Soil, Humipedon, Forest Life and Management
Abstract
:1. Introduction
- (1)
- What is soil, and what, in particular, is forest soil?
- (2)
- Soil classification
- (3)
- The Humipedon in mountain and high-mountain forest environments
- Bipolar Amphi
- -
- Bipolar Amphi generated by the destruction of Mull humus
- -
- Bipolar Amphi generated by the destruction of Raw humus
- Forms of stable Amphi humus
- (4)
- Humipedon and forest management
- (5)
- Conclusions
2. What Is Soil, and What, in Particular, Is Forest Soil?
3. Soil Classification
4. The Humipedon in Mountain and High-Mountain Forest Environments
4.1. Bipolar Amphi
4.1.1. Bipolar Amphi Generated with the Destruction of Mull Humus
4.1.2. Bipolar Amphi Generated with the Destruction of Raw Humus
4.2. Stable Amphi Humus Forms
5. Humipedon and Forest Management
6. Conclusions on the Importance of Humipedon in the Sylvogenic Cycle of the Forest
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pavlis, R. Humus Does Not Exist—Says New Study. 2016. Available online: https://www.gardenmyths.com/humus-does-not-exist-says-new-study/ (accessed on 24 June 2023).
- Jenny, H. Alcohol or Humus? Science 1980, 209, 444. [Google Scholar] [CrossRef] [PubMed]
- Kopnina, H.; Washington, H.; Taylor, B.; J Piccolo, J. Anthropocentrism: More than Just a Misunderstood Problem. J. Agric. Environ. Ethics 2018, 31, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Drosos, M.; Nebbioso, A.; Piccolo, A. Humeomics: A key to unravel the humusic pentagram. Appl. Soil Ecol. 2018, 123, 513–516. [Google Scholar] [CrossRef]
- Orwin, K.H.; Dickie, I.A.; Wood, J.R.; Bonner, K.I.; Holdaway, R.J. Soil microbial community structure explains the resistance of respiration to a dry–rewet cycle, but not soil functioning under static conditions. Funct. Ecol. 2016, 30, 1430–1439. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Van Delft, B.; De Waal, R.; Katzensteiner, K.; Kolb, E.; Bernier, N.; Mei, G.; Blouin, M.; et al. A Standardized Morpho-Functional Classification of the Planet’s Humipedons. Soil Syst. 2022, 6, 59. [Google Scholar] [CrossRef]
- Gobat, J.-M.; Guenat, C. Sols et Paysages—Types de Sols, Fonctions et Usages en Europe Moyenne, 1st ed.; Science et ingénierie de l’environnement; EPFL Press: Lausanne, Switzerland, 2019; p. 576. [Google Scholar]
- Zanella, A.; Berg, B.; Ponge, J.-F.; Kemmers, R.H. Humusica 1, article 2: Essential bases—Functional considerations. Appl. Soil Ecol. 2018, 122, 22–41. [Google Scholar] [CrossRef]
- Brandolese, A. Studio Preliminare di Suoli di Cengia. Esempi di Forme di Humus su Roccia Madre Acida—Preliminary Study of Ledge Soils. Examples of Humus Forms on Acid Parent Material; Prova finale di Laurea triennale in Tecnologie Forestali e Ambientali; Università degli Studi di Padova: Padova, Italy, 2020; pp. 1–40. [Google Scholar]
- Carollo, S. Studio Preliminare di Suoli di Cengia. Esempi di Forme di Humus su Roccia Madre Basica—Preliminary Study of Ledge Soils. Examples of Humus Forms on Basic Parent Material; Prova finale di Laurea triennale in Tecnologie Forestali e Ambientali; Università degli Studi di Padova: Padova, Italy, 2020; pp. 1–62. [Google Scholar]
- Artz, R.; Anastasiou, D.; Arrouays, D.D.; Bastos, A.C.; Bendetti, A.; Bispo, A.; Brandmayr, P.; Broll, G.; Bunning, S.; Castracani, C.; et al. European Atlas of Soil Biodiversity; European Commission: Ispra, Italy, 2010; pp. 1–136. [Google Scholar]
- Geisen, S.; Briones, M.J.I.; Gan, H.; Behan-Pelletier, V.M.; Friman, V.-P.; de Groot, G.A.; Hannula, S.E.; Lindo, Z.; Philippot, L.; Tiunov, A.V.; et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 2019, 136, 107536. [Google Scholar] [CrossRef]
- Bach, E.M.; Ramirez, K.S.; Fraser, T.D.; Wall, D.H. Soil Biodiversity Integrates Solutions for a Sustainable Future. Sustainability 2020, 12, 2662. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Andreetta, A.; Aubert, M.; Bernier, N.; Bonifacio, E.; Bonneval, K.; Bolzonella, C.; Chertov, O.; De Nobili, M.; et al. Forest Biodiversity, Soil Functions and Human Behavior—A Case Study. The October 29, 2018 Catastrophe in Italian Alps. Available online: https://hal.archives-ouvertes.fr/hal-02342793 (accessed on 24 June 2023).
- Rees, M. Delayed Germination of Seeds: A Look at the Effects of Adult Longevity, the Timing of Reproduction, and Population Age/Stage Structure. Am. Nat. 1994, 144, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005; pp. 1–260. [Google Scholar]
- Miller, S.L.; Urey, H.C. Organic Compound Synthes on the Primitive Earth. Science 1959, 130, 245–251. Available online: http://science.sciencemag.org/content/130/3370/245.abstract (accessed on 24 June 2023). [CrossRef] [PubMed]
- Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R.; Goedhart, P.W. Can plants grow on mars and the moon: A growth experiment on mars and moon soil simulants. PLoS ONE 2014, 9, e103138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponge, J.-F. The soil as an ecosystem. Biol. Fertil. Soils 2015, 51, 645–648. [Google Scholar] [CrossRef]
- Filotas, E.; Parrott, L.; Burton, P.J.; Chazdon, R.L.; Coates, K.D.; Coll, L.; Haeussler, S.; Martin, K.; Nocentini, S.; Puettmann, K.J.; et al. Viewing forests through the lens of complex systems science. Ecosphere 2014, 5, art1. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q. The Influence of Environmental Factors on Earthworms; Springer: New York, NY, USA, 2022; pp. 191–232. [Google Scholar] [CrossRef]
- Richardson, D.R.; Snyder, B.A.; Hendrix, P.F. Soil Moisture and Temperature: Tolerances and Optima for a Non-native Earthworm Species, Amynthas agrestis (Oligochaeta: Opisthopora: Megascolecidae). Southeast. Nat. 2009, 8, 325–334. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q. Biology and Ecology of Earthworms; Springer: New York, NY, USA, 2022; p. XVI-567. Available online: https://link.springer.com/book/10.1007/978-0-387-74943-3?source=shoppingads&locale=en-it&gclid=EAIaIQobChMI5c7HnOiF_wIVKhGLCh1WnQVJEAQYASABEgLRq_D_BwE#toc (accessed on 24 June 2023).
- Darwin, C. The Formation of Vegetable Mould through the Action of Worms, with Observations on Their Habits; John Murray: London, UK, 1881; p. 326. [Google Scholar]
- Müller, P.E. Recherches sur les formes naturelles de l’humus et leur influence sur la végétation et le sol (traduit de l’allemend par Henry Grandeau). In Studien über die natürlichen Humusformen und deren Einwirkung auf Vegetation und Boden; Springer: Berlin, Germany, 1887. [Google Scholar]
- Jenny, H. The Soil Resource, Origin and Behaviour; Springer: New York, NY, USA, 1980. [Google Scholar]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Publications Inc.: New York, NY, USA, 1941; p. 320. [Google Scholar]
- Staff, S.S. Illustrated Guide to Soil Taxanomy, Version 2; U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2015; pp. 1–552. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 24 June 2023).
- Dokuchaev, V.V. Zones Verticales des Sols, Zones Agricoles, Sols du Caucase. Collection Pédologique, Exposition Universelle, Ed.; Ministère des Finances: St Petersburg, Russia, 1900; p. 56. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources—International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; IUSS—International Union of Soil Sciences: Vienna, Austria, 2022; p. 236. [Google Scholar]
- Blum, W.; Schad, P.; Nortclif, S. Essentials of Soil Science Soil Formation, Functions, Use and Classification (World Reference Base, WRB); Gebr. Borntraeger Science Publishers: Stuttgart, Germany, 2018; p. 171. [Google Scholar]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557, 838–850. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Beketov, M.A.; Kefford, B.J.; Schafer, R.B.; Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 2013, 110, 11039–11043. [Google Scholar] [CrossRef] [Green Version]
- Fusaro, S.; Squartini, A.; Paoletti, M.G. Functional biodiversity, environmental sustainability and crop nutritional properties: A case study of horticultural crops in north-eastern Italy. Appl. Soil Ecol. 2018, 123, 699–708. [Google Scholar] [CrossRef]
- Aszalós, R.; Thom, D.; Aakala, T.; Angelstam, P.; Brūmelis, G.; Gálhidy, L.; Gratzer, G.; Hlásny, T.; Katzensteiner, K.; Kovács, B.; et al. Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecol. Appl. 2022, 32, e2596. [Google Scholar] [CrossRef] [PubMed]
- Motta, R.; Ascoli, D.; Corona, P.; Marchetti, M.; Vacchiano, G. Silviculture and wind damages. The storm “Vaia”. Forest@—Riv. Selvic. Ecol. For. 2018, 15, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Gobat, J.-M.; Juilleret, J.; Blouin, M.; Aubert, M.; Chertov, O.; Rubio, J.L. Humusica 1, article 1: Essential bases—Vocabulary. Appl. Soil Ecol. 2018, 122, 10–21. [Google Scholar] [CrossRef]
- Gobat, J.M.; Aragno, M.; Matthey, W. The Living Soil: Fundamentals of Soil Science and Soil Biology; Science Publishers: Boca Raton, FL, USA, 2004; p. 626. [Google Scholar]
- Ponge, J.-F. Emergent properties from organisms to ecosystems: Towards a realistic approach. Biol. Rev. 2005, 80, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavelle, P. Ecology and the challenge of a multifunctional use of soil. Pesqui. Agropecuària Bras. 2009, 44, 803–810. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2009000800003&nrm=iso (accessed on 24 June 2023). [CrossRef]
- Allen, C.R.; Angeler, D.G.; Garmestani, A.S.; Gunderson, L.H.; Holling, C.S. Panarchy: Theory and Application. Ecosystems 2014, 17, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Moragues-Quiroga, C.; Juilleret, J.; Gourdol, L.; Pelt, E.; Perrone, T.; Aubert, A.; Morvan, G.; Chabaux, F.; Legout, A.; Stille, P.; et al. Genesis and evolution of regoliths: Evidence from trace and major elements and Sr-Nd-Pb-U isotopes. Catena 2017, 149, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S. Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Appl. Soil Ecol. 2018, 123, 740–743. [Google Scholar] [CrossRef]
- Van Eekeren, N.; Bommelé, L.; Bloem, J.; Schouten, T.; Rutgers, M.; de Goede, R.; Reheul, D.; Brussaard, L. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol. 2008, 40, 432–446. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Kardol, P.; Thakur, M.P.; Gruss, I.; Wu, G.-L.; Eisenhauer, N.; Schädler, M. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 2020, 147, 107847. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Dalal, R.C.; Hoeschen, C.; Li, C.; Menzies, N.W.; Mueller, C.W. Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma 2020, 357, 113974. [Google Scholar] [CrossRef]
- FAO. Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map GSOCseq; FAO: Rome, Italy, 2020; pp. 1–34. Available online: http://www.fao.org/3/cb0353en/cb0353en.pdf (accessed on 24 June 2023).
- Yang, Y.; Dou, Y.; An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 2018, 626, 48–58. [Google Scholar] [CrossRef]
- Melland, A.R.; Antille, D.L.; Dang, Y.P. Effects of strategic tillage on short-Term erosion, nutrient loss in runoff and greenhouse gas emissions. Soil Res. 2017, 55, 201–214. [Google Scholar] [CrossRef]
- Nath, A.J.; Rattan, L.; Lal, R. Effects of Tillage Practices and Land Use Management on Soil Aggregates and Soil Organic Carbon in the North Appalachian Region, USA (Letter to the Editor). Pedosphere 2017, 27, 172–176. [Google Scholar] [CrossRef]
- Loaiza Puerta, V.; Pujol Pereira, E.I.; Wittwer, R.; van der Heijden, M.; Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 2018, 180, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rieke, E.L.; Cappellazzi, S.B.; Cope, M.; Liptzin, D.; Mac Bean, G.; Greub, K.L.H.; Norris, C.E.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol. Biochem. 2022, 168, 108618. [Google Scholar] [CrossRef]
- Bernier, N. Hotspots of biodiversity in the underground: A matter of humus form? Appl. Soil Ecol. 2018, 123, 305–312. [Google Scholar] [CrossRef]
- Ponge, J.F.; André, J.; Bernier, N.; Gallet, C. La régénération naturelle: Connaissances actuelles. le cas de l’épicéa en forêt de Macot (Savoie). Rev. For. Française 1994, 46, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Bernier, N. Earthworm feeding activity and development of the humus profile. Biol. Fertil. Soils 1998, 26, 215–223. [Google Scholar] [CrossRef]
- Barois, I. Mucus production and microbial activity in the gut of two species of amynthas (megascolecidae) from cold and warm tropical climates. Soil Biol. Biochem. 1992, 24, 1507–1510. [Google Scholar] [CrossRef]
- Barois, I.; Villemin, G.; Lavelle, P.; Toutain, F. Transformation of the soil structure through Pontoscolex corethrurus (Oligochaeta) intestinal tract. Geoderma 1993, 56, 57–66. [Google Scholar] [CrossRef]
- André, J.; Gensac, P.; Pellissier, F.; Trosset, L. Régénération des peuplements d’épicéa en altitude: Recherches préliminaires sur le rôle de l’allélopathie et de la mycorhization dans les premiers stades du développement. Rev. D’écologie Biol. Du Sol 1987, 24, 301–310. [Google Scholar]
- André, J.; Gauthier, P.; Gensac, M. La Régénération dans la pessière à myrtille: Description préliminaire de deux stations dans les Alpes septentrionales internes. Bull. D’ecologie 1990, 21, 51–61. [Google Scholar]
- Bernier, N.; André, J. Dynamique de la biodiversité en milieu subalpin: Exemple de diversité des processus et gestion de l’espace en moyenne vallée de Tarentaise (Savoie, France): {Biodiversity dynamics at the subalpine level: A case study of processes diversity and land manag. Ecologie 1998, 29, 547–555. Available online: https://www.researchgate.net/publication/233902840_Dynamique_de_la_biodiversite_en_milieu_subalpin_exemple_de_diversite_des_processus_et_gestion_de_l%27espace_en_moyenne_vallee_de_Tarentaise_Savoie_France_Biodiversity_dynamics_at_the_subalpine_level_a_c (accessed on 24 June 2023).
- Riera, B. Importance des buttes de déracinement dans la régénération forestière en Guyane française. Revue d’Écologie 1985, 40, 321–329. [Google Scholar] [CrossRef]
- Brown, J.L. Étude de la perturbation des horizons du sol par un arbre qui se renverse et de son impact sur la pédogenèse. Can. J. Soil Sci. 1977, 57, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Romell, L.G. An Example of Myriapods as Mull Formers. Ecology 1935, 16, 67–71. [Google Scholar] [CrossRef]
- Zackrisson, O.; Bernier, N.; Nilsson, M.-C.; Gallet, C. The Forest Regeneration Puzzle. BioScience 1998, 48, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Van der Meer, P.J.; Bongers, F. Patterns of Tree-Fall and Branch-Fall in a Tropical Rain Forest in French Guiana. J. Ecol. 1996, 84, 19–29. [Google Scholar] [CrossRef]
- Galvan, P.; Ponge, J.-F.J.F.; Chersich, S.; Zanella, A. Humus Components and Soil Biogenic Structures in Norway Spruce Ecosystems. Soil Sci. Soc. Am. J. 2008, 72, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Bernier, N.; Ponge, J.F. Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biol. Biochem. 1994, 26, 183–220. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Tomasi, M.; Cesare, D.S.; Frizzera, L.; Jabiol, B.; Nicolini, G.; Sartori, G.; Calabrese, M.S.; Manacabelli, A.; Nardi, S.; et al. Humus Forestali—Manuale di ecologia per il riconoscimento e l’interpretazione—Applicazione alle faggete; Centro Ecologia Alpina, Fondazione Edmund Mach: San Michele all’Adige, Italy, 2001; p. 320. [Google Scholar]
- De Nicola, C.; Zanella, A.; Testi, A.; Fanelli, G.; Pignatti, S. Humus forms in a Mediterranean area (Castelporziano Reserve, Rome, Italy): Classification, functioning and organic carbon storage. Geoderma 2014, 235, 90–99. [Google Scholar] [CrossRef]
- Andreetta, A.; Cecchini, G.; Bonifacio, E.; Comolli, R.; Vingiani, S.; Carnicelli, S. Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 2016, 264, 195–204. [Google Scholar] [CrossRef]
- Mori, K.; Bernier, N.; Kosaki, T.; Ponge, J.-F. Tree influence on soil biological activity: What can be inferred from the optical examination of humus profiles? Eur. J. Soil Biol. 2009, 45, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Ponge, J.F.; Delhaye, L. The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biol. Fertil. Soils 1995, 20, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Motta, R.; Berretti, R.; Lingua, E.; Piussi, P. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. For. Ecol. Manag. 2006, 235, 155–163. [Google Scholar] [CrossRef]
- Bernier, N. Fonctionnement biologique des humus et dynamique des pessières alpines. Le cas de la forêt de Macot-La-Plagne (Savoie). [Humus biological organization and alpine spruce forest dynamics. The example of Macot-La-Plagne forest (Savoie, France)]. Ecologie 1997, 28, 23–44. [Google Scholar]
- McFee, W.W.; Stone, E.L. The Persistence of Decaying Wood in the Humus Layers of Northern Forests. Soil Sci. Soc. Am. J. 1966, 30, 513–516. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Fritz, I.; Pietrasiak, N.; Matteodo, M.; Nadporozhskaya, M.; Juilleret, J.; Tatti, D.; Le Bayon, R.-C.; Rothschild, L.; et al. Humusica 2, article 13: Para humus systems and forms. Appl. Soil Ecol. 2018, 122, 181–199. [Google Scholar] [CrossRef]
- Tatti, D.; Fatton, V.; Sartori, L.; Gobat, J.-M.; Le Bayon, R.-C. What does ‘lignoform’ really mean? Appl. Soil Ecol. 2018, 123, 632–645. [Google Scholar] [CrossRef]
- Mayer, M.; Rosinger, C.; Gorfer, M.; Berger, H.; Deltedesco, E.; Bässler, C.; Müller, J.; Seifert, L.; Rewald, B.; Godbold, D.L. Surviving trees and deadwood moderate changes in soil fungal communities and associated functioning after natural forest disturbance and salvage logging. Soil Biol. Biochem. 2022, 166, 108558. [Google Scholar] [CrossRef]
- Stutz, K.P.; Lang, F. Forest ecosystems create pedogenic patchworks through woody debris, trees, and disturbance. Geoderma 2023, 429, 116246. [Google Scholar] [CrossRef]
- Bouché, M. Des vers de Terre et des Hommes. Découvrir nos Ecosystèmes Fonctionnant à L’énergie Solaire; Acte Sud Nature: Paris, France, 2014; p. 336. [Google Scholar]
- Selosse, M.-A. Jamais Seul—Ces Microbes qui Construisent les Plantes, les Animaux et les Civilisations; Actes Sud: Arles, France, 2017; p. 352. [Google Scholar]
- Lovelock, J.E. Hands up for the Gaia hypothesis. Nature 1990, 344, 100–102. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; van der Heijden, M.G.A. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Feng, B.; Zhang, D.; Ghosh, S.; Pan, B.; Xing, B. Role of NOM–hematite nanoparticle complexes and organic and inorganic cations in the coherence of silica and clay particles: Evaluation based on nanoscale forces and molecular self-assembly. Environ. Sci. Nano 2021, 8, 822–836. [Google Scholar] [CrossRef]
- Mahmoodi, K.; West, B.J.; Grigolini, P. Self-organizing Complex Networks: Individual versus global rules. Front. Physiol. 2017, 8, 478. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Plante, A.F.; Aufdenkampe, A.K.; Six, J. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol. Biochem. 2014, 69, 398–405. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.-C.; Gobat, J.-M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 5: Terrestrial humus systems and forms—Keys of classification of humus systems and forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- Giannini, R.; Susmel, L. Forests, woods, forest plantations. Forest@—Riv. Selvic. Ecol. For. 2006, 3, 464–487. [Google Scholar] [CrossRef] [Green Version]
- Oldeman, R.A.A. Forests: Elements of Silvology; Springer: Berlin/Heidelberg, Germany, 2012; p. 624. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Zampedri, R. Relazione tra Clima, Forme di Humus e Dinamica Forestale in Ambiente di Pecceta Altimontana; Tesi di Dottorato: Padova, Italy, 2005. [Google Scholar]
- Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013, 57, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Motta, R.; Brang, P.; Frehner, M.; Ott, E. Copertura muscinale e rinnovazione di abete rosso (Picea abies L.) nella pecceta subalpina di Sedrum (Grigioni, Svizzera). Monti E Boschi 1994, 3, 49–56. [Google Scholar]
- Baier, R.; Ettl, R.; Hahn, C.; Göttlein, A. Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps—A bioassay. Ann. For. Sci. 2006, 63, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Bütler, R.; Patty, L.; Le Bayon, R.-C.; Guenat, C.; Schlaepfer, R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. For. Ecol. Manag. 2007, 242, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Susmel, L. Normalizzazione Delle Foreste Alpine: Basi Ecosistemiche, Equilibrio, Modelli Colturali, Produttività: Con Applicazione Alle Foreste del Trentino; Liviana: Padova, Italy, 1980; p. 437. [Google Scholar]
- Martin, M.; Paillet, Y.; Larrieu, L.; Kern, C.C.; Raymond, P.; Drapeau, P.; Fenton, N.J. Tree-Related Microhabitats Are Promising Yet Underused Tools for Biodiversity and Nature Conservation: A Systematic Review for International Perspectives. Front. For. Glob. Change 2022, 5, 136. [Google Scholar] [CrossRef]
- McMahen, K.; Anglin, C.D.; Lavkulich, L.M.; Grayston, S.J.; Simard, S.W. Small-volume additions of forest topsoil improve root symbiont colonization and seedling growth in mine reclamation. Appl. Soil Ecol. 2022, 180, 104622. [Google Scholar] [CrossRef]
- Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries from a Secret World; Greystone Books: Vancouver, Canada, 2016; p. 288. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampedri, R.; Bernier, N.; Zanella, A.; Giannini, R.; Menta, C.; Visentin, F.; Mairota, P.; Mei, G.; Zandegiacomo, G.; Carollo, S.; et al. Soil, Humipedon, Forest Life and Management. Int. J. Plant Biol. 2023, 14, 571-592. https://doi.org/10.3390/ijpb14030045
Zampedri R, Bernier N, Zanella A, Giannini R, Menta C, Visentin F, Mairota P, Mei G, Zandegiacomo G, Carollo S, et al. Soil, Humipedon, Forest Life and Management. International Journal of Plant Biology. 2023; 14(3):571-592. https://doi.org/10.3390/ijpb14030045
Chicago/Turabian StyleZampedri, Roberto, Nicolas Bernier, Augusto Zanella, Raffaello Giannini, Cristina Menta, Francesca Visentin, Paola Mairota, Giacomo Mei, Gabriele Zandegiacomo, Silvio Carollo, and et al. 2023. "Soil, Humipedon, Forest Life and Management" International Journal of Plant Biology 14, no. 3: 571-592. https://doi.org/10.3390/ijpb14030045
APA StyleZampedri, R., Bernier, N., Zanella, A., Giannini, R., Menta, C., Visentin, F., Mairota, P., Mei, G., Zandegiacomo, G., Carollo, S., Brandolese, A., & Ponge, J. -F. (2023). Soil, Humipedon, Forest Life and Management. International Journal of Plant Biology, 14(3), 571-592. https://doi.org/10.3390/ijpb14030045