Molecular Authentication and Phytochemical Evaluation of Indigenous Germplasm of Genus Physalis for Sustainable Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Plant Material
2.2. Molecular Authentication of Physalis Plants
2.2.1. Isolation of Genomic DNA from Leaves of Physalis Accessions
2.2.2. Polymerase Chain Reaction (PCR) Amplification and Sequencing
2.3. Sequence and Phylogenetic Analysis
2.4. Analysis of Genetic Divergence
2.5. Determination of Genetic Distance within Physalis Accessions
2.6. Nucleotide Polymorphism and Neutrality Tests
2.7. Analysis of DNA Barcoding Gap and Intraspecific Distance
2.8. Analysis of Mineral Content in Ripe Fruits
2.9. Determination of Phytochemical Content
2.9.1. Estimation of Total Polyphenol Content (TPC)
2.9.2. Estimation of Total Tannin Content (TTC)
2.9.3. Estimation of Total Flavonoid Content (TFC)
2.10. Estimation of Antioxidant Activity
2.11. Statistical Analysis
3. Results
3.1. Amplification and Sequencing Success Rate
3.2. Species Discrimination Based on BLASTn Analysis
3.3. Multiple Sequence Alignment
3.4. Physalis Species Identification Based on Phylogenetic Analysis
3.5. Intraspecific Divergence of Physalis Accessions
3.6. Genetic Distance within Physalis Accessions
3.7. Nucleotide Polymorphism and Genetic Diversity of Physalis Accessions
3.8. Tajima’s Neutrality Test
3.9. Genetic Differences and Barcoding Gap Analysis
3.10. Mineral Analysis
3.11. Phytochemical Content and In Vitro Antioxidant Activity
3.12. Correlation Analysis between Phytochemical Contents and Antioxidant Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afroz, M.; Akter, S.; Ahmed, A.; Rouf, R.; Shilpi, J.A.; Tiralongo, E.; Sarker, S.D.; Göransson, U.; Uddin, S.J. Ethnobotany and antimicrobial peptides from plants of the solanaceae family: An update and future prospects. Front. Pharmacol. 2020, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Jiang, M.; Shi, Y.; Jiao, K.; Shen, C.; Lu, J.; Ying, Q.; Wang, H. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front. Plant Sci. 2016, 7, 1047. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Hu, X.; Yang, J.; Yang, W. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS ONE 2012, 7, e50164. [Google Scholar] [CrossRef] [PubMed]
- Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1978; Volume 67, p. 50. [Google Scholar]
- Sang-Ngern, M.; Youn, U.J.; Park, E.J.; Kondratyuk, T.P.; Simmons, C.J.; Wall, M.M.; Ruf, M.; Lorch, S.E.; Leong, E.; Pezzuto, J.M.; et al. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic Med. Chem. Lett. 2016, 26, 2755–2759. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Mörsel, J.T. Oil goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 2003, 51, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Deng, G.F.; Xu, X.R.; Wu, S.; Li, S.; Li, H.B. Chemical components and bioactivities of Cape gooseberry (Physalis peruviana). Int. J. Food Nutr. Saf. 2013, 3, 15–24. [Google Scholar]
- Menzel, M.Y. The cytotaxonomy and genetics of Physalis. Proc. Am. Philos. Soc. 1951, 95, 132–183. Available online: http://www.jstor.org/stable/3143331 (accessed on 12 December 2022).
- Barcaccia, G.; Lucchin, M.; Cassandro, M. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity 2015, 8, 2. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Kang, Y.; Deng, Z.; Zang, R.; Long, W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci. Rep. 2017, 7, 12564. [Google Scholar] [CrossRef]
- Feng, S.; Jiao, K.; Zhu, Y.; Wang, H.; Jiang, M.; Wang, H. Molecular identification of species of Physalis (Solanaceae) using a candidate DNA barcode: The chloroplast psbA–trnH intergenic region. Genome 2018, 61, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.L.; Feng, S.J.; Tian, J.Y.; Wei, A.Z.; Yang, T.X. Internal transcribed spacer 2 (ITS 2) barcodes: A useful tool for identifying Chinese Zanthoxylum. Appl. Plant Sci. 2018, 6, e01157. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Moersel, J.T. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food Agric. 2007, 87, 452–460. [Google Scholar] [CrossRef]
- Puente, L.A.; Pinto-Muñoz, C.A.; Castro, E.S.; Cortés, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 2011, 44, 1733–1740. [Google Scholar] [CrossRef]
- Somani, S.J.; Modi, K.P.; Majumdar, A.S.; Sadarani, B.N. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother. Res. 2015, 29, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Bayir, A.G.; Kiziltan, H.S.; Kocyigit, A. Plant family, carvacrol, and putative protection in gastric cancer. In Dietary Interventions in Gastrointestinal Diseases; Academic Press: Cambridge, MA, USA, 2019; pp. 3–18. [Google Scholar] [CrossRef]
- Hong, J.M.; Kwon, O.K.; Shin, I.S.; Song, H.H.; Shin, N.R.; Jeon, C.M.; Oh, S.R.; Han, S.B.; Ahn, K.S. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation. Immunobiology 2015, 220, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bazalar Pereda, M.S.; Nazareno, M.A.; Viturro, C.I. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean Northern Andean region. Plant Foods Hum. Nutr. 2019, 74, 68–75. [Google Scholar] [CrossRef]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Troshin, P.V.; Procter, J.B.; Barton, G.J. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS: MSA. Bioinformatics 2011, 14, 2001–2002. [Google Scholar] [CrossRef] [PubMed]
- Troshin, P.V.; Procter, J.B.; Sherstnev, A.; Barton, D.L.; Madeira, F.; Barton, G.J. JABAWS 2.2 distributed web services for Bioinformatics: Protein disorder, conservation and RNA secondary structure. Bioinformatics 2018, 34, 1939–1940. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Kartavtsev, Y.P. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 2011, 22, 55–65. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000; ISBN 9780195135855. [Google Scholar]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G.J. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Hernández, O.M.; Fraga, J.M.; Jiménez, A.I.; Jimenez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 2005, 93, 449–458. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS. SPSS for Windows (Version 20); IBM: Chicago, IL, USA, 2010. [Google Scholar]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef]
- China Plant BOL Group 1; Li, D.Z.; Gao, L.M.; Li, H.T.; Wang, H.; Ge, X.J.; Liu, J.Q.; Chen, Z.D.; Zhou, S.L.; Chen, S.L.; et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 2011, 108, 19641–19646. [Google Scholar] [CrossRef]
- Ralte, L.; Singh, Y.T. Use of rbcL and ITS2 for DNA barcoding and identification of Solanaceae plants in hilly state of Mizoram, India. Res. Crops 2021, 22, 616–623. [Google Scholar] [CrossRef]
- Xu, J.; Zang, F.; Wu, Q.; Wang, Y.; Wang, B.; Huang, P.; Zang, D.; Ma, Y.; Zheng, Y. Analysis of the genetic diversity and molecular phylogeography of the endangered wild rose (Rosa rugosa) in China based on chloroplast genes. Glob. Ecol. Conserv. 2021, 28, e01653. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.H.; Choi, B.H. Phylogeography and genetic diversity of East Asian Neolitsea sericea (Lauraceae) based on variations in chloroplast DNA sequences. J. Plant Res. 2013, 126, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.H.; Chai, L.C.; Chin, C.F. Efficacy of DNA barcode internal transcribed spacer 2 (ITS 2) in phylogenetic study of Alpinia species from Peninsular Malaysia. Physiol. Mol. Biol. Plants 2020, 26, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Korneliussen, T.S.; Moltke, I.; Albrechtsen, A.; Nielse, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform. 2013, 14, 289. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.A.; Cruickshank, R.H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 2013, 13, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Musinguzi, E.; Kikafunda, J.K.; Kiremire, B.T. Promoting indigenous wild edible fruits to complement roots and tuber crops in alleviating vitamin A deficiency in Uganda. In Proceedings of the 13th ISTRC Symposium, Arusha, Tanzania, 10–14 November 2007; pp. 763–769. [Google Scholar]
- Sica, D.A.; Struthers, A.D.; Cushman, W.C.; Wood, M.; Banas, J.S., Jr.; Epstein, M. Importance of potassium in cardiovascular disease. J. Clin. Hypertens. 2002, 4, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Kowey, P.R. The role of potassium. In Women’s Health and Menopause: New Strategies—Improved Quality of Life; Springer: Berlin/Heidelberg, Germany, 2002; pp. 151–157. [Google Scholar]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Valle, H.B. Overview of calcium—Dietary reference intakes for calcium and vitamin D—NCBI bookshelf. Pediatrics 2012, 130, 10–542. [Google Scholar] [CrossRef]
- Berchtold, M.W.; Brinkmeier, H.; Muntener, M. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 2000, 80, 1215–1265. [Google Scholar] [CrossRef]
- Erkaya, T.; Dağdemir, E.; Şengül, M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int. 2012, 45, 331–335. [Google Scholar] [CrossRef]
- Brown, K.H.; Wuehler, S.E.; Peerson, J.M. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr. Bull. 2001, 22, 113–125. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164. [Google Scholar]
- National Research Council. Copper in Drinking Water; National Research Council: Ottawa, ON, Canada, 2000; ISBN 0-309-06939-4. [Google Scholar]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- Demling, J.H.; Eglau, M.C.; Autenrieth, T. On the physiological function oflithium from a psychiatric view point. Med. Hypotheses 2001, 57, 506–509. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; Institute of Medicine/Food and Nutrition Board, National Academy Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Okwu, D.E. Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. Int. J. Mol. Med. Adv. Sci. 2005, 1, 375–381. [Google Scholar]
- Sathyadevi, M.; Subramanian, S. Extraction, isolation and characterization of bioactive flavonoids from the fruits of Physalis peruviana Linn extract. Asian. J. Pharm. Clin. Res. 2015, 8, 152–157. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Roychoudhury, A. Effect of salinity stress on growth and physiology of medicinal plants. In Medicinal Plants and Environmental Challenges; Springer: Berlin/Heidelberg, Germany, 2017; pp. 177–188. [Google Scholar] [CrossRef]
- Gengmao, Z.; Yu, H.; Xing, S.; Shihui, L.; Quanmei, S.; Changhai, W. Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind. Crops Prod. 2015, 64, 175–181. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Safwat, G.; Gamal, M.; Megahed, B.M. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 2019, 71, 113–122. [Google Scholar] [CrossRef]
- Kasali, F.M.; Tusiimire, J.; Kadima, J.N.; Tolo, C.U.; Weisheit, A.; Agaba, A.G. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: An overview. Sci. World J. 2021, 2021, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Ghosh, G.; Das, D.; Nayak, S. Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra BL Burtt. Asian Pac. J. Trop. Biomed. 2013, 3, 871–876. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Dhillion, S.S. Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agrofor. Syst. 2006, 66, 55–63. [Google Scholar] [CrossRef]
- Karpagasundari, C.; Kulothungan, S. Free radical scavenging activity of Physalis minima Linn. leaf extract (PMLE). J. Med. Plants Stud. 2014, 2, 59–64. [Google Scholar]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
Barcode Region | Primer Name | Primer Sequence (5′ to 3′) | PCR Conditions |
---|---|---|---|
ITS2 | ITS2-F | CCTTATCATTTAGAGGAAGGAG | 1 cycle of 94 °C 5 min; 30 cycles of 94 °C 30 s, 58 °C 45 s, and 72 °C 1 min; 72 °C 7 min |
ITS2-R | TCCTCCGCTTATTGATATGC | ||
rbcL | rbcL-1-F | ATGTCACCACAAACAGAA | 1 cycle of 94 °C 5 min; 30 cycles of 94 °C 30 s, 58 °C 45 s, 72 °C 1min; 72 °C 7 min |
rbcL-74-R | TCGCATGTACCTGCAGTAGC |
Barcode Region | Samples Tested (n) | Number of Amplicons Produced | Number of Sequences Produced | Amplification Efficiency (%) | Sequencing Efficiency (%) | Alignment Length (bp) | Mean Sequence Length (bp) | GC Content (%) |
---|---|---|---|---|---|---|---|---|
ITS2 | 10 | 10 | 9 | 100 | 99 | 663 | 561 | 61.1 |
rbcL | 10 | 10 | 10 | 100 | 100 | 730 | 616 | 43.1 |
ITS2 | rbcL | |||||
Polymorphic sites/Segregation sites (S) | 124 | Position in the gene | Variants | 0 | Positions in the gene | Variants |
Singleton | 21 | 49,58,90,107,116,117,118,119,120,125,138,139,144,158,162,164,172, 219,225,237,239 | 2 | 0 | 2 | |
Parsimony informative sites | 103 | 23,24,25,30,32,33,37,38,48,51,59,61,62,64,65,66,67,68, 69,71,7377,79, 81,82,84,85,88,91,93,94,95,97,99,100, 101,102,108,109,111,112,114, 126,129,132,136,140, 146,148,157,160,161,166,169,174,176,192, 193, 194,196,197,198,199,204,206,207,209,212,216,217,218,220,221,223, 227,228,229,230,232,234,235,240,241, 245,246,248,251,253,254, 255, 256,257,259 28,36,52,110,113,123,137,165,173,244 | 2 3 | 0 | 2 3 | |
Nucleotide diversity (Pi) | 0.27629 | 0.00000 | ||||
Average number of nucleotide differences (k) | 61.889 | 0.000 | ||||
Sequence length (base pairs) | 399 | 614 | ||||
Number of sequences | 9 | 10 |
Sample ID | ITS Accession Number in the GenBank | Ca (ppm) | Na (ppm) | K (ppm) | Mg (ppm) |
---|---|---|---|---|---|
L1 | OQ507152.1 | 145.493 ± 6.087 aa | 445.378 ± 51.116 aa | 352.941 ± 24.758 aa | 61.056 ± 93.957 aa |
L2 | OQ372021.1 | 58.700 ± 7.451 a | 275.910 ± 18.080 aa | 247.549 ± 8.947 aa | 24.247 ± 20.009 aa |
L3 | OQ372022.1 | 121.803 ± 26.283 aa | 175.070 ± 49.239 aa | 497.549 ± 14.036 aa | 13.604 ± 6.519 aa |
L4 | OQ372023.1 | 77.778 ± 2.618 aa | 208.687 ± 81.942 aa | 470.588 ± 11.725 aa | 8.342 ± 6.455 aa |
L5 | OQ372024.1 | 81.132 ± 9.804 aa | 263.306 ± 14.761 aa | 811.275 ± 77.914 aa | 71.532 ± 43.883 aa |
L6 | OQ372025.1 | 140.042 ± 26.804 aa | 441.176 ± 21.091 aa | 681.372 ± 37.395 aa | 24.346 ± 22.820 aa |
L7 | OQ372026.1 | 131.447 ± 3.328 aa | 456.583 ± 47.782 aa | 450.981 ± 12.484 aa | 19.381 ± 9.648 aa |
L9 | OQ372028.1 | 147.170 ± 23.966 aa | 410.364 ± 25.673 aa | 823.530 ± 24.961 aa | 61.520 ± 48.887 aa |
L10 | OQ372029.1 | 133.962 ± 22.440 aa | 380.952 ± 10.052 aa | 414.216 ± 22.517 aa | 21.169 ± 17.301 aa |
Mean | 128.121 ± 20.976 | 377.46 ± 14.193 | 527.778 ± 26.526 | 33.911 ± 29.942 | |
CV | 16.372% | 39.000% | 49.363% | 88.296% |
Sample ID | Accession Number | Fe (ppm) | Zn (ppm) | Ni (ppm) | Cu (ppm) | Li (ppm) | Mn (ppm) |
---|---|---|---|---|---|---|---|
L1 | OQ507151.1 | 4.597 ± 3.081 aa | 17.534 ± 3.369 aa | 0.214 ± 0.000 aa | 0.015 ± 0.006 aa | 0.035 ± 0.022 aa | 0.565 ± 0.258 aa |
L2 | OQ372021.1 | 6.398 ± 2.543 aa | 7.618 ± 2.702 aa | 0.166 ± 0.083 aa | 0.158 ± 0.050 aa | 0.079 ± 0.060 aa | 0.491 ± 0.205 aa |
L3 | OQ372022.1 | 5.806 ± 2.864 aa | 8.538 ± 4.987 aa | 0.357 ± 0.124 aa | 0.270 ± 0.079 aa | 0.019 ± 0.004 aa | 1.139 ± 0.467 aa |
L4 | OQ372023.1 | 5.780 ± 2.215 aa | 84.663 ± 37.191 a | 1.048 ± 0.527 a | 0.427 ± 0.413 aa | 0.203 ± 0.091 a | 0.954 ± 0.423 aa |
L5 | OQ372024.1 | 6.317 ± 1.391 aa | 7.771 ± 0.176 aa | 0.167 ± 0.109 aa | 1.322 ± 0.468 aa | 0.021 ± 0.013 aa | 2.102 ± 0.135 aa |
L6 | OQ372025.1 | 6.129 ± 1.268 aa | 35.276 ± 24.020 aa | 0.428 ± 0.189 aa | 1.809 ± 1.523 a | 0.010 ± 0.008 aa | 1.250 ± 0.074 aa |
L7 | OQ372026.1 | 6.640 ± 1.341 aa | 7.311 ± 1.240 aa | 0.476 ± 0.289 aa | 1.089 ± 0.161 aa | 0.022 ± 0.010 aa | 1.454 ± 0.158 aa |
L9 | OQ372028.1 | 8.145 ± 1.218 aa | 37.270 ± 36.851 aa | 0.929 ± 0.500 aa | 1.072 ± 0.116 aa | 0.014 ± 0.005 aa | 1.954 ± 0.434 aa |
L10 | OQ372029.1 | 6.989 ± 0.492 aa | 13.293 ± 2.609 aa | 0.357 ± 0.124 aa | 0.402 ± 0.522 aa | 0.018 ± 0.000 aa | 1.870 ± 0.181 aa |
Mean | 6.311 ± 1.824 | 24.364 ± 12.572 | 0.460 ± 0.216 | 0.810 ± 0.371 | 0.047 ± 0.024 | 1.309 ± 0.482 | |
CV | 28.902% | 51.601% | 46.957% | 45.802% | 51.064% | 36.822% |
Sample ID | Accession | TPC (mg GAE/g DW) | TTC (mg Tannic Acid/g DW) | TFC (mg Rutin/g DW) | DPPH RSA % | HRS Activity % |
---|---|---|---|---|---|---|
L1 | OQ507152.1 | 0.092 ± 0.053 aa | 0.158 ± 0.004 a | 0.145 ± 0.073 aa | 29.846 ± 13.537 a | 64.131 ± 9.962 aa |
L2 | OQ372021.1 | 0.059 ± 0.040 aa | 0.126 ± 0.045 aa | 0.072 ± 0.020 aa | 94.095 ± 0.182 aa | 52.174 ± 9.962 aa |
L3 | OQ372022.1 | 0.024 ± 0.025 aa | 0.099 ± 0.039 aa | 0.070 ± 0.017 aa | 75.862 ± 2.970 aa | 30.435 ± 18.827 aa |
L4 | OQ372023.1 | 0.035 ± 0.026 aa | 0.115 ± 0.067 aa | 0.063 ± 0.040 aa | 44.868 ± 6.556 a | 6.159 ± 7.863 aa |
L5 | OQ372024.1 | 0.034 ± 0.008 aa | 0.184 ± 0.015 a | 0.096 ± 0.026 aa | 67.539 ± 17.427 a | 41.667 ± 12.120 aa |
L6 | OQ372025.1 | 0.081 ± 0.051 aa | 0.047 ± 0.022 aa | 0.071 ± 0.051 aa | 73.088 ± 9.318 aa | 59.420 ± 44.952 aa |
L7 | OQ372026.1 | 0.060 ± 0.016 aa | 0.049 ± 0.039 aa | 0.058 ± 0.034 aa | 95.045 ± 7.149 aa | 53.623 ± 26.721 aa |
L8 | OQ372027.1 | 0.082 ± 0.011 aa | 0.061 ± 0.023 aa | 0.097 ± 0.069 aa | 96.156 ± 3.924 aa | 8.696 ± 7.609 aa |
L9 | OQ372028.1 | 0.060 ± 0.027 aa | 0.041 ± 0.015 aa | 0.128 ± 0.038 aa | 97.344 ± 2.263 aa | 62.319 ± 8.786 aa |
L10 | OQ372029.1 | 0.080 ± 0.071 aa | 0.072 ± 0.016 aa | 0.152 ± 0.089 aa | 89.666 ± 16.692 aa | 39.131 ± 20.738 aa |
Mean | 0.061 ± 0.033 | 0.095 ± 0.029 | 0.095 ± 0.046 | 76.351 ± 8.002 | 41.776 ± 16.754 | |
CV | 54.098% | 30.526% | 48.421% | 10.481% | 40.104% |
Polyphenol Content | Correlation Coefficient (r) for DPPH RSA | Correlation Coefficient (r) for HRSA | ANOVA (p Value) for Hypothesis Testing of Slope of Regression Line for DPPH RSA | ANOVA (p Value) for Hypothesis Testing of Slope of Regression Line for HRSA |
---|---|---|---|---|
Phenolics | 0.327 | 0.3599 | 0.928 | 0.307 |
Tannins | −0.6316 | −0.0374 | 0.050 | 0.918 |
Flavonoids | −0.1150 | 0.2877 | 0.752 | 0.420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pere, K.; Mburu, K.; Muge, E.K.; Wagacha, J.M.; Nyaboga, E.N. Molecular Authentication and Phytochemical Evaluation of Indigenous Germplasm of Genus Physalis for Sustainable Utilization. Int. J. Plant Biol. 2023, 14, 998-1016. https://doi.org/10.3390/ijpb14040073
Pere K, Mburu K, Muge EK, Wagacha JM, Nyaboga EN. Molecular Authentication and Phytochemical Evaluation of Indigenous Germplasm of Genus Physalis for Sustainable Utilization. International Journal of Plant Biology. 2023; 14(4):998-1016. https://doi.org/10.3390/ijpb14040073
Chicago/Turabian StylePere, Katherine, Kenneth Mburu, Edward K. Muge, John Maina Wagacha, and Evans N. Nyaboga. 2023. "Molecular Authentication and Phytochemical Evaluation of Indigenous Germplasm of Genus Physalis for Sustainable Utilization" International Journal of Plant Biology 14, no. 4: 998-1016. https://doi.org/10.3390/ijpb14040073
APA StylePere, K., Mburu, K., Muge, E. K., Wagacha, J. M., & Nyaboga, E. N. (2023). Molecular Authentication and Phytochemical Evaluation of Indigenous Germplasm of Genus Physalis for Sustainable Utilization. International Journal of Plant Biology, 14(4), 998-1016. https://doi.org/10.3390/ijpb14040073