Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Regeneration
2.2. Data Analysis
3. Results
3.1. Frequency and Extension of Callus
3.2. Frequency and Number of Shoots
3.3. Relationship between Variables
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yruela, I. Copper in Plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Yruela, I. Copper in Plants: Acquisition, Transport and Interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Cohu, C.M.; Pilon, M. Cell Biology of Copper. In Cell Biology of Metals and Nutrients; Hell, R., Mendel, R.-R., Eds.; Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; Volume 17, pp. 55–74. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 191–248. [Google Scholar]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and Their Diverse Role in Agricultural Crops: Advances and Future Prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Migocka, M.; Malas, K. Plant Responses to Copper: Molecular and Regulatory Mechanisms of Copper Uptake, Distribution and Accumulation in Plants. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burritt, D.J., Tran, L.-S., Fujiwara, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 71–86. [Google Scholar]
- Shahbaz, M.; Pilon, M. Conserved Cu-MicroRNAs in Arabidopsis Thaliana Function in Copper Economy under Deficiency. Plants 2019, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Tomar, P.R.; Dixit, A.R.; Jaiwal, P.K.; Dhankher, O.P. Engineered Plants for Heavy Metals and Metalloids Tolerance. In Genetic Manipulation in Plants for Mitigation of Climate Change; Jaiwal, P.K., Singh, R.P., Dhankher, O.P., Eds.; Springer: New Delhi, India, 2015; pp. 143–168. [Google Scholar]
- Maurya, P.K. Animal Biotechnology as a Tool to Understand and Fight Aging. In Animal Biotechnology; Academic Press: Cambridge, MA, USA, 2020; pp. 235–250. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper Bioavailability, Uptake, Toxicity and Tolerance in Plants: A Comprehensive Review. Chemosphere 2021, 262, 127810. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Dahleen, L.S. Improved Plant Regeneration from Barley Callus Cultures by Increased Copper Levels. Plant Cell Tissue Organ Cult. 1995, 43, 267–269. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals and Metalloids as Micronutrients for Plants and Animals. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 195–209. [Google Scholar]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The Genome of the Cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 September 2023).
- Plader, W.; Burza, W.; Malepszy, S. Cucumber. In Transgenic Crops IV; Pua, E.-C., Davey, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 59, pp. 181–199. [Google Scholar]
- Den Nijs, A.P.M.; Custers, J.B.M. Introducing Resistances into Cucumbers by Interspecific Hybridization. In Biology and Utilization of the Cucurbitaceae; Bates, D.M., Robinson, R.W., Jeffrey, C., Eds.; Cornell University Press: Ithaca, NY, USA, 1990; pp. 382–396. [Google Scholar]
- Yin, Z.; Bartoszewski, G.; Szwacka, M.; Malepszy, S. Cucumber Transformation Methods-the Review. Biotechnologia 2005, 1, 95–113. [Google Scholar]
- He, Z.; Chen, L.; Yao, W.; Dai, J. Recent Progress in Cucumber (Cucumis sativus L.) Transformation. Transgenic Plant J. 2008, 2, 39–44. [Google Scholar]
- Wang, S.; Ku, S.S.; Ye, X.; He, C.; Kwon, S.Y.; Choi, P.S. Current Status of Genetic Transformation Technology Developed in Cucumber (Cucumis sativus L.). J. Integr. Agric. 2015, 14, 469–482. [Google Scholar] [CrossRef]
- Miguel, J.F. Estudios Sobre Regeneración y Transformación Genética En Pepino (Cucumis sativus L.) vía Agrobacterium Tumefaciens. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2017. [Google Scholar]
- Tan, J.; Lin, L.; Luo, H.; Zhou, S.; Zhu, Y.; Wang, X.; Miao, L.; Wang, H.; Zhang, P. Recent Progress in the Regeneration and Genetic Transformation System of Cucumber. Appl. Sci. 2022, 12, 7180. [Google Scholar] [CrossRef]
- Li, Y.H.; Sun, Y.D.; Luo, W.R.; Ni, L. Effects of Various Explants and Hormone Combinations on in Vitro Regeneration in Cucumber. Chem. Eng. Trans. 2016, 51, 31–36. [Google Scholar]
- Abdullinasab, M. Optimization of Callogenesis and Regeneration of Cucumber (Cucumis sativus L.) Utilizing Cotyledon, Hypocotyl and Leaf Explants. Agric. Biotechnol. J. 2018, 10, 76–92. [Google Scholar]
- Bhardwaj, A.; Pradeepkumar, T.; Roch, C.V. In-Vitro Flowering and in-Vivo Sex Expression of Micropropagated Parthenocarpic Gynoecious Cucumber. Curr. J. Appl. Sci. Technol. 2020, 39, 17–24. [Google Scholar] [CrossRef]
- Sultana, H.; Nahar, L.; Hossain, M.M.; Ghosh, T.K.; Biswas, M.S. Response of Different Explants for Callus Induction in Cucumber. Eur. J. Biol. Biotechnol. 2021, 2, 71–75. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Wang, X.; Wang, L.; Xu, H.; Wang, X.; Shi, Q.; Wei, M.; Yang, F. Agrobacterium-Mediated Transformation of Cucumber (Cucumis sativus L.) Using a Sense Mitogen-Activated Protein Kinase Gene (CsNMAPK). Plant Cell Tissue Organ Cult. 2013, 113, 269–277. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Jinu, U.; Sangeetha, P.; Geetha, N.; Sahi, S.V. High Frequency Plant Regeneration from Cotyledonary Node Explants of Cucumis sativus L. Cultivar ‘Green Long’ via Adventitious Shoot Organogenesis and Assessment of Genetic Fidelity by RAPD-PCR Technology. 3 Biotech 2018, 8, 60. [Google Scholar] [CrossRef]
- Wei, W.; Liu, M.; Zhang, T. Establishment of cucumber somatic embryo regeneration system. J. Northwest A F Univ. Nat. Sci. Ed. 2019, 47, 32–40. [Google Scholar]
- Ugandhar, T.; Venkateshwarrlu, M.; Begum, G.; Srilatha, T.; Jaganmohanreddy, K. In Vitro Plant Regeneration of Cucumber (Cucumis sativum (L.) from Cotyledon and Hypocotyl Explants. Sci. Res. Rep. 2011, 1, 164–169. [Google Scholar]
- Grozeva, S.; Velkov, N. In Vitro Plant Regeneration of Two Cucumber (Cucumis sativum L.) Genotypes: Effects of Explant Types and Culture Medium. Genetika 2014, 46, 485–493. [Google Scholar] [CrossRef]
- Koochani, M.; Majd, A.; Arbabian, S.; Ghanati, F.; Marandi, S.J. A Comparative Study on the Effects of Ultrasound and Some Growth Factors on Somatic Embryogenesis and Artificial Seed Production in Cucumber (Cucumis sativus L.). Not. Bot. Horti Agrobot. 2020, 48, 1915–1928. [Google Scholar] [CrossRef]
- El-Absawy, E.-S.; Khidr, Y.A.; Mahmoud, A.; Hasan, M.E.; Hemeida, A.A. Somatic Embryogenesis and Plant Regeneration Induced from Mature Seeds, Cotyledons and Shoot Tips of Cucumber. J. Product. Dev. 2012, 17, 193–209. [Google Scholar]
- Lashin, I.I.; Mamdouh, D. Effect of Plant Growth Regulators on Callus Induction and Plant Regeneration of Cucumber (Cucumis sativus L. Beith Alpha). Nat. Sci. 2014, 12, 68–74. [Google Scholar]
- Sangeetha, P.; Venkatachalam, P. Induction of Direct Shoot Organogenesis and in Vitro Flowering from Shoot Tip Explants of Cucumber (Cucumis sativus L. Cv. ‘Green Long’). Vitr. Cell. Dev. Biol. Plant 2014, 50, 242–248. [Google Scholar] [CrossRef]
- Joyia, F.A.; Mustafa, G.; Zahra, R.; Munawar, S.; Anjum, M.N.; Khan, M.S. Exploiting Shoot Tips as an Efficient Explant for in Vitro Regeneration of Cucumber (Cucumis sativus L.). Pure Appl. Biol. 2019, 8, 1824–1829. [Google Scholar] [CrossRef]
- Ugandhar, T.; Srilatha, T.; Imran, M.A. Callus Induction and Somatic Embryogenesis from Leaf Explants of Cucumber (Cucumis sativus L.). Int. J. Integr. Sci. Innov. Technol. 2013, 2, 29–33. [Google Scholar]
- Gałązka, J.; Słomnicka, R.; Góral-Radziszewska, K.; Niemirowicz-Szczytt, K. From pollination to DH lines–verification and optimization of protocol for production of doubled haploids in cucumber. Acta Sci. Pol. Hortorum Cultus 2015, 14, 81–92. [Google Scholar]
- Burza, W.; Malepszy, S. In Vitro Culture of Cucumis sativus L. XVIII. Plants from Protoplasts through Direct Somatic Embryogenesis. Plant Cell Tissue Organ Cult. 1995, 41, 259–266. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P. Embryogenesis and Plant Regeneration from Cucumber Protoplasts. J. Southwest Agric. Univ. 1998, 20, 288–292. [Google Scholar]
- Dezhang, G.; Zhen, Y.; Zhongxiong, L.; Qinliang, L.; Jiafu, W. Efficient Culture and Plant Regeneration from Cotyledon Protoplasts of ‘Cuixiu’ Cucumber. Acta Hortic. Sin. 2003, 30, 227–228. [Google Scholar]
- Andrýsková, L.; Reinöhl, V.; Klemš, M.; Procházka, S. Long-Term Suspension Cultures of Cucumber (Cucumis sativus L.) with High Embryogenic Potential. Acta Physiol. Plant. 2009, 31, 675–681. [Google Scholar] [CrossRef]
- Tabassum, B.; Nasir, I.A.; Farooq, A.M.; Rehman, Z.; Latif, Z.; Husnain, T. Viability Assessment of in Vitro Produced Synthetic Seeds of Cucumber. Afr. J. Biotechnol. 2010, 9, 7026–7032. [Google Scholar]
- Khidr, Y.A.; Nasr, M.I. Improvement of Genetic Transformation and Plant Regeneration via Suspension Cultures in Cucurbitaceae Family. Egypt. J. Genet. Cytol. 2012, 41, 1–18. [Google Scholar] [CrossRef]
- Garcia-Sogo, B.; Roig, L.A.; Moreno, V. Enhancement of Morphogenetic Response in Cotyledon-Derived Explants of Cucumis melo Induced by Copper Ion. Acta Hortic. 1991, 289, 229–230. [Google Scholar] [CrossRef]
- Ellul, P. Morfogénesis in Vitro y Obtención de Plantas Transgénicas de Sandía (Citrullus lanatus [Thunb.] Matsum. & Nakai.). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2002. [Google Scholar]
- Kowalska, U.; Szafrańska, K.; Krzyżanowska, D.; Kiszczak, W.; Górecki, R.; Janas, K.; Górecka, K. Effect of Increased Copper Ion Content in the Medium on the Regeneration of Androgenetic Embryos of Carrot (Daucus carota L.). Acta Agrobot. 2012, 65, 73–82. [Google Scholar] [CrossRef]
- Sinha, A.; Jain, R.; Kachhwaha, S.; Kothari, S.L. Optimization of the Level of Micronutrient Copper in the Culture Medium Improves Shoot Bud Regeneration in Indian Ginseng [Withania somnifera (L.) Dunal]. Natl. Acad. Sci. Lett. 2010, 33, 11–16. [Google Scholar]
- Purnhauser, L.; Gyulai, G. Effect of Copper on Shoot and Root Regeneration in Wheat, Triticale, Rape and Tobacco Tissue Cultures. Plant Cell Tissue Organ Cult. 1993, 35, 131–139. [Google Scholar] [CrossRef]
- Ghaemi, M.; Sarrafi, A.; Alibert, G. The Effects of Silver Nitrate, Colchicine, Cupric Sulfate and Genotype on the Production of Embryoids from Anthers of Tetraploid Wheat (Triticum turgidum). Plant Cell Tissue Organ Cult. 1994, 36, 355–359. [Google Scholar] [CrossRef]
- Sahrawat, A.K.; Chand, S. Stimulatory Effect of Copper on Plant Regeneration in Indica Rice (Oryza sativa L.). J. Plant Physiol. 1999, 154, 517–522. [Google Scholar] [CrossRef]
- Nirwan, R.S.; Kothari, S.L. High Copper Levels Improve Callus Induction and Plant Regeneration in Sorghum bicolor (L.) Moench. Vitr. Cell. Dev. Biol. Plant 2003, 39, 161–164. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Bakshi, M.; Kapurwan, S.; Kumar, A. Copper and Zinc Induced Amelioration of in Vitro Multiplication of Dendrocalamus strictus (Roxb.) Nees. Indian J. 2017, 40, 181–184. [Google Scholar] [CrossRef]
- AL-Mayahi, A.M.W. Effect of Copper Sulphate and Cobalt Chloride on Growth of the in vitro Culture Tissues for Date Palm (Phoenix dactylifera L.) cv. Ashgar. Am. J. Agric. Biol. Sci. 2014, 9, 6–18. [Google Scholar] [CrossRef]
- Silvestri, C.; Rugini, E.; Cristofori, V. The Effect of CuSO4 for Establishing in Vitro Culture, and the Role Nitrogen and Iron Sources in in Vitro Multiplication of Corylus avellana L. Cv. Tonda Gentile Romana. Plant Biosyst. 2019, 154, 17–23. [Google Scholar] [CrossRef]
- Peterson, C.E.; Staub, J.E.; Palmer, M.; Crubaugh, L. Wisconsin 2843, a Multiple Disease Resistant Cucumber Population. HortScience 1985, 20, 309–310. [Google Scholar] [CrossRef]
- Borrego, J.V.M. Hortalizas aprovechables por sus frutos: Pepinos. In Horticultura Herbacea Especial; Borrego, J.V.M., Ed.; Ediciones Mundi-Prensa: Madrid, Spain, 1989; pp. 430–446. [Google Scholar]
- Moreno, V.; Zubeldia, L.; Roig, L.A. A Method for Obtaining Callus Cultures from Mesophyll Protoplasts of Melon (Cucumis melo L.). Plant Sci. Lett. 1984, 34, 195–201. [Google Scholar] [CrossRef]
- Moreno, V.; Garcia-Sogo, M.; Granell, I.; Garcia-Sogo, B.; Roig, L.A. Plant Regeneration from Calli of Melon (Cucumis melo L., Cv. ‘Amarillo Oro’). Plant Cell Tissue Organ Cult. 1985, 5, 139–146. [Google Scholar] [CrossRef]
- Staba, E.J. Plant Tissue Culture as a Technique for the Phytochemist. In Recent Advances in Phytochemistry; Seikel, M.K., Runcekles, V.C., Eds.; Appleton-Century-Crofts: New York, NY, USA, 1969; Volume 2, pp. 75–106. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Statistics and Computing; Springer: New York, NY, USA, 2002. [Google Scholar]
- Yee, T.W. Vector Generalized Linear and Additive Models: With an Implementation in R; Springer: New York, NY, USA, 2015. [Google Scholar]
- Kleiber, C.; Zeileis, A. Applied Econometrics with R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kabacoff, R.I. R in Action: Data Analysis and Graphics with R; Manning Publications Co.: Shelter Island, NY, USA, 2011. [Google Scholar]
- Fox, J.; Monette, G. Generalized Collinearity Diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Johnson, P.E. Rockchalk: Regression Estimation and Presentation (R Package Version 1.8.144). Available online: https://CRAN.R-project.org/package=rockchalk (accessed on 11 November 2019).
- Akaike, H. Information Theory and an Extension of Maximum Likelihood Principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Caski, F., Eds.; Akademiai Kado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Kothari-Chajer, A.; Sharma, M.; Kachhwaha, S.; Kothari, S.L. Micronutrient Optimization Results into Highly Improved in Vitro Plant Regeneration in Kodo (Paspalum scrobiculatum L.) and Finger (Eleusine coracana (L.) Gaertn.) Millets. Plant Cell Tissue Organ Cult. 2008, 94, 105–112. [Google Scholar] [CrossRef]
- Gambley, R.L.; Dodd, W.A. An in Vitro Technique for the Production de Novo of Multiple Shoots in Cotyledon Explants of Cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult. 1990, 20, 177–183. [Google Scholar] [CrossRef]
- Msikita, W.; Skirvin, R.M.; Juvik, J.A.; Splittstoesser, W.E.; Ali, N. Regeneration and Flowering in Vitro of ’Burpless Hybrid’ Cucumber Cultured from Excised Seed. HortScience 1990, 25, 474–477. [Google Scholar] [CrossRef]
- Gaba, V.; Schlarman, E.; Elman, C.; Sagee, O.; Watad, A.A.; Gray, D.J. In Vitro Studies on the Anatomy and Morphology of Bud Regeneration in Melon Cotyledons. Vitr. Cell. Dev. Biol. Plant 1999, 35, 1–7. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Lin, C.-W.; Chung, C.-H.; Su, M.-H.; Ho, H.-Y.; Yeh, S.-D.; Jan, F.-J.; Ku, H.-M. In Vitro Regeneration and Genetic Transformation of Cucumis metuliferus through Cotyledon Organogenesis. HortScience 2011, 46, 616–621. [Google Scholar] [CrossRef]
- Compton, M.E.; Gray, D.J. Shoot Organogenesis and Plant Regeneration from Cotyledons of Diploid, Triploid, and Tetraploid Watermelon. J. Am. Soc. Hortic. Sci. 1993, 118, 151–157. [Google Scholar] [CrossRef]
- Ananthakrishnan, G.; Xia, X.; Elman, C.; Singer, S.; Paris, H.S.; Gal-On, A.; Gaba, V. Shoot Production in Squash (Cucurbita pepo) by in Vitro Organogenesis. Plant Cell Rep. 2003, 21, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-S.; Oh, D.-G.; Mok, I.-G.; Park, H.-G.; Kim, C.K. Efficient Plant Regeneration from Cotyledon Explants of Bottle Gourd (Lagenaria siceraria Standl.). Plant Cell Rep. 2004, 23, 291–296. [Google Scholar] [CrossRef]
- Hinchee, M.A.W.; Connor-Ward, D.V.; Newell, C.A.; McDonnell, R.E.; Sato, S.J.; Gasser, C.S.; Fischhoff, D.A.; Re, D.B.; Fraley, R.T.; Horsch, R.B. Production of Transgenic Soybean Plants Using Agrobacterium -Mediated DNA Transfer. Bio/Technology 1988, 6, 915–922. [Google Scholar] [CrossRef]
- Chang, C.; Moll, B.A.; Evenson, K.B.; Guiltinan, M.J. In Vitro Plantlet Regeneration from Cotyledon, Hypocotyl and Root Explants of Hybrid Seed Geranium. Plant Cell Tissue Organ Cult. 1996, 45, 61–66. [Google Scholar] [CrossRef]
- Wehner, T.C.; Locy, R.D. In Vitro Adventitious Shoot and Root Formation of Cultivars and Lines of Cucumis sativus L. HortScience 1981, 16, 759–760. [Google Scholar] [CrossRef]
- Purnhauser, L. Stimulation of Shoot and Root Regeneration in Wheat Triticum aestivum Callus Cultures by Copper. Cereal Res. Commun. 1991, 19, 419–423. [Google Scholar]
- Souza, F.V.D.; Garcia-Sogo, B.; Souza, A.S.; San-Juán, A.P.; Moreno, V. Morphogenetic Response of Cotyledon and Leaf Explants of Melon (Cucumis melo L.) cv. Amarillo Oro. Braz. Arch. Biol. Technol. 2006, 49, 21–27. [Google Scholar] [CrossRef]
- Kothari, S.L.; Agarwal, K.; Kumar, S. Inorganic Nutrient Manipulation for Highly Improved in Vitro Plant Regeneration in Finger Millet—Eleusine coracana (L.) Gaertn. Vitr. Cell. Dev. Biol. Plant 2004, 40, 515–519. [Google Scholar] [CrossRef]
- Roustan, J.P.; Latche, A.; Fallot, J. Stimulation of Daucus Carota Somatic Embryogenesis by Inhibitors of Ethylene Synthesis: Cobalt and Nickel. Plant Cell Rep. 1989, 8, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Peñarrubia, L.; Romero, P.; Carrió-Seguí, A.; Andrés-Bordería, A.; Moreno, J.; Sanz, A. Temporal aspects of copper homeostasis and its crosstalk with hormones. Front. Plant Sci. 2015, 6, 255. [Google Scholar] [CrossRef]
- Tamimi, S.M. Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). Afr. J. Biotechnol. 2015, 14, 2510–2516. [Google Scholar]
- Würschum, T.; Tucker, M.R.; Maurer, H.P.; Leiser, W.L. Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Organ Cult. 2015, 122, 751–757. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Kahraman, M.V.; Ercan, O. Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr. J. Biotechnol. 2007, 6, 3–8. [Google Scholar]
- Flinn, B.; Dale, S.; Disharoon, A.; Kresovich, S. Comparative analysis of in vitro responses and regeneration between diverse bioenergy sorghum genotypes. Plants 2020, 9, 248. [Google Scholar] [CrossRef]
- Genady, E.A.; Qaid, E.A.; Fahmy, A.H. Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increasments. Int. J. Pharm. Res. Allied Sci. 2016, 5, 196–202. [Google Scholar]
- Sarowar, S.; Kim, Y.J.; Kim, E.N.; Kim, K.D.; Hwang, B.K.; Islam, R.; Shin, J.S. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 2005, 24, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Prażak, R.; Molas, J. Effect of Copper Concentration on Micropropagation and Accumulation of Some Metals in the Dendrobium kingianum Bidwill Orchid. J. Elem. 2015, 20, 693–703. [Google Scholar] [CrossRef]
- Delhaize, E.; Schachtman, D.; Kochian, L.; Ryan, P.R. Mineral Nutrient Acquisition, Transport, and Utilization. In Biochemistry & Molecular Biology of Plants, 2nd ed.; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; Wiley Blackwell: Chichester, UK, 2015; pp. 1101–1131. [Google Scholar]
Cultivar | CuSO4 5H2O | Callus Frequency (%) ⁎ | Callus Extension Index ‡ | Shoot Frequency (%) § | Shoot Number Index † | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | |||||||||||
Wisconsin 2843 | 0.0 | 100.00 | 2.38 | ± | 0.06 ab | 2.78 | ± | 1.95 b | 0.03 | ± | 0.02 b |
0.2 | 100.00 | 2.19 | ± | 0.05 b | 5.56 | ± | 2.72 b | 0.07 | ± | 0.04 b | |
1.0 | 100.00 | 2.52 | ± | 0.06 a | 4.55 | ± | 2.58 b | 0.06 | ± | 0.04 b | |
5.0 | 100.00 | 2.03 | ± | 0.02 c | 16.67 | ± | 4.42 a | 0.31 | ± | 0.09 a | |
Marketer | 0.0 | 100.00 | 2.91 | ± | 0.05 a | 30.30 | ± | 5.70 b | 0.35 | ± | 0.07 b |
0.2 | 100.00 | 2.60 | ± | 0.06 b | 37.50 | ± | 5.75 ab | 0.54 | ± | 0.09 ab | |
1.0 | 100.00 | 2.67 | ± | 0.06 ab | 50.00 | ± | 5.93 a | 0.76 | ± | 0.11 a | |
5.0 | 100.00 | 2.85 | ± | 0.05 ab | 26.76 | ± | 5.29 b | 0.37 | ± | 0.09 b | |
Negrito | 0.0 | 100.00 | 2.54 | ± | 0.06 a | 25.00 | ± | 5.14 b | 0.31 | ± | 0.07 b |
0.2 | 100.00 | 2.70 | ± | 0.06 a | 42.42 | ± | 6.13 a | 0.61 | ± | 0.10 a | |
1.0 | 100.00 | 2.52 | ± | 0.07 a | 16.67 | ± | 4.62 b | 0.20 | ± | 0.06 b | |
5.0 | 100.00 | 2.59 | ± | 0.06 a | 21.88 | ± | 5.21 b | 0.31 | ± | 0.08 b |
Wisconsin 2843 | Marketer | Negrito | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Estimate | Std. Error | z Value | Pr(>|z|) ‡ | Estimate | Std. Error | z Value | Pr(>|z|) | Estimate | Std. Error | z Value | Pr(>|z|) | |||
(Intercept): 1 | 0.61 | 0.22 | 2.73 | 0.00 | ** | 0.14 | 0.09 | 1.51 | 0.13 | 0.18 | 0.10 | 1.75 | 0.08 | ||
(Intercept): 2 | −1.06 | 1.41 | −0.75 | 0.45 | 0.28 | 0.50 | 0.55 | 0.58 | 0.30 | 0.60 | 0.50 | 0.62 | |||
CEI § | −0.28 | 0.68 | −0.41 | 0.68 | −0.23 | 0.18 | −1.26 | 0.21 | −0.34 | 0.22 | −1.53 | 0.13 | |||
CuSO4 † | −1.42 | 0.47 | −3.00 | 0.00 | ** | −0.58 | 0.18 | −3.16 | 0.00 | ** | −0.86 | 0.23 | −3.78 | 0.00 | *** |
DF | 560 | 558 | 532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel, J.F. Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L. Int. J. Plant Biol. 2023, 14, 974-985. https://doi.org/10.3390/ijpb14040071
Miguel JF. Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L. International Journal of Plant Biology. 2023; 14(4):974-985. https://doi.org/10.3390/ijpb14040071
Chicago/Turabian StyleMiguel, Jorge Fonseca. 2023. "Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L." International Journal of Plant Biology 14, no. 4: 974-985. https://doi.org/10.3390/ijpb14040071
APA StyleMiguel, J. F. (2023). Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L. International Journal of Plant Biology, 14(4), 974-985. https://doi.org/10.3390/ijpb14040071