Ectomycorrhizal Diversity and Exploration Types in Salix caprea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sites and Sampling
2.2. Soil Analysis
2.3. Determination of Ectomycorrhizas Colonization
2.4. Morphological and Anatomical Description of the Ectomycorrhizas
2.5. Molecular Analysis of the EM Fungi
2.6. Statistical Analysis
3. Results
Identification of Ectomycorrhizal Morphotypes
4. Discussion
Identified Ectomycorrhiza | Isolated from Pioneer Tree sps. | Generalist or Specialist Fungi | Type of Environment | Potential Function of EM | NCBI Accession No. | Citation |
---|---|---|---|---|---|---|
Tomentella sp. | Populus sp. | Generalist | Forest/dry habitat/heavy metal-polluted area | Tolerance to drought or increased concentrations Of heavy metals in the soil | JQ898563 | [10] |
Salix alba | Generalist | Saline meadow near a soda factory | Adaptation to saline conditions | KP745608 | [59] | |
Hebeloma populinum | Populus sp. | Specialist | Forest/dry habitat | Tolerance to drought | JQ898545 | [10] |
Populus tremula | Specialist | Former lead/zinc smelter | Fungal immobilization of heavy metals | EF644130 | [11] | |
Hebeloma sp. | Populus sp. | Generalist | Heavy metal-polluted area | Tolerance to increased concentrations Of heavy metals in the soil | JQ898546 | [10] |
Salix caprea | Generalist | Former ore mining area, Heavy metal-polluted soil | Tolerance against toxic metal concentrations in the soil | AY748855 | [24] | |
Cortinarius atrocoerulaeus | Populus sp. | Generalist | Forest | Plant nutrition | JQ898541 | [10] |
Quercus sp. | Generalist | Mature mixed forest in the southern Appalachian Mountains | Supplies carbohydrates to seedlings | AY656961 | [74] | |
Inocybe sp. | Populus sp. | ND | Forest/dry habitat/heavy metal-polluted area | Tolerance to drought or increased concentrations of heavy metals in the soil | JQ898552 | [10] |
Populus tremula | Generalist | Former lead/zinc smelter | Fungal immobilization of heavy metals | EF644135 | [11] | |
Inocybe hirtella | Populus sp. | Nd | Forest | Plant nutrition | JQ898549 | [10] |
Quercus ilex | Nd | Mediterranean forest | Adaptation to climate change | ND | [65] | |
Laccaria ochropurpurea | Salix caprea | Nd | Former ore mining area, heavy metal-polluted soil | Tolerance against toxic metal concentrations in the soil | AY748870 | [24] |
Castanea dentata | Nd | Chestnut plantation | Resistance to pathogens | MK077757 | [77] | |
Tuber sp. | Salix caprea | Nd | Former ore mining area, heavy metal-polluted soil | Tolerance against toxic metal concentrations in the soil | AY748870 | [24] |
Populus tremula | Generalist | Former lead/zinc smelter | Fungal immobilization of heavy metals | EF644167 | [11] | |
Tuber maculatum | Populus alba | Nd | Marsh in nature reserve | Adaptation to ecological conditions | HG937633 | [52] |
Populus nigra, Pinus nigra, Tilia x vulgaris | Generalist | Man-made park, Mediterranean area | Nutritional exchange or competition for the main nutritional resources in fungal communities | ND | [83] | |
Cenococcum geophilum | Carya ovata | Generalist | Old experimental plantation of exotic trees, temperate mixed forest | Acclimatization of exotic trees outside of their native Range | ND | [67] |
Quercus sp. | Generalist | Oak savanna/forest, post-fire site | Survival in the extreme environment (after burning) | ND | [66] | |
Phialophora finlandia | Picea abies | Generalist | Forest nursery | Improvement of the growth and survival of outplanted tree seedlings | DQ508807 | [81] |
Pinus sylvestris | Generalist | Forest, post-agricultural land (slightly polluted soil) and buffer zone of the copper smelter (heavy metal-polluted soil) | Adaptation to different soil conditions | ND | [83] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suz, L.M.; Bidartondo, M.I.; van der Linde, S.; Kuyper, T.W. Ectomycorrhizas and tipping points in forest ecosystems. New Phytol. 2021, 231, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Policelli, N.; Horton, T.R.; Hudon, A.T.; Patterson, T.; Bhatnagar, J.M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Chang. 2020, 3, 97. [Google Scholar] [CrossRef]
- Karst, J.; Erbilgin, N.; Pec, G.J.; Cigan, P.W.; Najar, A.; Simard, S.W.; Cahill, J.F., Jr. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings. New Phytol. 2015, 208, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.J.; Jones, M.D.; Kranabetter, J.M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 2015, 46, 747–771. [Google Scholar] [CrossRef]
- Nara, K. The role of ectomycorrhizal networks in seedling establishment and primary succession. In Mycorrhizal Networks; Springer: Dordrecht, The Netherlands, 2015; pp. 177–201. [Google Scholar] [CrossRef]
- Pickles, B.J.; Simard, S.W. Mycorrhizal networks and forest resilience to drought. In Mycorrhizal Mediation of Soil; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–339. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 2019, 94, 1857–1880. [Google Scholar] [CrossRef] [PubMed]
- Egerton-Warburton, L.M.; Querejeta, J.I.; Allen, M.F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 2007, 58, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Soudzilovskaia, N.A.; van Bodegom, P.M.; Terrer, C.; Zelfde, M.V.T.; McCallum, I.; Luke McCormack, M.; Fisher, J.B.; Brundrett, M.C.; de Sá, N.C.; Tedersoo, L. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Krpata, D.; Peintner, U.; Langer, I.; Fitz, W.J.; Schweiger, P. Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res. 2008, 112, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Karliński, L.; Rudawska, M.; Leski, T. The influence of host genotype and soil conditions on ectomycorrhizal community of poplar clones. Eur. J. Soil Biol. 2013, 58, 51–58. [Google Scholar] [CrossRef]
- Usman, M.; Ho-Plágaro, T.; Frank, H.E.; Calvo-Polanco, M.; Gaillard, I.; Garcia, K.; Zimmermann, S.D. Mycorrhizal symbiosis for better adaptation of trees to abiotic stress caused by climate change in temperate and boreal forests. Front. For. Glob. Chang. 2021, 141, 742392. [Google Scholar] [CrossRef]
- Segnitz, R.M.; Russo, S.E.; Davies, S.J.; Peay, K.G. Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family. Ecology 2020, 101, e03083. [Google Scholar] [CrossRef]
- Argus, G.W. Infrageneric classification of Salix (Salicaceae) in the new world. In Systematic Botany Monographs; American Society of Plant Taxonomists: St. Louis, MO, USA, 1997; pp. 1–121. [Google Scholar]
- Weih, M.; Glynn, C.; Baum, C. Willow short-rotation coppice as model system for exploring ecological theory on biodiversity–ecosystem function. Diversity 2019, 11, 125. [Google Scholar] [CrossRef]
- Cannone, N.; Guglielmin, M.; Casiraghi, C.; Malfasi, F. Salix shrub encroachment along a 1000 m elevation gradient triggers a major ecosystem change in the European Alps. Ecography 2022, 2022, e06007. [Google Scholar] [CrossRef]
- Weih, M.; Nordh, N.E.; Manzoni, S.; Hoeber, S. Functional traits ofindividual varieties as determinants of growth and nitrogen use patterns inmixed stands of willow (Salix spp.). For. Ecol. Manag. 2021, 479, 118605. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Wastewater and sewage sludge application to willows and poplars grown in lysimeters–Plant response and treatment efficiency. Biomass Bioenergy 2011, 35, 161–170. [Google Scholar] [CrossRef]
- Sandil, S.; Gowala, N. Willows: Cost-effective tools for bioremediation of contaminated soils. In Advances in Bioremediation and Phytoremediation for Sustainable Soil Management; Malik, J.A., Ed.; Springer: Cham, Switzerland, 2022; pp. 183–202. [Google Scholar] [CrossRef]
- Trowbridge, J.; Jumpponen, A. Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 2004, 14, 283–293. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, E.W.; Vries, F.W.; Kuyper, T.W. Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Aboveground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can. J. Bot. 2000, 77, 1821–1832. [Google Scholar] [CrossRef]
- Van der Heijden, E.W. Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 2001, 10, 185–193. [Google Scholar] [CrossRef]
- Hrynkiewicz, K.; Baum, C.; Leinweber, P. Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability. Eur. J. Soil Biol. 2009, 45, 168–175. [Google Scholar] [CrossRef]
- Hrynkiewicz, K.; Ingeborg, H.; Christel, B. Ectomycorrhizal community structure under willows at former ore mining sites. Eur. J. Soil Biol. 2008, 44, 37–44. [Google Scholar] [CrossRef]
- Parádi, I.; Baar, J. Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For. Ecol. Manag. 2006, 237, 366–372. [Google Scholar] [CrossRef]
- Hrynkiewicz, K.; Toljander, Y.K.; Baum, C.; Fransson, P.M.A.; Taylor, A.F.S.; Weih, M. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands. Mycorrhiza 2012, 22, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, K.; Szymańska, S.; Piernik, A.; Thiem, D. Ectomycorrhizal community structure of Salix and Betula spp. at a saline site in central Poland in relation to the seasons and soil parameters. Water Air Soil Pollut. 2015, 226, 99. [Google Scholar] [CrossRef]
- Agerer, R. Exploration types of ectomycorrhizae. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Regvar, M.; Likar, M.; Piltaver, A.; Kugonič, N.; Smith, J.E. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: The potential of screening in a model phytostabilisation study. Plant Soil 2010, 330, 345–356. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, A.N.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Yadav, K.K.; Sharma, G.K.; Cabral-Pinto, M.; et al. Mycoremediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021, 284, 131–325. [Google Scholar] [CrossRef] [PubMed]
- Rúa, M.A. Characterizing Ectomycorrhizal fungal community structure and function of two varieties of Pinus clausa that differ in disturbance history. Forests 2021, 12, 219. [Google Scholar] [CrossRef]
- Kutschera, L.; Lichtenegger, E. Wurzelatlas Mitteleuropäischer Waldbäume und Sträucher; Leopold Stocker Verlag: Graz, Austria, 2002. [Google Scholar]
- Dick, W.A.; Tabatabai, M.A. An alkaline oxidation method for determination of total phosphorus in soils. Soil Sci. Soc. Am. J. 1977, 41, 511–514. [Google Scholar] [CrossRef]
- Schlichting, E.; Blume, H.P. Bodenkundliches Praktikum; Verlag Paul Parey: Berlin, Germany, 1966. [Google Scholar]
- Agerer, R. (Ed.) Colour Atlas of Ectomycorrhizae, 1st–12th ed.; Einhorn, Verlag: Schwäbisch Gmünd, Germany, 1987–2002. [Google Scholar]
- Agerer, R.; Rambold, G. DEEMY, a DELTA-Based Information System for Characterisation and Determination of Ectomycorrhizae; Version 1.1; Institute for Systematic Botany, Section Mycology, University of München: München, Germany, 1998. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Vrålstad, T.; Schumacher, T.; Taylor, A.F. Mycorrhizal synthesis between fungal strains of the Hymenoscyphusericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol. 2002, 153, 143–152. [Google Scholar] [CrossRef]
- O’donnell, K. Fusarium and its near relatives. In Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics; Reynolds, D.R., Taylor, J.W., Eds.; CAB International: Wallingford, UK, 1993; pp. 225–233. [Google Scholar]
- Haug, I. Identification of Picea ectomycorrhizae by comparing DNA-sequences. Mycol. Prog. 2002, 1, 167–178. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Larsson, K.H.; Abarenkov, K.; Nilsson, R.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005, 166, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Pritsch, K.; Boyle, H.; Munch, J.C.; Buscot, F. Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). New Phytol. 1997, 137, 357–369. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Koczorski, P.; Furtado, B.U.; Gołębiewski, M.; Hulisz, P.; Baum, C.; Weih, M.; Hrynkiewicz, K. The effects of host plant genotype and environmental conditions on fungal community composition and phosphorus solubilization in willow short rotation coppice. Front. Plant Sci. 2021, 5, 647–709. [Google Scholar] [CrossRef] [PubMed]
- Ryberg, M.; Nilsson, R.H.; Kristiansson, E.; Töpel, M.; Jacobsson, S.; Larsson, E. Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota). BMC Evol. Biol. 2008, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.R.; Bruns, T.D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Mol. Ecol. 2001, 10, 1855–1871. [Google Scholar] [CrossRef] [PubMed]
- Tiebel, K.; Huth, F.; Wagner, S. Soil seed banks of pioneer tree species in European temperate forests: A review. Iforest Biogeo Sci. For. 2018, 11, 48. [Google Scholar] [CrossRef]
- Nara, K.; Nakaya, H.; Wu, B.; Zhou, Z.; Hogetsu, T. Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol. 2003, 159, 743–756. [Google Scholar] [CrossRef]
- Nara, K.; Hogetsu, T. Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 2004, 85, 1700–1707. [Google Scholar] [CrossRef]
- Nara, K. Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol. 2006, 171, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Katanić, M.; Grebenc, T.; Orlović, S.; Matavuly, M.; Kovačević, B.; Bajc, M.; Kraigher, H. Ectomycorrhizal fungal community associated with autochthonous white poplar from Serbia. iForest 2015, 9, 330–336. [Google Scholar] [CrossRef]
- Cripps, C.L.; Liimatainen, K.; Niskanen, T.; Dima, B.; Bishop, R.F.; Ammirati, J.F. Intercontinental distributions of species of Cortinarius, subgenus Phlegmacium, associated with Populus in western North America. Botany 2015, 93, 711–721. [Google Scholar] [CrossRef]
- Kokkonen, K. Diversity of boreal small species of Cortinarius subgenus Telamonia with Salix. Karstenia 2020, 58, 60–117. [Google Scholar] [CrossRef]
- Cripps, C.L.; Eberhardt, U.; Schütz, N.; Beker, H.J.; Evenson, V.S.; Horak, E. The genus Hebeloma in the rocky mountain alpine zone. MycoKeys 2019, 46, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.W.; Nguyen, N.H.; Stefanski, A.; Han, Y.; Hobbie, S.E.; Montgomery, R.A.; Reich, P.B.; Kennedy, P.G. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 2017, 23, 1598–1609. [Google Scholar] [CrossRef]
- Koide, R.T.; Fernandez, C.; Malcolm, G. Determining place and process: Functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol. 2014, 201, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Becerra, A.G.; Nouhra, E.R.; Silva, M.P.; McKay, D. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience 2009, 50, 343–352. [Google Scholar] [CrossRef]
- Jakucs, E.; Kovács, G.M.; Szedlay, G.; Erős-Honti, Z. Morphological and molecular diversity and abundance of tomentelloid ectomycorrhizae in broad-leaved forests of the Hungarian Plain. Mycorrhiza 2005, 15, 459–470. [Google Scholar] [CrossRef]
- Vizzini, A.; Angelini, C.; Losi, C.; Ercole, E. Thelephoradominicana (Basidiomycota, Thelephorales), a new species from the Dominican Republic, and preliminary notes on thelephoroid genera. Phytotaxa 2016, 265, 27–38. [Google Scholar] [CrossRef]
- Kõljalg, U.; Dahlberg, A.; Taylor, A.F.; Larsson, E.; Hallenberg, N.; Stenlid, J.; Larsson, K.H.; Fransson, P.M.; Kårén, O.; Jonsson, L. Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol. Ecol. 2000, 9, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.V.; Franco, M.E.E.; Lopez, S.M.Y.; Troncozo, M.I.; Saparrat, M.C.N.; Balatti, P.A. Melanins in fungi: Types, localization and putative biological roles. Physiol. Mol. Plant Pathol. 2017, 99, 2–6. [Google Scholar] [CrossRef]
- Matheny, P.B.; Hobbs, A.M.; Esteve-Raventós, F. Genera of Inocybaceae: New skin for the old ceremony. Mycologia 2020, 112, 83–120. [Google Scholar] [CrossRef] [PubMed]
- Richard, F.; Roy, M.; Shahin, O.; Sthultz, C.; Duchemin, M.; Joffre, R.; Selosse, M.A. Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: Seasonal dynamics and response to drought in the surface organic horizon. Ann. For. Sci. 2011, 68, 57–68. [Google Scholar] [CrossRef]
- Dickie, I.A.; Dentinger, B.T.; Avis, P.G.; McLaughlin, D.J.; Reich, P.B. Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 2009, 101, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Wilgan, R.; Leski, T.; Kujawska, M.; Karliński, L.; Janowski, D.; Rudawska, M. Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. Fungal Ecol. 2020, 44, 100908. [Google Scholar] [CrossRef]
- Park, J.Y. A change in color of aging mycorrhizal roots of Tilia americana formed by Cenococcum graniforme. Can. J. Bot. 1970, 48, 1339–1341. [Google Scholar] [CrossRef]
- Garcia-Barreda, S.; Molina-Grau, S.; Reyna, S. Reducing the infectivity and richness of ectomycorrhizal fungi in a calcareous Quercus ilex forest through soil preparations for truffle plantation establishment: A bioassay study. Fungal Biol. 2015, 119, 1137–1143. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Yang, M.; Yan, L.; Kang, Z.; Xiao, Y.; Tang, P.; Ye, L.; Zhang, B.; Zou, J.; et al. Tuber borchii shapes the ectomycorrhizosphere microbial communities of Corylus avellana. Mycobiology 2019, 47, 180–190. [Google Scholar] [CrossRef]
- Louro, R.; Natário, B.; Santos-Silva, C. Morphological characterization of the in vitro mycorrhizae formed between four Terfezia species (Pezizaceae) with Cistus salviifolius and Cistus ladanifer—Towards desert truffles production in acid soils. J. Fungi 2021, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Jumpponen, A.; Trappe, J.M.; Cázares, E. Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 2002, 12, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Graf, F.; Brunner, I. Natural and synthesized ectomycorrhizas of the alpine dwarf willow Salix herbacea. Mycorrhiza 1996, 6, 227–235. [Google Scholar] [CrossRef]
- Heijden, E.V.D.; Kuyper, T.W. Ecological strategies of ectomycorrhizal fungi of Salix repens: Root manipulation versus root replacement. Oikos 2003, 103, 668–680. [Google Scholar] [CrossRef]
- Walker, J.F.; Miller, O.K., Jr.; Horton, J.L. Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian mountains. Mol. Ecol. 2005, 14, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Marmeisse, R.; Gryta, H.; Jargeat, P.; Fraissinet-Tachet, L.; Gay, G.; Debaud, J.C. Hebeloma. In Ectomycorrhizal Fungi Key Genera in Profile; Cairney, J.W.G., Chambers, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 89–127. [Google Scholar] [CrossRef]
- Kropp, B.R.; Mueller, G.M. Laccaria. In Ectomycorrhizal Fungi Key Genera in Profile; Cairney, J.W.G., Chambers, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 65–88. [Google Scholar] [CrossRef]
- Ritzi, M.V.; Russell, S.D.; Aime, M.C.; McNickle, G.G. First report of ectomycorrhizal fungus Laccaria ochropurpurea, associated with Castanea dentata (American chestnut) roots in a mixed species plantation. Plant Health Prog. 2019, 20, 140–141. [Google Scholar] [CrossRef]
- Jumpponen, A.R.I.; Trappe, J.M. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, H.E.; Wang, C.J.K. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can. J. For. Res. 1987, 17, 884–899. [Google Scholar] [CrossRef]
- Ruotsalainen, A.L. Dark Septate Endophytes (DSE) in boreal and subarctic forests. In Endophytes of Forest Trees. Forestry Sciences; Pirttilä, A., Frank, A., Eds.; Springer: Cham, Switzerland, 2018; Volume 86, pp. 105–117. [Google Scholar] [CrossRef]
- Trocha, L.K.; Rudawska, M.; Leski, T.; Dabert, M. Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions. Microb. Ecol. 2006, 52, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Iotti, M.; Oddis, M.; Lalli, G.; Pacioni, G.; Leonardi, P.; Maccherini, S.; Perini, C.; Salerni, E.; Zambonelli, A. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 2013, 23, 349–358. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Stasińska, M. Species and functional diversity of ectomycorrhizal fungal communities on Scots pine (Pinus sylvestris L.) trees on three different sites. Ann. For. Sci. 2011, 68, 5–15. [Google Scholar] [CrossRef]
pH (CaCl2) | Corg (g kg−1) | Nt (g kg−1) | Pt (g kg−1) | Clay (g kg−1) | Silt (g kg−1) | Sand (g kg−1) | |
---|---|---|---|---|---|---|---|
Site 1 (NEU) | 6.5 | 54.6 | 4.3 | 1.3 | 20 | 40 | 940 |
Site 2 (BYD) | 6.5 | 58.5 | 5.1 | 0.5 | 60 | 90 | 850 |
Sampling Seasons | Morphotype Description | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Taxa | (1) | (2) | (3) | Color | Shape of Mycorrhiza | Surface of Mantle | Cystidia | Emanating Hyphae | Rhizomorph | Exploration Types | Structure of Mantle |
Tomentella sp. 1 (NEU14) | + | Dark brown/black | Unramified, straight | Grainy | Bristle-like, type A | Infrequent, septate with clamps | n.o. | medium-distance smooth | Pseudoparenchymatous, type M | ||
Tomentella sp. 2 (BYD9) | + | Gold brown | Unramified, straight | Rough | Bristle-like, type A | Infrequent, septate with clamps | n.o. | short distance | Outer layers: pseudoparenchymatous, type L; inner layers: plectenchymatous, type A–B | ||
Tomentella sp. 3 (NEU1) | + | Dark brown | Unramified or ramified, straight | Grainy | n.o. | n.o. | n.o. | short distance | Pseudoparenchymatous, type P | ||
Tomentella sp. 4 (NEU11) | + | Dark brown | Ramified, straight | Woolly with soil particles | n.o. | Branched, septate with clamps | n.o. | short distance | Pseudoparenchymatous, type Q | ||
Tomentella sp. 5 (BYD2) | + | Dark brown | Unramified or ramified, straight | Woolly with soil particles | n.o. | Branched, septate with clamps | n.o. | short distance | Pseudoparenchymatous, type Q | ||
Tomentella sp. 6 (BYD3) | + | Dark brown/black | Unramified, bent | Grainy | n.o. | n.o. | n.o. | short distance | Plectenchymatous, type A | ||
Tomentella sp. 7 (BYD5) | + | Dark brown | Ramified, bent | Rough | n.o. | Branched, rarely septate with clamps | n.o. | short distance | Plectenchymatous, type A | ||
Tomentella sp. 8 (BYD6) | + | Black | Unramified, straight | Grainy | n.o. | Branched, septate with clamps | n.o. | short distance | Plectenchymatous, type A | ||
Hebeloma populinum (NEU13) | + | White-beige with shining mantle | Unramified, straight | Cottony/woolly | n.o. | Branched, septate with clamps | Infrequent, undifferentiated | short distance | Plectenchymatous, type B | ||
Hebeloma sp. (NEU4) | + | White-beige with shining mantle | Unramified, straight | Cottony | n.o. | Branched, septate with clamps | n.o. | - | Plectenchymatous, type A | ||
Cortinarius atrocoerulaeus (NEU7) | + | Gold orange | Unramified, bent | Woolly | n.o. | Branched, septate with clamps | Infrequent, smooth | medium-distance fringe | Plectenchymatous, type A | ||
Inocybe sp. 1 (NEU10) | + | + | White-beige | Unramified, slightly bent | Smooth | n.o. | n.o. | n.o. | short distance | Plectenchymatous, type A | |
Inocybe hirtella (BYD1) | + | White-beige | Monopodial-pinnate | Smooth | n.o. | n.o. | n.o. | short distance | Plectenchymatous, type A–E | ||
Laccaria cf. ochropurpurea (NEU3) | + | White | Unramified, straight | Smooth | n.o. | n.o. | n.o. | medium-distance smooth | Plectenchymatous, type A | ||
Tuber sp. 1 (NEU5) | + | Gold-brown | Unramified, slightly bent | Smooth | Awl-shape, type A | n.o. | n.o. | short distance | Pseudoparenchymatous, type H–M | ||
Tuber maculatum (BYD4) | + | Gold-brown | Unramified, beaded | Smooth | Awl-shape, type A | n.o. | n.o. | short distance | Pseudoparenchymatous, type H–M | ||
Tuber sp. 3 (BYD8a) | + | Gold-brown | Unramified, beaded | Smooth | Awl-shape, type A | n.o. | n.o. | short distance | Pseudoparenchymatous, type H–M | ||
Cenococcum geophilum (NEU9) | + | + | Black | Unramified, straight | Grainy | n.o. | Unbranched, not septate | n.o. | short distance | Plectenchymatous, type G | |
Phialophora finlandia (NEU2) | + | Dark brown | Unramified, slightly bent | Grainy | Missing | Branched, septate with clamps | n.o. | short distance | Pseudoparenchymatous, type Q |
Taxa | T bp | Acc nr | BLAST and/or UNITE Search Results | H bp | % |
---|---|---|---|---|---|
Tomentella sp. 1 (NEU14) | 650 * | AY748865 | Tomentella botryoides [AY586717] † Tomentella sublilacina [UDB002972] †† | 640/649 635/651 | 99 97 |
Tomentella sp. 2 (BYD9) | 652 * | AY748866 | Tomentella botryoides [AY586717] † Tomentella sublilacina [UDB002972] †† | 644/651 637/653 | 99 97 |
Tomentella sp. 3 (NEU1) | 727 * | AY748878 | Tomentella sp. [AB211278] † Ectomycorrhiza of S. reinii [AB096871] † | 643/649 645/654 | 99 99 |
Tomentella sp. 4 (NEU11) | 705 * | AY748879 | Tomentella sp. [EF372408] † Tomentella sp. [UDB003321] †† | 617/621 616/647 | 99 95 |
Tomentella sp. 5 (BYD2) | 679 * | AY748880 | Tomentella sp. [EF644156] † Tomentella coerulea [UDB003307] †† | 618/630 611/645 | 99 94 |
Tomentella sp.6 (BYD3) | 670 * | AY748881 | Tomentella sp. [EU668199] † Tomentella stuposa [UDB002429] †† | 641/673 602/652 | 96 92 |
Tomentella sp. 7 (BYD5) | 697 * | AY748882 | Tomentella sp. [HM146872] † Tomentella coerulea [UDB003329] †† | 667/685 628/645 | 98 97 |
Tomentella sp. 8 (BYD6) | 710 * | AY748883 | Uncultured Thelephoraceae ThelPop [GU990355] † Tomentella cinerascens [TCU83483] † Tomentella subtestacea [UDB000034] †† | 682/684 647/694 610/671 | 99 94 90 |
Hebeloma populinum (NEU13) | 670 * | AY748853 | Hebeloma populinum [EF644107] † | 659/663 | 99 |
Hebeloma sp.(NEU4) | 776 * | AY748854 | Hebeloma mesophaeum [FJ845404] † | 746/767 | 98 |
Cortinarius atrocoerulaeus (NEU7) | 514 * | AY748856 | Cortinarius atrocoerulaeus [AY083178] † Cortinarius atrocoeruleus [UDB001011] †† | 512/515 512/515 | 99 99 |
Inocybe sp. 1 (NEU10) | 599 ** | AY748867 | Inocybe godeyi [FN550897] † Inocybe queletii [EU307813] † | 578/600 581/604 | 97 97 |
Inocybe hirtella (BYD1) | 624 ** | AY748868 | Inocybe hirtella [AM882932] † Inocybe cf. hirtella [EU307826] † | 623/624 611/626 | 99 98 |
Laccaria cf. ochropurpurea (NEU3) | 637 * | AY748870 | Laccaria ochropurpurea [AF261494] † | 622/630 | 99 |
Tuber sp. 1 (NEU5) | 678 * | AY748861 | Tuber sp. [GQ267493] † | 673/677 | 99 |
Tuber maculatum (BYD4) | 677 * | AY748862 | Tuber maculatum [AJ969627] † Tuber maculatum [UDB000121] †† | 665/667 665/667 | 99 99 |
Tuber sp. 3 (BYD8a) | 759 * | AY748863 | Tuber rufum f. nitidum [FM205606] † | 465/506 | 92 |
Cenococcum geophilum (NEU9) | 565 * | AY748873 | Cenococcum geophilum [AY394919] † | 554/565 | 99 |
Phialophora finlandia (NEU2) | 745 * | AY748864 | Phialophora finlandia [AF486119] † | 736/749 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrynkiewicz, K.; Furtado, B.U.; Szydɫo, J.; Baum, C. Ectomycorrhizal Diversity and Exploration Types in Salix caprea. Int. J. Plant Biol. 2024, 15, 340-357. https://doi.org/10.3390/ijpb15020028
Hrynkiewicz K, Furtado BU, Szydɫo J, Baum C. Ectomycorrhizal Diversity and Exploration Types in Salix caprea. International Journal of Plant Biology. 2024; 15(2):340-357. https://doi.org/10.3390/ijpb15020028
Chicago/Turabian StyleHrynkiewicz, Katarzyna, Bliss Ursula Furtado, Jagoda Szydɫo, and Christel Baum. 2024. "Ectomycorrhizal Diversity and Exploration Types in Salix caprea" International Journal of Plant Biology 15, no. 2: 340-357. https://doi.org/10.3390/ijpb15020028
APA StyleHrynkiewicz, K., Furtado, B. U., Szydɫo, J., & Baum, C. (2024). Ectomycorrhizal Diversity and Exploration Types in Salix caprea. International Journal of Plant Biology, 15(2), 340-357. https://doi.org/10.3390/ijpb15020028