Plant Growth-Promoting and Biocontrol Characteristics of Four Bacillus Strains and Evaluation of Their Effects on Wheat (Tr. aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Amylolytic Activity of Tested Bacillus Strains
2.3. Proteolytic Activity of Bacillus Strains
2.4. Quantification of the Synthesized Secondary Metabolites with Phytohormonal Activity
2.4.1. Quantification of Indole-3-Acetic Acid Using the Salkowski Reagent
2.4.2. Screening for Dissolution of Inorganic Phosphates
2.4.3. ZnO Dissolution Screening
2.5. Screening Bacillus spp. for Genes Encoding Lipopeptides Iturin, Surfactin, and Fengycin
2.6. Antimicrobial Activity Against Fusarium graminearum
2.7. Field Experiment
2.8. Fluorescence Spectroscopy
- A laser diode (LED) with an emission radiation of 245 nm with a supply voltage in the range of 3 V. It is enclosed in a hermetically sealed TO39-type metal case. The emitter current consumption is 0.02 A, its voltage drop is 1.9 to 2.4 V, and −6 V is the minimum emitter voltage value;
- The rod lens consists of two connected Schott and Corning lenses with anti-reflective coatings and different dispersion coefficients. It is of the achromatic doublet type. The chromatic aberration of one lens compensates for that of the other. This is due to the values of their radii. The forming optic has a diameter tolerance of −0.005 mm;
- The multimode optical fiber has a core diameter of 200 μm. The index of refraction is a step. It is FG200LEA;
- Four cm2 is the area of the quartz glass. Its optical properties include being transparent to visible light and ultraviolet and infrared rays. For this reason, it is observed that no inhomogeneities scatter the light. Due to its purity, quartz glass’s optical and thermal properties are superior to those of other types of glass. Quartz glass has a very low light absorption coefficient;
- The sensitivity of the CMOS detector is in the range of 200 nm to 1100 nm and δλ = 5 is its resolution. Unlike widely used sensors, the profile of the detector sensor projections used in this study along the X and Y axes is designed to generate very small amounts of data.
- The fiber optic setup used in this study has the following unique advantages:
- A rod lens was used in the construction of the system. This lens was chosen for its high light transmission coefficient due to the complete filling of the air gaps between the individual lenses included in its composition.
- An optical fiber and a rod lens are precisely connected in duralumin housing. This design achieves the optimum in laser diode imaging and fiber optic compilation, ensuring low levels of signal intensity loss.
- The sample fluoresces after being irradiated by the LED. The emission signal is received at 45° from the rod lens and the emission signal is generated. It is then transmitted through the optical fiber to the detector.
3. Results
3.1. Amylolytic Activity of the Isolated Bacillus Strains
3.2. Proteolytic Activity of Tested Bacillus spp. Strains
3.3. Quantification of Indole-3-Acetic Acid (IAA)
3.4. Screening for Dissolution of Inorganic Phosphate and Zinc and Production of Siderophores
3.5. Screening Bacillus spp. for Genes Encoding Lipopeptides
3.6. Antifungal Activity of the Tested Strains
3.7. Influence of Tested Four Bacillus spp. on the Average Yield in t/ha of Wheat
3.8. Mobile Fluorescence Spectroscopy for Evaluation of the Effect of Bacillus spp. on Wheat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correa, O.S.; Soria, M.A. Potential of Bacilli for biocontrol and its exploitation in sustainable agriculture. Plant Growth Health Promot. Bact. 2011, 18, 197–209. [Google Scholar]
- Gardener, B.B.M. Biocontrol of plant pathogens and plant growth promotion by Bacillus. Recent Dev. Manag. Plant Dis. 2009, 1, 71–79. [Google Scholar]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus sp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Anckaert, A.; Arguelles Arias, A.; Hof, G.; Calonne-Salmon, M.; Declerck, S.; Ongena, M. The Use of Bacillus sp. as Bacterial Biocontrol Agents to Control Plant Diseases; Burleigh Dodds Science Publishing: Cambridge, UK, 2021. [Google Scholar]
- Grosu, A.I.; Sicuia, O.A.; Dobre, A.; Voaideş, C.; Cornea, C.P. Evaluation of some Bacillus sp. strains for the biocontrol of Fusarium graminearum and F. culmorum in wheat. Agric. Agric. Sci. Procedia 2015, 6, 559–566. [Google Scholar]
- Zhao, Y.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Song, H.; Liu, Y. Antagonistic action of B. subtilis strain SG6 on Fusarium graminearum. PLoS ONE 2014, 9, e92486. [Google Scholar] [CrossRef]
- Alabouvette, C.; Olivain, C.; Steinberg, C. Biological Control of Plant Diseases: The European Situation. Eur. J. Plant Pathol. 2006, 114, 329–341. [Google Scholar] [CrossRef]
- Borriss, R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In Bacteria in Agrobiology: Plant Growth Responses; Springer: Berlin/Heidelberg, Germany, 2011; pp. 41–76. [Google Scholar]
- Aydi Ben Abdallah, R.; Jabnoun-Khiareddine, H.; Nefzi, A.; Mokni-Tlili, S.; Daami-Remadi, M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems. J. Phytopathol. 2016, 164, 811–824. [Google Scholar] [CrossRef]
- Falcao, C.B.; de La Torre, B.G.; Pérez-Peinado, C.; Barron, A.E.; Andreu, D.; Rádis-Baptista, G.J.A.A. Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids 2014, 46, 2561–2571. [Google Scholar] [CrossRef]
- Stabb, E.V.; Jacobson, L.M.; Handelsman, J.O. Zwittermicin A-producing strains of Bacillus licheniformis from diverse soils. Appl. Environ. Microbiol. 1994, 60, 4404–4412. [Google Scholar] [CrossRef]
- Dolej, S.; Bochow, H. Studies of the mode of action of Bacillus subtilis culture filtrates in the model pathosystem tomato seedling-Fusarium oxysporum f. sp. radicis-lycopersici. In Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent (Belgium); Universiteit Gent: Gent, Belgium, 1996; Volume 61. [Google Scholar]
- Yamamoto, S.; Shiraishi, S.; Suzuki, S. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 2015, 60, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Hasnain, S.; Berge, O.; Mahmood, T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 2004, 40, 157–162. [Google Scholar] [CrossRef]
- Tiwari, K.; Thakur, H.K. Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native Neem varieties of Sanganer region of Rajasthan. J. Biodivers. Bioprospect. Dev. 2014, 1, 2. [Google Scholar] [CrossRef]
- Jacques, P. Surfactin and other lipopeptides from Bacillus sp. In Biosurfactants: From Genes to Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–91. [Google Scholar]
- Stein, T. B. subtilis antibiotics: Strutures. syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Wu, M.; Chen, Z.; Lin, J.; Yang, L. Natural products from B. subtilis with antimicrobial properties. Chin. J. Chem. Eng. 2015, 23, 744–754. [Google Scholar] [CrossRef]
- Akintayo, S.O.; Hosseini, B.; Vahidinasab, M.; Messmer, M.; Pfannstiel, J.; Bertsche, U.; Lilge, L. Characterization of antifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp. Front. Bioeng. Biotechnol. 2023, 11, 1228386. [Google Scholar] [CrossRef]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys Res. Commun. 1968, 31, 488–494. [Google Scholar] [CrossRef]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 1986, 39, 888–901. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, X.; Qiao, X.; Zhang, X.; Chen, X.; Zhang, D. Activity of fengycin and iturin A isolated from Bacillus subtilis Z-14 on Gaeumannomyces graminis var. tritici and soil microbial diversity. Front. Microbiol. 2021, 12, 682437. [Google Scholar]
- Shaligram, N.S.; Singhal, R.S. Surfactin—A review on biosynthesis, fermentation, purification and applications. Food Technol. Biotechnol. 2010, 48, 119–134. [Google Scholar]
- Ferreira, C.M.H.; Vilas-Boas, Â.; Sousa, C.A. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Expr. 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Gamit, D.A.; Tank, S.K. Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int. J. Res. Pure Appl. Microbiol. 2014, 4, 20–27. [Google Scholar]
- Crosa, J.H.; Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 223–249. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Khan, A.; Doshi, H.V.; Thakur, M.C. Bacillus sp.: A prolific siderophore producer. In Bacilli and Agrobiotechnology; Springer: Cham, Germany, 2016; pp. 309–323. [Google Scholar]
- Petkova, M.; Dimova, M. Biological Control of Lettuce Drop (Sclerotinia minor Jagger) Using Antagonistic Bacillus Species. Appl. Microbiol. 2024, 4, 1283–1293. [Google Scholar] [CrossRef]
- Kim, M.; Morrison, M.; Yu, Z. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods 2011, 84, 81–87. [Google Scholar] [CrossRef]
- Goto, K.; Omura, T.; Hara, Y.; Sadaie, Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 2000, 46, 1–8. [Google Scholar] [CrossRef]
- Agati, V.J.P.; Guyot, J.; Morlon-Guyot, P.; Talamond, D.J. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J. Appl. Microbiol. 1998, 85, 512–520. [Google Scholar] [CrossRef]
- Nabrdalik, M.; Grata, K.; Latała, A. Proteolytic activity of B. licheniformis strains. Proc. ECOpole 2010, 4, 273–276. [Google Scholar]
- Spaepen, S. Plant hormones produced by microbes. In Principles of Plant-Microbe Interactions; Springer: Cham, Switzerland, 2015; pp. 247–256. [Google Scholar]
- Petkova, M.; Stefanova, P.; Gotcheva, V.; Kuzmanova, I.; Angelov, A. Microbiological and physicochemical characterization of traditional bulgarian sourdoughs and screening of lactic acid bacteria for amylolytic activity. J. Chem. Technol. Metall. 2020, 55, 921–934. [Google Scholar]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192. [Google Scholar] [CrossRef] [PubMed]
- Khande, R.; Sharma, S.K.; Ramesh, A.; Sharma, M.P. Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 2017, 4, 126–138. [Google Scholar] [CrossRef]
- Joshi, R.; McSpadden Gardener, B.B. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 2006, 96, 145–154. [Google Scholar] [CrossRef]
- Ramos-Solano, B.; Lucas García, J.A.; Garcia-Villaraco, A.; Algar, E.; Garcia-Cristobal, J.; Gutierrez Mañero, F.J. Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil 2010, 334, 189–197. [Google Scholar] [CrossRef]
- García, C.A.; Passerini De Rossi, B.; Alcaraz, E.; Vay, C.; Franco, M. Siderophores of Stenotrophomonas maltophilia: Detection and determination of their chemical nature. Rev. Argent Microbiol. 2012, 44, 150–154. [Google Scholar]
- Yu, X.; Ai, C.; Xin, L.; Zhou, G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 2011, 47, 138–145. [Google Scholar] [CrossRef]
- Shen, N.; Li, S.; Li, S.; Zhang, H.; Jiang, M. The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana. Egypt. J. Biol. Pest Control 2022, 32, 34. [Google Scholar] [CrossRef]
- Pal, K.K.; Tilak, K.V.B.R.; Saxcna, A.K.; Dey, R.; Singh, C.S. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol. Res. 2001, 156, 209–223. [Google Scholar] [CrossRef]
- Ntushelo, K.; Ledwaba, L.K.; Rauwane, M.E.; Adebo, O.A.; Njobeh, P.B. The mode of action of Bacillus species against Fusarium graminearum. tools for investigation. and future prospects. Toxins 2019, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Gyaneshwar, P.; Naresh Kumar, G.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Thaler, P.; Pagès, L. Modelling the influence of assimilate availability on root growth and architecture. Plant Soil 1998, 201, 307–320. [Google Scholar] [CrossRef]
- Freitas, J.R. Yield and N assimilation of winter wheat (Triticum aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia 2000, 44, 97–104. [Google Scholar] [CrossRef]
- Emami, T.; Mirzaeiheydari, M.; Maleki, A.; Bazgir, M. Effect of native growth promoting bacteria and commercial biofertilizers on growth and yield of wheat (Triticum aestivum) and barley (Hordeum vulgare) under salinity stress conditions. Cell. Mol. Biol. 2019, 65, 22–27. [Google Scholar] [CrossRef]
- Rey, M.W.; Ramaiya, P.; Nelson, B.A.; Brody-Karpin, S.D.; Zaretsky, E.J.; Tang, M.; De Leon, A.L.; Xiang, H.; Gusti, V.; Clausen, I.G.; et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004, 5, r77. [Google Scholar] [CrossRef]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus Solubilization by Bacillus Species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef]
- Xue, S.; Miao, L.; Ma, Y.; Du, Y.; Yan, H. Optimizing Bacillus circulans Xue-113168 for biofertilizer production and its effects on crops. Afr. J. Biotechnol. 2016, 15, 2795–2803. [Google Scholar]
- Singh, R.P.; Jha, P.N. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 2016, 7, 1890. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. [Google Scholar] [CrossRef]
- Harwood, C.R.; Kikuchi, Y. The ins and outs of Bacillus proteases: Activities: Functions and commercial significance. FEMS Microbiol. Rev. 2022, 46, fuab046. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, R.D.; Sikati-Foko, V.; Barnabe, S.; Vidyarthi, A.S.; Valéro, J.R.; Surampalli, R.Y. Simultaneous production of biopesticides and alkaline protease by Bacillus thuringiensis using sewage sludge as a raw material. Water Sci. Technol. 2002, 46, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.P.; Liu, H.Q.; Zhou, H.L.; Dong, Z.G.; Bai, X.H.; Bai, P.; Qiao, J.J. Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biol. Fertil. Soils 2014, 50, 927–937. [Google Scholar] [CrossRef]
- Dutta, J.; Handique, P.J.; Thakur, D. Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front. Microbiol. 2015, 6, 1252. [Google Scholar] [CrossRef] [PubMed]
- Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi 2007, 244, 3027–3073. [Google Scholar] [CrossRef]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Schneider, K.; Vater, J.; Süssmuth, R.; Borriss, R. Genome analysis of B. amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 2009, 140, 27–37. [Google Scholar] [CrossRef]
- Kushwaha, P.; Kashyap, P.L.; Pandiyan, K.; Bhardwaj, A.K. Zinc-solubilizing microbes for sustainable crop production: Current understanding, opportunities, and challenges. In Phytobiomes: Current Insights and Future Vistas; Springer: Berlin/Heidelberg, Germany, 2020; pp. 281–298. [Google Scholar]
- Saleem, S.; Malik, A.; Khan, S.T. Prospects of ZnO-Nanoparticles for Zn Biofortification of Triticum aestivum in a Zinc-Solubilizing Bacteria Environment. J. Soil Sci. Plant Nutr. 2023, 23, 4350–4360. [Google Scholar] [CrossRef]
- Nithyapriya, S.; Lalitha, S.; Sayyed, R.Z.; Reddy, M.S.; Dailin, D.J.; El Enshasy, H.A.; Herlambang, S. Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 2021, 13, 5394. [Google Scholar] [CrossRef]
- Saxena, A.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D. Bacillus species in the soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Chen, H. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 2007, 76, 889–894. [Google Scholar] [CrossRef]
- Han, Q.M.; Cao, L.H. Progress of the biological control on Fusarium graminearum Schw. of wheat. J. Triticeae Crops 2003, 23, 128–131. [Google Scholar]
- Gong, A.D.; Li, H.P.; Yuan, Q.S.; Song, X.S.; Yao, W.; He, W.J.; Liao, Y.C. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 2015, 10, e0116871. [Google Scholar] [CrossRef] [PubMed]
- Antoun, H.; Prevost, D. Ecology of plant growth promoting rhizobacteria. In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–38. [Google Scholar]
- Harwood, C.R.; Wipat, A. Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett. 1996, 389, 84–87. [Google Scholar] [CrossRef]
- Shishido, M.; Breuil, C.; Chanway, C. Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol. Ecol. 1999, 29, 191–196. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Yasmin, H.; Sayyed, R.Z.; Hasnain, Z.A.; Elsayed, E.; El Enshasy, H.A. Role of Bacillus cereus in Improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules 2021, 26, 1569. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Sharif, S.; Kazmi, M.; Sultan, T.; Aslam, M. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst. 2011, 145, 159–168. [Google Scholar] [CrossRef]
- Turan, M.; Gulluce, M.; von Wirén, N.; Sahin, F. Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. J. Plant Nutr. Soil Sci. 2012, 175, 818–826. [Google Scholar] [CrossRef]
- Thompson, D. Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. J. Exp. Bot. 2001, 52, 1291–1301. [Google Scholar] [CrossRef]
- Committee on Line Spectra of the Elements Research in Optical Spectroscopy: Present Status and Prospects; National Research Council (U.S.): Washington, DC, USA, 1968.
- Leo, M.; Nollet, L.; Toldr, F. Advances in Food Diagnostics; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 49–194. [Google Scholar]
- Qin, J.; Lu, R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
- Valeur, B.; Santos, B.; Molecular, M. Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2012; pp. 13–19. [Google Scholar]
- Bachmann, L. Fluorescence Spectroscopy of Biological Tissues. A Review. Appl. Spectrosc. Rev. 2006, 41, 575–590. [Google Scholar] [CrossRef]
- Hof, M.; Hutterer, R.; Fidler, V. Fluorescence Spectroscopy in Biology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 91–182. [Google Scholar]
- Dakin, J.; Brown, R. Handbook of Optoelectronics; CRC Press: Boca Raton, FL, USA, 2006; pp. 74–253. [Google Scholar]
- Mitchke, F. Fiber Optics Physics and Technology Heidelberg; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–103. [Google Scholar]
- Hoffmann, A.; Noga, G.; Hunsche, M. Fluorescence indices for monitoring the ripening of tomatoes in pre- and postharvest phases. Sci. Hortic. 2015, 191, 74–81. [Google Scholar] [CrossRef]
- Karoui, R.; Blecker, C. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—A Review. Food Bioprocess Technol. 2011, 4, 364–386. [Google Scholar] [CrossRef]
- Brandes Ammann, A.; Brandl, H. Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR) and chemometrical data treatment. BMC Biophys. 2011, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Palkovicsné Pézsa, N.; Kovács, D.; Rácz, B.; Farkas, O. Effects of Bacillus licheniformis and Bacillus subtilis on gut barrier function, proinflammatory response, ROS production and pathogen inhibition properties in IPEC-J2—Escherichia coli/Salmonella typhimurium co-culture. Microorganisms 2022, 10, 936. [Google Scholar] [CrossRef] [PubMed]
№ | Treatment Combination | Treatment with Bacillus Strains | № | Treatment Combination | Treatment with Bacillus Strains |
---|---|---|---|---|---|
1 | Control | No microorganisms applied | 24 | 13 (1, 3, 4) | Bacillus subtilis + Bacillus circulans + Bacillus megaterium |
2 | 1 | Bacillus subtilis | 25 | 15 (1, 2, 3, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans + Bacillus megaterium |
3 | 2 | Bacillus licheniformis | 26 | 12 (1, 2, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus megaterium |
4 | 3 | Bacillus circulans | 27 | 2 | Bacillus licheniformis |
5 | 4 | Bacillus megaterium | 28 | 14 (2, 3, 4) | Bacillus licheniformis + Bacillus circulans + Bacillus megaterium |
6 | 7 (1, 2) | Bacillus subtilis + Bacillus licheniformis | 29 | 11 (1, 2, 3) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans |
7 | 5 (1, 3) | Bacillus subtilis + Bacillus circulans | 30 | 6 (1, 4) | Bacillus subtilis + Bacillus megaterium |
8 | 6 (1, 4) | Bacillus subtilis + Bacillus megaterium | 31 | 2 | Bacillus licheniformis |
9 | 8 (2, 3) | Bacillus licheniformis + Bacillus circulans | 32 | 4 | Bacillus megaterium |
10 | 9 (2, 4) | Bacillus licheniformis + Bacillus megaterium | 33 | 11 (1, 2, 3) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans |
11 | 10 (3, 4) | Bacillus circulans + Bacillus megaterium | 34 | 10 (3, 4) | Bacillus circulans + Bacillus megaterium |
12 | 11 (1, 2, 3) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans | 35 | 7 (1, 2) | Bacillus subtilis + Bacillus licheniformis |
13 | 12 (1, 2, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus megaterium | 36 | 3 | Bacillus circulans |
14 | 13 (1, 3, 4) | Bacillus subtilis + Bacillus circulans + Bacillus megaterium | 37 | 13 (1, 3, 4) | Bacillus subtilis + Bacillus circulans + Bacillus megaterium |
15 | 14 (2, 3, 4) | Bacillus licheniformis + Bacillus circulans + Bacillus megaterium | 38 | 8 (2, 3) | Bacillus licheniformis + Bacillus circulans |
16 | 15 (1, 2, 3, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans + Bacillus megaterium | 39 | 12 (1, 2, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus megaterium |
17 | 7 (1, 2) | Bacillus subtilis + Bacillus licheniformis | 40 | 1 | Bacillus subtilis |
18 | 3 | Bacillus circulans | 41 | 9 (2, 4) | Bacillus licheniformis + Bacillus megaterium |
19 | 8 (2, 3) | Bacillus licheniformis + Bacillus circulans | 42 | 5 (1, 3) | Bacillus subtilis + Bacillus circulans |
20 | 1 | Bacillus subtilis | 43 | 4 | Bacillus megaterium |
21 | 5 (1, 3) | Bacillus subtilis + Bacillus circulans | 44 | 14 (2, 3, 4) | Bacillus licheniformis + Bacillus circulans + Bacillus megaterium |
22 | 9 (2, 4) | Bacillus licheniformis + Bacillus megaterium | 45 | 6 (1, 4) | Bacillus subtilis + Bacillus megaterium |
23 | 10 (3, 4) | Bacillus circulans + Bacillus megaterium | 46 | 15 (1, 2, 3, 4) | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans + Bacillus megaterium |
№ | Bacillus Strain | Amylolytic Activity, mm | |
---|---|---|---|
Cultured Cells | Cell-Free Supernatant | ||
1 | Bacillus subtilis | 21.656 ± 2.511 a | 9.6 ± 0.536 a |
2 | Bacillus licheniformis | 22.166 ± 2.020 a | 9.7 ± 0.646 a |
3 | Bacillus circulans | 28.663 ± 3.163 b* | 11.2 ± 0.753 b* |
4 | Bacillus megaterium | 12.833 ± 1.217 c* | 8.50 ± 0.986 c* |
№ | Bacillus Strain | Proteolytic Activity. Mm | |||||
---|---|---|---|---|---|---|---|
Cultured Cells | Cell-Free Supernatant | ||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
1 | B. subtilis | 24.0 ± 0.206 a | 33.3 ± 0.162 a | 38.6 ± 0.561 a | 0 | 13.0 ± 0.224 b | 11.8 ± 0.321 a |
2 | B. licheniformis | 25.5 ± 0.218 a | 38.9 ± 0.176 a | 47.6 ± 0.324 b | 0 | 6.08 ± 0.186 a | 12.6 ± 0.052 a |
3 | B. circulans | 32.2 ± 0.702 b* | 42.4 ± 0.275 b* | 48.2 ± 0.803 b* | 8.0 ± 0.15 | 12.5 ± 0.173 b* | 16.3 ± 0.820 b* |
4 | B. megaterium | 23.4 ± 0.369 a | 26.6 ± 0.294 a | 28.3 ± 0.193 a | 0 | 7.8 ± 0.204 a | 10.3 ± 0.068 a |
Bacterial Strains | Phosphate-Solubilization Index (PSI) as a Zone in mm ± SD, n = 3 | Zinc-Solubilization as a Zone in mm ± SD, n = 3 | Production of Siderophores as a Yellow Zone in mm on CAS Agar, n = 3 |
---|---|---|---|
Bacillus subtilis | 12.72 ± 159 a | 11.50 ± 0.873 a | 18.3 ± 0.07 a |
Bacillus licheniformis | 15.23 ± 0.503 a | 9.75 ± 0.456 a | 32.0 ± 0.218 b* |
Bacillus circulans | 19.6 ± 0.078 b | 18.52 ± 1.720 b | 19.0 ± 0.113 a |
Bacillus megaterium | 21.63 ± 0.129 b* | 27.57 ± 1.792 c* | 39.6 ± 0.144 b* |
Field Plot Number | Variant | Average Grain Yield, t/ha | % St |
---|---|---|---|
1 | Control standard | 5.18 | 100 |
12, 29, 33 | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans | 5.81 | 112 |
3, 27, 31 | Bacillus licheniformis | 5.94 | 115 |
2, 20, 40 | Bacillus subtilis + Bacillus circulans | 6.05 | 117 |
7, 21, 41 | Bacillus subtilis + Bacillus circulans | 6.08 | 117 |
16, 26, 46 | Bacillus subtilis + Bacillus licheniformis + Bacillus circulans + Bacillus megaterium | 6.14 | 119 |
4, 18, 36 | Bacillus circulans | 6.16 | 119 |
6, 17, 35 | Bacillus subtilis + Bacillus licheniformis | 6.22 | 120 |
9, 19, 38 | Bacillus licheniformis + Bacillus circulans | 6.30 | 122 |
10, 22, 41 | Bacillus licheniformis + Bacillus megaterium | 6.33 | 122 |
13, 26, 39 | Bacillus subtilis + Bacillus licheniformis + Bacillus megaterium | 6.53 | 126 |
15, 28, 49 | Bacillus licheniformis + Bacillus circulans + Bacillus megaterium | 6.53 | 126 |
14, 24, 37 | Bacillus subtilis + Bacillus circulans + Bacillus megaterium | 6.63 | 128 |
11, 23, 34 | Bacillus circulans + Bacillus megaterium | 6.73 | 130 |
8, 30, 45 | Bacillus subtilis + Bacillus megaterium | 6.88 | 133 |
5, 32, 43 | Bacillus megaterium | 7.36 | 142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, M.; Marcheva, M.; Petrova, A.-L.; Slavova, V.; Shilev, S. Plant Growth-Promoting and Biocontrol Characteristics of Four Bacillus Strains and Evaluation of Their Effects on Wheat (Tr. aestivum L.). Int. J. Plant Biol. 2025, 16, 1. https://doi.org/10.3390/ijpb16010001
Petkova M, Marcheva M, Petrova A-L, Slavova V, Shilev S. Plant Growth-Promoting and Biocontrol Characteristics of Four Bacillus Strains and Evaluation of Their Effects on Wheat (Tr. aestivum L.). International Journal of Plant Biology. 2025; 16(1):1. https://doi.org/10.3390/ijpb16010001
Chicago/Turabian StylePetkova, Mariana, Marina Marcheva, Antonia-Lucia Petrova, Vanya Slavova, and Stefan Shilev. 2025. "Plant Growth-Promoting and Biocontrol Characteristics of Four Bacillus Strains and Evaluation of Their Effects on Wheat (Tr. aestivum L.)" International Journal of Plant Biology 16, no. 1: 1. https://doi.org/10.3390/ijpb16010001
APA StylePetkova, M., Marcheva, M., Petrova, A.-L., Slavova, V., & Shilev, S. (2025). Plant Growth-Promoting and Biocontrol Characteristics of Four Bacillus Strains and Evaluation of Their Effects on Wheat (Tr. aestivum L.). International Journal of Plant Biology, 16(1), 1. https://doi.org/10.3390/ijpb16010001