Analysis of Genetic Diversity and Population Structure in Yam (Dioscorea Species) Germplasm Using Start Codon Targeted (SCoT) Molecular Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genomic DNA Extraction
2.3. Optimization of Primer Conditions and SCoT-PCR Amplification
2.4. Visualization of Amplified PCR Products and Data Analysis
3. Results
3.1. SCoT Marker Analysis
3.2. Genetic Diversity and Cluster Analysis/Grouping of Yam Accessions
3.3. Population Structure Analysis
3.4. Analysis of Molecular Variance (AMOVA)
3.5. Principal Coordinates Analysis (PcoA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebru, H.; Mohammed, A.; Dechassa, N.; Belew, D. Assessment of production practices of smallholder potato (Solanum tuberosum L.) farmers in Wolaita zone, southern Ethiopia. Agric. Food Secur. 2017, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Data. 2019. Available online: http://www.fao.org/faostat/en/#home (accessed on 5 September 2022).
- Bassey, E.E. Constraints and prospects of yam production in Nigeria. Eur. J. Phys. Agric. Sci. 2017, 5, 55–64. [Google Scholar]
- Asiedu, R.; Sartie, A. Crops that feed the World 1. Yams for income and food security. Food Secur. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Polycarp, D.; Afoakwa, E.O.; Budu, A.S.; Otoo, E. Characterization of chemical composition and anti-nutritional factors in seven species within the Ghanaian yam (Dioscorea) germplasm. Int. Food Res. J. 2012, 19, 985–992. [Google Scholar]
- Das, S.U.; Choudhury, M.D.; Mazumder, P.B. In vitro propatation of the genus Dioscorea—A critical review. Asian J. Pharm. Clin. Res. 2013, 6, 2–6. [Google Scholar]
- Maundu, P.M.; Ngugi, G.W.; Kabugi, C.H. Traditional Food Plants of Kenya; National Museums of Kenya: Nairobi, Kenya, 1999. [Google Scholar]
- Muthamia, Z.K.; Morag, F.E.; Nyende, A.B.; Mamati, E.G.; Wanjala, B.W. Estimation of genetic diversity of the Kenyan yam (Dioscorea spp.) using microsatellite markers. Afr. J. Biotechnol. 2013, 12, 5845–5851. [Google Scholar]
- Arnau, G.; Bhattacharjee, R.M.S.; Chair, H.; Malapa, R.; Lebot, V.; Perrier, X.; Petro, D.; Penet, L.; Pavis, C. Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS ONE 2017, 12, e0174150. [Google Scholar]
- Ousmael, K.M.; Tesfaye, K.; Hailesilassie, T. Genetic diversity assessment of yams (Dioscorea spp.) from Ethiopia using inter simple sequence repeat (ISSR) markers. Afr. J. Biotechnol. 2019, 18, 970–977. [Google Scholar]
- Agre, P.; Asibe, F.; Darkwa, K.; Edemodu, A.; Bauchet, G.; Asiedu, R.; Adebola, P.; Asfaw, A. Phenotypic and molecular assessment of genetic structure and diversity in a panel of winged yam (Dioscorea alata) clones and cultivars. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tamiru, M.; Becker, H.C.; Maass, B.L. Genetic diversity in yam germplasm from Ethiopia and their relatedness to the main cultivated Dioscorea species sssessed by AFLP markers. Crop Sci. 2007, 47, 1744–1753. [Google Scholar] [CrossRef]
- Tamiru, M.; Heiko, C.; Becker, H.C.; Maass, B.L. Comparative analysis of morphological and farmers’ cognitive diversity in yam landraces (Dioscorea spp.) from Southern Ethiopia. Trop. Agric. Dev. 2011, 55, 28–43. [Google Scholar]
- Mulualem, T.; Mekbib, F.; Shimelis, H.; Gebre, E.; Amelework, B. Genetic diversity of yam (Dioscorea spp.) landrace collections from Ethiopia using simple sequence repeat markers. Aust. J. Crop Sci. 2018, 12, 1223–1230. [Google Scholar] [CrossRef]
- Mignouna, H.D.; Abang, M.M.; Fagbemi, S.A. A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann. Appl. Biol. 2003, 142, 269–276. [Google Scholar] [CrossRef]
- Satya, P.; Karan, M.; Jana, S.; Mitra, S.; Sharma, A.; Karmakar, P.G.; Ray, D.P. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 2015, 3, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.; Mackill, D.J. Conserved DNA-derived polymorphism (CDDP): A simple and novel method for generating DNA markers in plants. Plant Mol. Biol. Rep. 2009, 27, 558–562. [Google Scholar] [CrossRef]
- Luo, C.; He, X.H.; Chen, H.; Ou, S.J.; Gao, M.P.; Brown, J.S.; Tondo, C.T.; Schnell, R.J. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem. Syst. Ecol. 2011, 39, 676–684. [Google Scholar] [CrossRef]
- Guo, D.L.; Zhang, J.Y.; Liu, C.H. Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 2012, 39, 5307–5313. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Kumaria, S.; Kumar, S.; Tandon, P. Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 2013, 529, 21–26. [Google Scholar] [CrossRef]
- Etminan, A.; Pour-Aboughadareh, A.; Mohammadi, R.; Ahmadi-Rad, A.; Noori, A.; Mahdavian, Z.; Moradi, Z. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol. Equip. 2016, 30, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Gupta, V.; Haq, S.U.; Jatav, P.K.; Kothari, S.L.; Kachhwaha, S. Assessment of genetic diversity in 29 rose germplasm using SCoT marker. J. King Saud Univ. Sci. 2019, 31, 780–788. [Google Scholar] [CrossRef]
- Deng, L.; Liang, Q.; He, X.; Luo, C.; Chen, H.; Qin, Z. Investigation and analysis of genetic diversity of diospyros germplasms using SCoT molecular markers in Guangxi. PLoS ONE 2015, 10, e0136510. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, W.; Wang, Y.; Zhao, X. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules 2015, 20, 5987–6001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwe, D.O.; Afiukwa, C.A.; Ubi, B.E.; Ogbu, K.I.; Ojuederie, O.B.; Ude, G.N. Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genet. 2017, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, J.; Jiao, K.; Yu, C.; Guo, H.; Zhu, Y.; Yang, X.; Zhang, S.; Zhang, L.; Feng, S.; Song, Y.; et al. Development of SCoT-based SCAR marker for rapid authentication of Taxus media. Biochem. Genet. 2018, 56, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; He, R.; Yang, S.; Chen, Z.; Jiang, M.; Lu, J.; Wang, H. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene 2015, 567, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.G.; He, R.F.; Jiang, M.Y.; Lu, J.J.; Shen, X.X.; Liu, J.J.; Wang, Z.A.; Wang, H.Z. Genetic diversity and relationships of medicinal Chrysanthemum morifolium revealed by start codon targeted (SCoT) markers. Sci. Hortic. 2016, 201, 118–123. [Google Scholar] [CrossRef]
- Rajesh, M.K.; Sabana, A.A.; Rachana, K.E.; Rahman, S.; Jerard, B.A.; Karun, A. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Biotech 2015, 5, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zhu, Y.; Yu, C.; Jiao, K.; Jiang, M.; Lu, J.; Shen, C.; Ying, Q.; Wang, H. Development of species-specific SCAR markers, based on a SCoT analysis, to authenticate Physalis (Solanaceae) species. Front. Genet. 2018, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Qaderi, A.; Omidi, M.; Pour-Aboughadareh, A.; Poczai, P.; Shaghaghi, J.; Mehrafarin, A.; Nohooji, M.G.; Etminan, A. Molecular diversity and phytochemical variability in the Iranian poppy (Papaver bracteatum Lindl.): A baseline for conservation and utilization in future breeding programmes. Ind. Crops Prod. 2019, 130, 237–247. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Poczai, P.; Etminan, A.; Jadidi, O.; Kianersi, F.; Shooshtari, L. An analysis of genetic variability and population structure in wheat germplasm using microsatellite and gene-based markers. Plants 2022, 11, 1205. [Google Scholar] [CrossRef]
- Hamidi, H.; Talebi, R.; Keshavarz, F. Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived Polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Res. Commun. 2014, 42, 558–567. [Google Scholar] [CrossRef]
- Gajera, H.P.; Bambharolia, R.P.; Domadiya, R.K.; Patel, S.V.; Golakiya, B.A. Molecular characterization and genetic variability studies associated with fruit quality of indigenous mango (Mangifera indica L.) cultivars. Plant Syst. Evol. 2013, 300, 1011–1020. [Google Scholar] [CrossRef]
- Thakur, J.; Dwivedi, M.D.; Singh, N.; Uniyal, P.L.; Goel, S.; Pandey, A.K. Applicability of Start Codon Targeted (SCoT) and Inter Simple Sequence Repeat (ISSR) markers in assessing genetic diversity in Crepidium acuminatum (D. Don) Szlach. J. Appl. Res. Med. Aromat. Plants 2021, 23, 100310. [Google Scholar] [CrossRef]
- Que, Y.; Pan, Y.; Lu, Y.; Yang, C.; Yang, Y.; Huang, N.; Xu, L. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on Start Codon Targeted Polymorphism. BioMed Res. Int. 2014, 2014, 468375. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.G.; Li, X.X.; Lin, X.C.; Jiang, W.; Tao, Z.M.; Mantri, N.; Fan, C.Y.; Bao, X.Q. Genetic diversity analysis of yams (Dioscorea spp.) cultivated in China using ISSR and SRAP markers. Genet. Resour. Crop Evol. 2014, 61, 639–650. [Google Scholar] [CrossRef]
- Hamilton, B.M. Population Genetics; Wiley-Blackwell: New York, NY, USA, 2009; p. 234. [Google Scholar]
- Freeland, J.; Kirk, H.; Petersen, S. Genetic analysis of multiple populations. In Molecular Ecology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 157–165. [Google Scholar]
- Ngailo, S.; Shimelis, H.; Sibiya, J.; Amelework, B.; Mtunda, K. Genetic diversity assessment of Tanzanian sweet potato genotypes using simple sequence repeat markers. S. Afr. J. Bot. 2016, 102, 40–45. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Ge, H.; Liu, Y.; Jiang, M.; Zhang, J.; Han, H.; Chen, H. Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat marker. Sci. Hortic. 2013, 162, 71–75. [Google Scholar] [CrossRef]
- Loko, Y.L.; Bhattacharjee, R.; Agre, A.P.; Dossou-Aminon, I.; Orobiyi, A.; Djedatin, G.L.; Dansi, A. Genetic diversity and relationship of Guinea yam (Dioscorea cayenensis Lam. D. rotundata Poir. complex) germplasm in Benin (West Africa) using microsatellite markers. Genet. Resour. Crop Evol. 2017, 64, 1205–1219. [Google Scholar] [CrossRef]
- Xiong, F.; Zhong, R.; Han, Z.; Jiang, J.; He, L.; Zhuang, W.; Tang, R. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 2011, 38, 3487–3494. [Google Scholar] [CrossRef] [PubMed]
No | Accession Code | Accession Name | Dioscorea Species | Place of Collection |
---|---|---|---|---|
1 | A | TDr2436 | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
2 | B | TDr0060 | D. alata | Genetic Resources Research Institute (GeRRI) |
3 | C | Amola | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
4 | D | Obiotungu | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
5 | E | Makwaka | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
6 | F | TDr0097 | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
7 | G | TDr2579 | D. cayenensis | Genetic Resources Research Institute (GeRRI) |
8 | H | H-Molo | D. bulbifera | Genetic Resources Research Institute (GeRRI) |
9 | E0 | E0-Meru-1 | D. minutiflora | Meru |
10 | E1 | E1-Meru-1 | D. minutiflora | Meru |
11 | E2 | E2-Meru-1 | D. minutiflora | Meru |
12 | E3 | E3-Meru-1 | D. minutiflora | Meru |
13 | E4 | E4-Meru-1 | D. minutiflora | Meru |
14 | E5 | E5-Murang’a-1 | D. minutiflora | Murang’a |
15 | E6 | E6-Murang’a-1 | D. minutiflora | Murang’a |
16 | E7 | E7-Kirinyaga-1 | D. minutiflora | Kirinyaga |
17 | E8 | E8-Nyeri-1 | D. minutiflora | Nyeri |
18 | E9 | E9-Murang’a-1 | D. minutiflora | Murang’a |
19 | E10 | E10-Kirinyaga-1 | D. minutiflora | Kirinyaga |
20 | E11 | E11-Nyeri-1 | D. minutiflora | Nyeri |
SCoT Marker | Code of SCoT Marker | NAB | NPB | %P | PIC | H | I | Rp |
---|---|---|---|---|---|---|---|---|
SCoT2 | ST2 | 11 | 10 | 90.9 | 0.58 | 0.28 | 0.43 | 4.50 |
SCoT3 | ST3 | 15 | 15 | 100 | 0.69 | 0.36 | 0.54 | 8.00 |
SCoT6 | ST6 | 12 | 12 | 100 | 0.77 | 0.44 | 0.63 | 8.60 |
SCoT7 | ST7 | 9 | 9 | 100 | 0.69 | 0.40 | 0.59 | 5.43 |
SCoT9 | ST9 | 11 | 10 | 90.9 | 0.65 | 0.30 | 0.46 | 6.40 |
SCoT10 | ST10 | 13 | 13 | 100 | 0.65 | 0.26 | 0.40 | 2.80 |
SCoT11 | ST11 | 7 | 6 | 85.7 | 0.40 | 0.25 | 0.37 | 4.20 |
SCoT12 | ST12 | 10 | 7 | 70 | 0.50 | 0.30 | 0.43 | 5.50 |
SCoT14 | ST14 | 12 | 9 | 75 | 0.46 | 0.30 | 0.45 | 3.10 |
SCoT16 | ST16 | 20 | 20 | 100 | 0.67 | 0.42 | 0.61 | 14.10 |
SCoT17 | ST17 | 12 | 11 | 91.7 | 0.57 | 0.37 | 0.54 | 7.30 |
SCoT19 | ST19 | 12 | 11 | 91.7 | 0.59 | 0.27 | 0.42 | 4.60 |
SCoT20 | ST20 | 16 | 16 | 100 | 0.49 | 0.36 | 0.53 | 8.70 |
SCoT21 | ST21 | 12 | 12 | 100 | 0.51 | 0.27 | 0.42 | 4.80 |
SCoT23 | ST23 | 3 | 3 | 100 | 0.58 | 0.38 | 0.56 | 1.90 |
SCoT25 | ST25 | 13 | 13 | 100 | 0.59 | 0.33 | 0.50 | 6.40 |
SCoT26 | ST26 | 12 | 11 | 91.7 | 0.51 | 0.32 | 0.48 | 5.50 |
SCoT27 | ST27 | 7 | 6 | 85.7 | 0.51 | 0.33 | 0.48 | 3.40 |
SCoT29 | ST29 | 12 | 12 | 100 | 0.46 | 0.29 | 0.46 | 4.60 |
SCoT30 | ST30 | 13 | 13 | 100 | 0.57 | 0.39 | 0.58 | 7.80 |
SCoT32 | ST32 | 13 | 13 | 100 | 0.66 | 0.28 | 0.43 | 4.80 |
SCoT33 | ST33 | 13 | 13 | 100 | 0.62 | 0.33 | 0.50 | 6.30 |
SCoT34 | ST34 | 14 | 13 | 92.9 | 0.63 | 0.35 | 0.52 | 7.10 |
SCoT35 | ST35 | 14 | 14 | 100 | 0.58 | 0.34 | 0.51 | 6.70 |
SCoT36 | ST36 | 7 | 6 | 85.7 | 0.59 | 0.30 | 0.45 | 5.20 |
Total | 294 | 279 | 95 | - | - | - | - | |
Mean | 11.76 | 11.16 | 0.58 | 0.33 | 0.49 | 5.91 |
Place of Yam Collection | SDI | NGDI |
---|---|---|
Meru | 0.205 | 1.230 |
Murang’a | 0.170 | 1.214 |
Kirinyaga | 0.116 | 1.168 |
Nyeri | 0.171 | 1.247 |
GeRRI–KALRO | 0.386 | 1.443 |
Source of Variance | Df | SSD | MSD | Variance Component | Percentage of Variation | p Value |
---|---|---|---|---|---|---|
Among population | 4 | 469.075 | 117.269 | 22.642 | 40 | 0.001 * |
Within population | 15 | 510.875 | 34.058 | 34.058 | 60 | |
Total | 19 | 979.950 | 56.701 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owiti, A.A.; Bargul, J.L.; Obiero, G.O.; Nyaboga, E.N. Analysis of Genetic Diversity and Population Structure in Yam (Dioscorea Species) Germplasm Using Start Codon Targeted (SCoT) Molecular Markers. Int. J. Plant Biol. 2023, 14, 299-311. https://doi.org/10.3390/ijpb14010025
Owiti AA, Bargul JL, Obiero GO, Nyaboga EN. Analysis of Genetic Diversity and Population Structure in Yam (Dioscorea Species) Germplasm Using Start Codon Targeted (SCoT) Molecular Markers. International Journal of Plant Biology. 2023; 14(1):299-311. https://doi.org/10.3390/ijpb14010025
Chicago/Turabian StyleOwiti, Anne A., Joel L. Bargul, George O. Obiero, and Evans N. Nyaboga. 2023. "Analysis of Genetic Diversity and Population Structure in Yam (Dioscorea Species) Germplasm Using Start Codon Targeted (SCoT) Molecular Markers" International Journal of Plant Biology 14, no. 1: 299-311. https://doi.org/10.3390/ijpb14010025
APA StyleOwiti, A. A., Bargul, J. L., Obiero, G. O., & Nyaboga, E. N. (2023). Analysis of Genetic Diversity and Population Structure in Yam (Dioscorea Species) Germplasm Using Start Codon Targeted (SCoT) Molecular Markers. International Journal of Plant Biology, 14(1), 299-311. https://doi.org/10.3390/ijpb14010025