibitors
2.3. Hematologic Disorders Associated with Vitiligo
2.3.1. Hypopigmented Mycosis Fungoides
2.3.2. Ataxia Teleangectasia
3. Morphea
3.1. Overview of Morphea
3.2. Morphea and Its Association with Hematologic Disorders
3.2.1. Deep Morphea
3.2.2. Bullous Morphea
3.2.3. Generalized Morphea
3.3. Morpheaform Disorders
3.3.1. Radiation-Induced Morphea
3.3.2. Skin Sclerosis in Patients with Chronic Graft-Versus-Host Disease
3.3.3. Paraneoplastic Scleroderma-like Syndrome
4. Syndromic Albinism
- Non-syndromic albinism, in which symptoms are related to impaired melanin biosynthesis. Individuals diagnosed with non-syndromic oculocutaneous albinism (OCA) typically exhibit ocular anomalies ocular anomalies, including nystagmus, optic nerves affections, and foveal hypoplasia [56].
- Syndromic form, which is characterized by various non-pigmentary symptoms [47].
4.1. Hematologic Conditions Linked with Syndromic Albinism
4.1.1. Chediak–Higashi Syndrome
4.1.2. Hermansky–Pudlak Syndrome
4.1.3. Griscelli Syndrome
4.1.4. MAPBP-Interacting Protein Deficiency
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilhar, A.; Zelickson, B.; Ulman, Y.; Etzioni, A. In Vivo Destruction of Melanocytes by the IgG Fraction of Serum from Patients with Vitiligo. J. Investig. Dermatol. 1995, 105, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Naughton, G.K.; Eisinger, M.; Bystryn, J.C. Antibodies to Normal Human Melanocytes in Vitiligo. J. Exp. Med. 1983, 158, 246–251. Available online: https://pubmed.ncbi.nlm.nih.gov/6345714/ (accessed on 4 April 2024). [CrossRef] [PubMed]
- Kroon, M.W.; Kemp, E.H.; Wind, B.S.; Krebbers, G.; Bos, J.D.; Gawkrodger, D.J.; Wolkerstorfer, A.; van der Veen, J.P.W.; Luiten, R.M. Melanocyte Antigen-Specific Antibodies Cannot Be Used as Markers for Recent Disease Activity in Patients with Vitiligo. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
- Rashighi, M.; Agarwal, P.; Richmond, J.M.; Harris, T.H.; Dresser, K.; Su, M.W.; Zhou, Y.; Deng, A.; Hunter, C.A.; Luster, A.D.; et al. CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Sci. Transl. Med. 2014, 6, 223ra23. Available online: https://pubmed.ncbi.nlm.nih.gov/24523323/ (accessed on 4 April 2024). [CrossRef] [PubMed]
- Grimes, P.E.; Morris, R.; Avaniss-Aghajani, E.; Soriano, T.; Meraz, M.; Metzger, A. Topical Tacrolimus Therapy for Vitiligo: Therapeutic Responses and Skin Messenger RNA Expression of Proinflammatory Cytokines. J. Am. Acad. Dermatol. 2004, 51, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Strassner, J.P.; Rashighi, M.; Ahmed Refat, M.; Richmond, J.M.; Harris, J.E. Suction Blistering the Lesional Skin of Vitiligo Patients Reveals Useful Biomarkers of Disease Activity. J. Am. Acad. Dermatol. 2017, 76, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Ogg, G.S.; Rod Dunbar, P.; Romero, P.; Chen, J.L.; Cerundolo, V. High Frequency of Skin-Homing Melanocyte-Specific Cytotoxic T Lymphocytes in Autoimmune Vitiligo. J. Exp. Med. 1998, 188, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Palermo, B.; Campanelli, R.; Garbelli, S.; Mantovani, S.; Lantelme, E.; Brazzelli, V.; Ardigó, M.; Borroni, G.; Martinetti, M.; Badulli, C.; et al. Specific Cytotoxic T Lymphocyte Responses against Melan-A/MART1, Tyrosinase and Gp100 in Vitiligo by the Use of Major Histocompatibility Complex/Peptide Tetramers: The Role of Cellular Immunity in the Etiopathogenesis of Vitiligo. J. Investig. Dermatol. 2001, 117, 326–332. [Google Scholar] [CrossRef] [PubMed]
- van den Boorn, J.G.; Konijnenberg, D.; Dellemijn, T.A.M.; van der Veen, J.P.W.; Bos, J.D.; Melief, C.J.M.; Vyth-Dreese, F.A.; Luiten, R.M. Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. J. Investig. Dermatol. 2009, 129, 2220–2232. [Google Scholar] [CrossRef]
- Wańkowicz-Kalińska, A.; van den Wijngaard, R.M.J.G.J.; Tigges, B.J.; Westerhof, W.; Ogg, G.S.; Cerundolo, V.; Storkus, W.J.; Das, P.K. Immunopolarization of CD4+ and CD8+ T Cells to Type-1-like Is Associated with Melanocyte Loss in Human Vitiligo. Lab. Investig. 2003, 83, 683–695. [Google Scholar] [CrossRef]
- Edwards, J.; Wilmott, J.S.; Madore, J.; Gide, T.N.; Quek, C.; Tasker, A.; Ferguson, A.; Chen, J.; Hewavisenti, R.; Hersey, P.; et al. CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly During Anti-PD-1 Treatment. Clin. Cancer Res. 2018, 24, 3036–3045. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Forget, M.-A.; Chacon, J.; Bernatchez, C.; Haymaker, C.; Chen, J.Q.; Hwu, P.; Radvanyi, L.G. Adoptive T-Cell Therapy Using Autologous Tumor-Infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook. Cancer J. 2012, 18, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Nishikawa, H.; Sugiyama, D.; Ha, D.; Hamaguchi, M.; Saito, T.; Nishioka, M.; Wing, J.B.; Adeegbe, D.; Katayama, I.; et al. Detection of Self-Reactive CD8+ T Cells with an Anergic Phenotype in Healthy Individuals. Science 2014, 346, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Tiacci, E.; De Carolis, L.; Simonetti, E.; Merluzzi, M.; Bennati, A.; Perriello, V.M.; Pucciarini, A.; Santi, A.; Venanzi, A.; Pettirossi, V.; et al. Safety and Efficacy of the BRAF Inhibitor Dabrafenib in Relapsed or Refractory Hairy Cell Leukemia: A Pilot Phase-2 Clinical Trial. Leukemia 2021, 35, 3314–3318. [Google Scholar] [CrossRef] [PubMed]
- Giesen, N.; Chatterjee, M.; Scheid, C.; Poos, A.M.; Besemer, B.; Miah, K.; Benner, A.; Becker, N.; Moehler, T.; Metzler, I.; et al. A Phase 2 Clinical Trial of Combined BRAF/MEK Inhibition for BRAFV600E-Mutated Multiple Myeloma. Blood 2023, 141, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Chan, O.B.; Su, J.C.; Yazdabadi, A.; Chan, A. Drug Induced Vitiligo-like Depigmentation from a CDK 4/6 Inhibitor. Asia Pac. J. Clin. Oncol. 2022, 18, e154–e156. [Google Scholar] [CrossRef] [PubMed]
- Jost, M.; Kari, C.; Rodeck, U. The EGF Receptor—An Essential Regulator of Multiple Epidermal Functions. Eur. J. Dermatol. 2000, 10, 505–510. [Google Scholar] [PubMed]
- Sauder, M.; Butler, M. Reader Comment Regarding “Cutaneous Immune-Related Adverse Events (irAEs) to Immune Checkpoint Inhibitors: A Dermatology Perspective on Management”. J. Cutan. Med. Surg. 2022, 26, 105. Available online: https://pubmed.ncbi.nlm.nih.gov/34543083/ (accessed on 4 April 2024). [CrossRef] [PubMed]
- Jain, A. Imatinib-Induced Generalized Vitiligo. Br. J. Haematol. 2022, 197, 511. [Google Scholar] [CrossRef]
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune Checkpoint Inhibitor—Related Dermatologic Adverse Events. J. Am. Acad. Dermatol. 2020, 83, 1255–1268. [Google Scholar] [CrossRef]
- Liu, N.; Tarafdar, N.; Georgakopoulos, J.R.; Maliyar, K.; Sachdeva, M.; Lytvyn, Y.; Mufti, A.; Yeung, J. Development of Vitiligo in Patients Treated with BRAF/MEK Inhibitors: A Systematic Review. J. Cutan. Med. Surg. 2024, 28, 200–201. [Google Scholar] [CrossRef]
- Dai, J.; Belum, V.R.; Wu, S.; Sibaud, V.; Lacouture, M.E. Pigmentary Changes in Patients Treated with Targeted Anticancer Agents: A Systematic Review and Meta-Analysis. J. Am. Acad. Dermatol. 2017, 77, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Nishida, T.; Shirao, K.; Sawaki, A.; Koseki, M.; Okamura, T.; Ohtsu, A.; Sugiyama, T.; Miyakawa, K.; Hirota, S. Efficacy and Safety Profile of Imatinib Mesylate (ST1571) in Japanese Patients with Advanced Gastrointestinal Stromal Tumors: A Phase II Study (STI571B1202). Int. J. Clin. Oncol. 2008, 13, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y. Drug-Induced Scleroderma-like Lesion. Allergol. Int. 2022, 71, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Passiu, G.; Cauli, A.; Atzeni, F.; Aledda, M.; Dessole, G.; Sanna, G.; Nurchis, P.; Vacca, A.; Garau, P.; Laudadio, M.; et al. Bleomycin-Induced Scleroderma: Report of a Case with a Chronic Course Rather Than the Typical Acute/Subacute Self-Limiting Form. Clin. Rheumatol. 1999, 18, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Yanaba, K.; Kobayashi, T.; Nakagawa, H. Taxane-Induced Scleroderma. Br. J. Dermatol. 2007, 156, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Wang, S.; Xu, J. A Case of Hypopigmented Mycosis Fungoides with Granulomatous Slack Skin. Int. J. Dermatol. 2024, 63, 690–691. [Google Scholar] [CrossRef]
- Chiam, L.Y.T.; Verhagen, M.M.M.; Haraldsson, A.; Wulffraat, N.; Driessen, G.-J.; Netea, M.G.; Weemaes, C.M.R.; Seyger, M.M.B.; van Deuren, M. Cutaneous Granulomas in Ataxia Telangiectasia and Other Primary Immunodeficiencies: Reflection of Inappropriate Immune Regulation? Dermatology 2011, 223, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sari, A.; Okuyaz, C.; Adiguzel, U.; Ates, N.A. Uncommon Associations with Ataxia-Telangiectasia: Vitiligo and Optic Disc Drusen. Ophthalmic Genet. 2009, 30, 19–22. [Google Scholar] [CrossRef]
- Röcken, M.; Racke, M.; Shevach, E.M. IL-4-Induced Immune Deviation as Antigen-Specific Therapy for Inflammatory Autoimmune Disease. Immunol. Today 1996, 17, 225–231. [Google Scholar] [CrossRef]
- Gerber, E.E.; Gallo, E.M.; Fontana, S.C.; Davis, E.C.; Wigley, F.M.; Huso, D.L.; Dietz, H.C. Integrin-Modulating Therapy Prevents Fibrosis and Autoimmunity in Mouse Models of Scleroderma. Nature 2013, 503, 126–130. [Google Scholar] [CrossRef] [PubMed]
- van Bon, L.; Affandi, A.J.; Broen, J.; Christmann, R.B.; Marijnissen, R.J.; Stawski, L.; Farina, G.A.; Stifano, G.; Mathes, A.L.; Cossu, M.; et al. Proteome-Wide Analysis and CXCL4 as a Biomarker in Systemic Sclerosis. N. Engl. J. Med. 2014, 370, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Mazzetto, R.; Miceli, P.; Tartaglia, J.; Ciolfi, C.; Sernicola, A.; Alaibac, M. Role of IL-4 and IL-13 in Cutaneous T Cell Lymphoma. Life 2024, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Thomas, P.; Penovici, M.; Ullmann, J.; Sander, C.A.; Ledderose, G.; Plewig, G.; Kolb, H.-J.; Röcken, M. PUVA-Bath Photochemotherapy and Isotretinoin in Sclerodermatous Graft-versus-Host Disease. Eur. J. Dermatol. 2008, 18, 667–670. [Google Scholar] [PubMed]
- Chen, G.L.; Arai, S.; Flowers, M.E.D.; Otani, J.M.; Qiu, J.; Cheng, E.C.; McMillan, A.; Johnston, L.J.; Shizuru, J.A.; Miklos, D.B. A Phase 1 Study of Imatinib for Corticosteroid-Dependent/Refractory Chronic Graft-versus-Host Disease: Response Does Not Correlate with Anti-PDGFRA Antibodies. Blood 2011, 118, 4070–4078. [Google Scholar] [CrossRef] [PubMed]
- Bonnotte, B.; Chauffert, B.; Caillot, D.; Martin, F.; Lorcerie, B. Successful Treatment with Antithymocyte Globulin and Cyclosporin A of a Severe Aplastic Anaemia Associated with an Eosinophilic Fasciitis. Br. J. Rheumatol. 1998, 37, 1358–1359. [Google Scholar] [CrossRef]
- Masuoka, H.; Kikuchi, K.; Takahashi, S.; Kakinuma, T.; Hayashi, N.; Furue, M. Eosinophilic Fasciitis Associated with Low-Grade T-Cell Lymphoma. Br. J. Dermatol. 1998, 139, 928–930. [Google Scholar] [CrossRef]
- Naschitz, J.E.; Misselevich, I.; Rosner, I.; Yeshurun, D.; Weiner, P.; Amar, M.; Amato, L.; Ciompi, M.L.; Boss, J.H. Lymph-Node-Based Malignant Lymphoma and Reactive Lymphadenopathy in Eosinophilic Fasciitis. Am. J. Med. Sci. 1999, 318, 343–349. [Google Scholar] [CrossRef]
- Joly-Chevrier, M.; Gélinas, A.; Ghazal, S.; Moussa, S.; McCuaig, C.C.; Piram, M.; Mereniuk, A.; Litvinov, I.V.; Osman, M.; Pehr, K.; et al. Morphea, Eosinophilic Fasciitis and Cancer: A Scoping Review. Cancers 2023, 15, 4450. [Google Scholar] [CrossRef]
- Papara, C.; De Luca, D.A.; Bieber, K.; Vorobyev, A.; Ludwig, R.J. Morphea: The 2023 Update. Front. Med. 2023, 10, 1108623. [Google Scholar] [CrossRef]
- Foti, R.; De Pasquale, R.; Dal Bosco, Y.; Visalli, E.; Amato, G.; Gangemi, P.; Foti, R.; Ramondetta, A. Clinical and Histopathological Features of Scleroderma-like Disorders: An Update. Medicina 2021, 57, 1275. [Google Scholar] [CrossRef]
- Kono, T.; Ishii, M.; Negoro, N.; Taniguchi, S. Scleroderma-like Reaction Induced by Uracil-Tegafur (UFT), a Second-Generation Anticancer Agent. J. Am. Acad. Dermatol. 2000, 42, 519–520. [Google Scholar] [CrossRef] [PubMed]
- Kupfer, I.; Balguerie, X.; Courville, P.; Chinet, P.; Joly, P. Scleroderma-like Cutaneous Lesions Induced by Paclitaxel: A Case Study. J. Am. Acad. Dermatol. 2003, 48, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Bessis, D.; Guillot, B.; Legouffe, E.; Guilhou, J.-J. Gemcitabine-Associated Scleroderma-like Changes of the Lower Extremities. J. Am. Acad. Dermatol. 2004, 51, S73–S76. [Google Scholar] [CrossRef]
- De Angelis, R.; Bugatti, L.; Cerioni, A.; Del Medico, P.; Filosa, G. Diffuse Scleroderma Occurring after the Use of Paclitaxel for Ovarian Cancer. Clin. Rheumatol. 2003, 22, 49–52. [Google Scholar] [CrossRef]
- Gambichler, T.; Scheel, C.H.; Boms, S. Radiation-Induced Morphea—A Rare, but Not to Be Dismissed, Adverse Effect of Radiotherapy. Dermatol. Ther. 2021, 34, e15041. [Google Scholar] [CrossRef]
- Paredes-Suárez, C.; Fernández-Redondo, V.; Blanco, M.V.; Sánchez-Aguilar, D.; Toribio, J. Multiple Myeloma with Scleroderma-like Changes. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Oulad Ali, S.; Belcadi, J.; Znati, K.; Meziane, M.; Ismaili, N.; Benzekri, L.; Senouci, K. Paraneoplastic Scleroderma in Kaposi’s Sarcoma: Report of Two Cases. Skin Health Dis. 2023, 3, e189. [Google Scholar] [CrossRef]
- Careta, M.F.; Romiti, R. Localized Scleroderma: Clinical Spectrum and Therapeutic Update. An. Bras. Dermatol. 2015, 90, 62–73. [Google Scholar] [CrossRef]
- Litaiem, N.; Idoudi, S. Atrophoderma of Pasini and Pierini. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Vosshenrich, R.; Reimer, P. Nephrogenic Systemic Fibrosis. Vasa 2009, 38, 31–38. [Google Scholar] [CrossRef]
- Baumrin, E.; Loren, A.W.; Falk, S.J.; Mays, J.W.; Cowen, E.W. Chronic Graft-versus-Host Disease. Part I: Epidemiology, Pathogenesis, and Clinical Manifestations. J. Am. Acad. Dermatol. 2024, 90, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Martires, K.J.; Baird, K.; Steinberg, S.M.; Grkovic, L.; Joe, G.O.; Williams, K.M.; Mitchell, S.A.; Datiles, M.; Hakim, F.T.; Pavletic, S.Z.; et al. Sclerotic-Type Chronic GVHD of the Skin: Clinical Risk Factors, Laboratory Markers, and Burden of Disease. Blood 2011, 118, 4250–4257. [Google Scholar] [CrossRef] [PubMed]
- Plötz, S.G.; Hüttig, B.; Aigner, B.; Merkel, C.; Brockow, K.; Akdis, C.; Darsow, U.; Ring, J. Clinical Overview of Cutaneous Features in Hypereosinophilic Syndrome. Curr. Allergy Asthma Rep. 2012, 12, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Jedlickova, H.; Durčanská, V.; Vašků, V. Paraneoplastic Scleroderma: Are There Any Clues? Acta Dermatovenerol. Croat. 2016, 24, 78–80. [Google Scholar] [PubMed]
- Moreno-Artero, E.; Morice-Picard, F.; Bremond-Gignac, D.; Drumare-Bouvet, I.; Duncombe-Poulet, C.; Leclerc-Mercier, S.; Dufresne, H.; Kaplan, J.; Jouanne, B.; Arveiler, B.; et al. Management of Albinism: French Guidelines for Diagnosis and Care. Acad. Dermatol. Venereol. 2021, 35, 1449–1459. [Google Scholar] [CrossRef]
- Fernández, A.; Hayashi, M.; Garrido, G.; Montero, A.; Guardia, A.; Suzuki, T.; Montoliu, L. Genetics of Non-syndromic and Syndromic Oculocutaneous Albinism in Human and Mouse. Pigment Cell Melanoma Res. 2021, 34, 786–799. [Google Scholar] [CrossRef]
- Blanche, S.; Caniglia, M.; Girault, D.; Landman, J.; Griscelli, C.; Fischer, A. Treatment of Hemophagocytic Lymphohistiocytosis with Chemotherapy and Bone Marrow Transplantation: A Single-Center Study of 22 Cases. Blood 1991, 78, 51–54. [Google Scholar] [CrossRef]
- Dotta, L.; Parolini, S.; Prandini, A.; Tabellini, G.; Antolini, M.; Kingsmore, S.F.; Badolato, R. Clinical, Laboratory and Molecular Signs of Immunodeficiency in Patients with Partial Oculo-Cutaneous Albinism. Orphanet J. Rare Dis. 2013, 8, 168. [Google Scholar] [CrossRef]
- Schmid, J.P.; Côte, M.; Ménager, M.M.; Burgess, A.; Nehme, N.; Ménasché, G.; Fischer, A.; De Saint Basile, G. Inherited Defects in Lymphocyte Cytotoxic Activity. Immunol. Rev. 2010, 235, 10–23. [Google Scholar] [CrossRef]
- Wiriyasermkul, P.; Moriyama, S.; Nagamori, S. Membrane Transport Proteins in Melanosomes: Regulation of Ions for Pigmentation. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183318. [Google Scholar] [CrossRef]
- Lozano, M.L.; Rivera, J.; Sánchez-Guiu, I.; Vicente, V. Towards the Targeted Management of Chediak-Higashi Syndrome. Orphanet J. Rare Dis. 2014, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Abe, Y.; Araki, Y.; Wakamatsu, K.; Seishima, M.; Umetsu, T.; Kato, A.; Kawaguchi, M.; Hayashi, M.; Hozumi, Y.; et al. Characterization of Melanosomes and Melanin in Japanese Patients with Hermansky–Pudlak Syndrome Types 1, 4, 6, and 9. Pigment Cell Melanoma Res. 2018, 31, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Mitra, D.; Luo, X.; Morgan, A.; Wang, J.; Hoang, M.P.; Lo, J.; Guerrero, C.R.; Lennerz, J.K.; Mihm, M.C.; Wargo, J.A.; et al. An Ultraviolet-Radiation-Independent Pathway to Melanoma Carcinogenesis in the Red Hair/Fair Skin Background. Nature 2012, 491, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Pastural, E.; Barrat, F.J.; Dufourcq-Lagelouse, R.; Certain, S.; Sanal, O.; Jabado, N.; Seger, R.; Griscelli, C.; Fischer, A.; Basile, G.D.S. Griscelli Disease Maps to Chromosome 15q21 and Is Associated with Mutations in the Myosin-Va Gene. Nat. Genet. 1997, 16, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Ménasché, G.; Ho, C.H.; Sanal, O.; Feldmann, J.; Tezcan, I.; Ersoy, F.; Houdusse, A.; Fischer, A.; Basile, G.D.S. Griscelli Syndrome Restricted to Hypopigmentation Results from a Melanophilin Defect (GS3) or a MYO5A F-Exon Deletion (GS1). J. Clin. Investig. 2003, 112, 450–456. [Google Scholar] [CrossRef]
- Xia, J.; Bolyard, A.A.; Rodger, E.; Stein, S.; Aprikyan, A.A.; Dale, D.C.; Link, D.C. Prevalence of Mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in Patients with Severe Congenital Neutropenia. Br. J. Haematol. 2009, 147, 535–542. [Google Scholar] [CrossRef]
Drug | Adverse Effect | Incidence | Proposed Mechanism | Mean Time to Onset (Months) |
---|---|---|---|---|
Immune checkpoint inhibitors (pembrolizumab, nivolumab, and ipilimumab) [20] | Vitiligo-like depigmentation | Common (11% in anti-CTLA-4 therapy; 25% in anti-PD-1 therapy) | The immune system recognizes self-antigens within the dermis/epidermis following the destruction of malignant cells | 2 |
serine/threonine-protein kinase B-Raf (BRAF) inhibitors(vemurafenib, dabrafenib, and encorafenib) [21] | Vitiligo-like depigmentation | Rare (no data available regarding precise incidence) | Autoimmune destruction of melanocytes mediated by CD8+ T lymphocytes | 8 |
Imatinib mesylate [22,23] | Vitiligo-like depigmentation | Rare (no data available regarding precise incidence, although an incidence rate of 23% has been reported in the clinical trial by Nishida et al.) | Inhibition of the tyrosine-protein kinase (KIT) receptor leads to apoptosis of melanocytes | NA |
Bleomycin [24,25] | Scleroderma-like lesions | Rare (no data available regarding precise incidence) | Bleomycin induces an upregulation of type I procollagen synthesis and glycosaminoglycan production in the lungs and skin | 6 |
Taxane-based agents(paclitaxel and docetaxel) [24,26] | Scleroderma-like lesions | Rare (no data available regarding precise incidence) | Paclitaxel and docetaxel lead to an increase in serum IL-6 (a pro-fibrotic cytokine) levels | 13 |
Scleroderma-Like Disorder | Hypothesized Etiological Factors/Triggers |
---|---|
Radiation-induced morphea [46] | Radiotherapy: radiation exposure typically precedes the onset of cutaneous sclerosis by several years |
Paraneoplastic scleroderma-like syndrome [47,48] | Plasma cell proliferation disorders; cases associated with Kaposi sarcoma have been reported |
Drug-induced systemic sclerosis-like syndrome [24] | Systemic cancer treatments, including taxanes and bleomycin |
Morphea [49] | Viral or bacterial infections, such as by Borrelia burgdorferi, may serve as a trigger |
Atrophoderma of Pasini and Pierini [50] | Viral or bacterial infections, such as by Borrelia burgdorferi, may serve as a trigger |
Eosinophilic fasciitis [41] | It typically begins a few days following strenuous exercise;cases mediated by drugs (most notably statins) and cases associated with aplastic or hemolytic anemia, thrombocytopenia, myelodysplastic syndrome, and malignant lymphoproliferative disease have been reported |
Chronic sclerodermoid GVHD [41] | GVHD, commonly observed following bone marrow and stem cell transplants, occurs as a result of immunocompetent T lymphocytes within the graft recognizing histocompatibility differences and attacking immunodeficient recipient tissue |
Nephrogenic systemic fibrosis [51] | It occurs in renal insufficiency patients undergoing dialysis or kidney transplantation;also reported in acute kidney injury or stage IV-V chronic kidney disease patients receiving gadolinium |
Toxic scleroderma-like syndromes [41] | Toxic-oil syndrome: aniline-denatured and refined rapeseed oil; Eosinophilia–myalgia syndrome: L-tryptophan;Vinyl-chloride disease: chronic inhalation of vinyl-chloride |
CHS | GS2 | HPS2 | MAPBPIP-DS | |
---|---|---|---|---|
Platelet abnormalities | Thrombocytopathy (platelets with dense granules) | none | Thrombocytopenia | none |
Lymphocyte abnormalities | Alteration in T-cell and NK cytotoxic activity; occasionally large granules in lymphocytes | Alteration in T-cell and NK cytotoxic activity | Alteration in T-cell and NK cytotoxic activity | Defects in B-cell, T-cell, and NK cytotoxic activity |
Neutrophil abnormalities | Transient neutropenia can be observed; large granules in PMN | Transient neutropenia can be observed | Neutropenia | Neutropenia |
Evolution to HLH | yes | yes | yes | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetto, R.; Miceli, P.; Sernicola, A.; Tartaglia, J.; Alaibac, M. Skin Hypopigmentation in Hematology Disorders. Hematol. Rep. 2024, 16, 354-366. https://doi.org/10.3390/hematolrep16020036
Mazzetto R, Miceli P, Sernicola A, Tartaglia J, Alaibac M. Skin Hypopigmentation in Hematology Disorders. Hematology Reports. 2024; 16(2):354-366. https://doi.org/10.3390/hematolrep16020036
Chicago/Turabian StyleMazzetto, Roberto, Paola Miceli, Alvise Sernicola, Jacopo Tartaglia, and Mauro Alaibac. 2024. "Skin Hypopigmentation in Hematology Disorders" Hematology Reports 16, no. 2: 354-366. https://doi.org/10.3390/hematolrep16020036
APA StyleMazzetto, R., Miceli, P., Sernicola, A., Tartaglia, J., & Alaibac, M. (2024). Skin Hypopigmentation in Hematology Disorders. Hematology Reports, 16(2), 354-366. https://doi.org/10.3390/hematolrep16020036