Proximate, Vitamins, Minerals and Anti-Nutritive Constituents of the Leaf and Stem of Helichrysum odoratissimum (L.) Sweet: A Folk Medicinal Plant in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Preparation
2.2. Proximate Content Analysis
2.2.1. Estimation of Moisture Content
2.2.2. Estimation of Ash Content
2.2.3. Estimation of Fat Content
2.2.4. Estimation of Crude Protein Content
2.3. Vitamin Contents Evaluation
2.4. Mineral Element Analysis
2.5. Anti-Nutrient Content Estimation
2.6. Statistical Analysis
3. Results
3.1. Proximal Content
3.2. Vitamins and Antinutrients
3.3. Mineral Element Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, D.; Prasad, S.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320. [Google Scholar] [CrossRef] [Green Version]
- Moradi, B.; Abbaszadeh, S.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. The most useful medicinal herbs to treat diabetes. Biomed. Res. Ther. 2018, 5, 2538–2551. [Google Scholar] [CrossRef]
- Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the Management of Diabetes: A Review. Molecules 2018, 23, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debnath, B.; Manna, K. Formulating anti-diabetic nutraceutical tablets based on edible plants from Tripura, India. Foods Raw Mater. 2022, 10, 227–234. [Google Scholar] [CrossRef]
- Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules 2020, 25, 2669. [Google Scholar] [CrossRef]
- Otunola, G.A.; Afolayan, A.J. Proximate and elemental composition of leaf, corm, root and peel of Hypoxis hemerocallidea: A Southern African multipurpose medicinal plant. Pak. J. Pharm. Sci. 2019, 32, 535–539. [Google Scholar]
- Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Nutritional composition and antinutrient content of Heteromorpha arborescens (Spreng.) Cham. & Schltdl. leaves: An underutilized wild vegetable. Food Sci. Nutr. 2021, 9, 172–179. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Khan, S.A.; Raza, S.; Ullah, H. Nutraceutical potential and biological activities of selected medicinal plants. Int. J. Biosci. 2019, 15, 305–319. Available online: http://www.innspub.net/2222-5234 (accessed on 24 August 2019).
- Pandey, N.; Meena, R.P.; Rai, S.K.; Rai, S.P. Medicinal plants derived nutraceuticals: A re-emerging health aid. Int. J. Pharma Bio Sci. 2011, 2, 419–441. [Google Scholar]
- Serabele, K.; Chen, W.; Tankeu, S.; Combrinck, S.; Veale, C.G.; van Vuuren, S.; Chaudhary, S.K.; Viljoen, A. Comparative chemical profiling and antimicrobial activity of two interchangeably used ‘Imphepho’ species (Helichrysum odoratissimum and Helichrysum petiolare). S. Afr. J. Bot. 2020, 137, 117–132. [Google Scholar] [CrossRef]
- Twilley, D.; Moodley, D.; Rolfes, H.; Moodley, I.; McGaw, L.J.; Madikizela, B.; Summers, B.; Raaff, L.-A.; Lategan, M.; Kgatuke, L.; et al. Ethanolic extracts of South African plants, Buddleja saligna Willd. and Helichrysum odoratissimum (L.) Sweet, as multifunctional ingredients in sunscreen formulations. S. Afr. J. Bot. 2021, 137, 171–182. [Google Scholar] [CrossRef]
- Odeyemi, S.; Bradley, G. Medicinal Plants Used for the Traditional Management of Diabetes in the Eastern Cape, South Africa: Pharmacology and Toxicology. Molecules 2018, 23, 2759. [Google Scholar] [CrossRef] [PubMed]
- Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind. Crops Prod. 2019, 138, 111–471. [Google Scholar] [CrossRef]
- Karim, M.R.; Ferdous, N.; Roy, N.; Jahan, M.S.; Sarkar, A.K.; Shovon, M.S. A Study on Nutritional Components of the Leaf and Stem a Study on Nutritional Components of the Leaf and Stem of Alocasia indica L. J. Adv. Appl. Sci. Technol. 2015, 2, 46–54. [Google Scholar]
- Sagbo, I.J.; Mbeng, W.O. Plants used for cosmetics in the Eastern Cape Province of South Africa: A case study of skin care. Pharmacogn. Rev. 2018, 12, 139. [Google Scholar] [CrossRef]
- Njagi, J.M.; Ngugi, M.P.; Kibiti, C.M.; Ngeranwa, J.; Njue, W.; Gathumbi, P.; Njagi, E. Hypoglycemic effect of Helichrysum odoratissimum in alloxan induced diabetic mice. J. Phytopharm. 2015, 4, 30–33. Available online: https://www.phytopharmajournal.com (accessed on 22 March 2015). [CrossRef]
- Matrose, N.A.; Obikeze, K.; Belay, Z.A.; Caleb, O.J. Impact of spatial variation and extraction solvents on bioactive compounds, secondary metabolites and antifungal efficacy of South African Impepho [Helichrysum odoratissimum (L.) Sweet]. Food Biosci. 2021, 42, 101139. [Google Scholar] [CrossRef]
- De Canha, M.N.; Komarnytsky, S.; Langhansova, L.; Lall, N. Exploring the Anti-Acne Potential of Impepho [Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front. Pharmacol. 2020, 10, 1559. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemist. Official Methods of Analysis; Latimer, G.W., Jr., Ed.; AOAC International: Washington, DC, USA, 2016; ISBN 0935584870. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B. Systems of analysis for evaluating fibrous feeds. In Standardization of Analytical Methodology in Feeds; Pigden, W., Balch, C.C., Graham, M., Eds.; International Development Research Centre: Ottawa, ON, Canada, 1980; pp. 49–60. [Google Scholar]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Nutritional evaluation of Kedrostis africana (L.) Cogn: An edible wild plant of South Africa. Asian Pac. J. Trop. Biomed. 2017, 7, 443–449. [Google Scholar] [CrossRef]
- Okwu, D.E.; Josiah, C. Evaluation of the chemical composition of the two Nigerian medicinal plants. Afr. J. Biotechnol. 2006, 5, 357–361. [Google Scholar]
- Adegbaju, O.; Otunola, G.; Afolayan, A. Proximate, mineral, vitamin and anti-nutrient content of Celosia argentea at three stages of maturity. S. Afr. J. Bot. 2019, 124, 372–379. [Google Scholar] [CrossRef]
- Idris, O.A.; Wintola, O.A.; Afolayan, A.J. Comparison of the Proximate Composition, Vitamins (Ascorbic Acid, α-Tocopherol and Retinol), Anti-Nutrients (Phytate and Oxalate) and the GC-MS Analysis of the Essential Oil of the Root and Leaf of Rumex crispus L. Plants 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okalebo, J.R.; Gathua, W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; SBF-CIAT and Sacred Africa: Nairobi, Kenya, 2002. [Google Scholar]
- Lalitha, S.; Vijayalakshmi, K. Evaluation of vitamins and antinutrients in the leaves of traditional medicinal plant Alternanthera sessilis (L.) R. Br. Ex DC. Int. J. Health Sci. Res. 2018, 8, 244–253. [Google Scholar]
- Igboabuchi, N.A. Determination of Proximate, Mineral and Vitamin Composition on the Leaf and Stem of Desmodium velutinum (Willd.) DC. Asian J. Biotechnol. Bioresour. Technol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Anyasor, G.N.; Onajobi, F.D.; Osilesi, O.; Adebawo, O. Proximate composition, mineral content and in vitro antioxidant activity of leaf and stem of Costus afer (Ginger lily). J. Intercult. Ethnopharmacol. 2014, 3, 128. [Google Scholar] [CrossRef]
- Samson, B.O. Proximate and mineral composition of Pentadiplandra brazzeana Stem Bark. Comput. Appl. Sci. 2019, 1, 91–99. Available online: www.erjsciences.info (accessed on 1 August 2022).
- Chuku, O.S.; Chuku, E.C. Comparative Assessment of the Proximate Composition of the Stem, Leaf and the Rhizome of Costus afer. IOSR J. Agric. Vet. Sci. 2018, 11, 59–62. [Google Scholar] [CrossRef]
- Ogidi, O.I.; Dike, O.G. Phytochemical, proximate and mineral compositions of Bryophyllum pinnatum (Never die) medicinal plant. J. Pharmacogn. Phytochem. 2019, 8, 629–635. [Google Scholar]
- Achi, N.K.; Onyeabo, C.; Ekeleme-Egedigwe, C.A.; Onyeanula, J.C. Phytochemical, Proximate Analysis, Vitamin and Mineral Composition of Aqueous Extract of Ficus capensis leaves in South Eastern Nigeria. J. Appl. Pharm. Sci. 2017, 7, 117–122. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Committee on Dietary Allowances: Recommended Dietary Allowances, 10th ed.; National Academy of Science Press: Washington, DC, USA, 1989; p. 453. [Google Scholar]
- Shahin, A.; Abu Bakar Siddique, S.J.U. Proximate and Mineral Composition of Leaf, Stem, Flower and Seed of Cassia sophera Linn. Int. J. Pharm. Sci. Rev. Res. 2019, 57, 49–54. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B. Analysis of Forages and Fibrous Foods; Cornell University Publication: Ithaca, NY, USA, 1985; Volume 16. [Google Scholar]
- Soh, A.C.; Frakes, R.V.; Chilcote, D.O.; Sleper, D.A. Genetic Variation in Acid Detergent Fiber, Neutral Detergent Fiber, Hemicellulose, Crude Protein, and Their Relationship with In Vitro Dry Matter Digestibility in Tall Fescue 1. Crop Sci. 1984, 24, 721–727. [Google Scholar] [CrossRef]
- Greens, T.; Tops, T.; Reflectance, N.; Haro-bail, A. Analysis of the Acid Detergent Fibre Content in Turnip Greens and Turnip Tops (Brassica rapa L. Subsp. rapa ) by Means of Near-Infrared Reflectance †. Foods 2019, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Sinha, B.; Bhattacharjee, S.; Seal, T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar] [CrossRef] [Green Version]
- Radha; Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.; et al. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants 2021, 10, 1429. [Google Scholar] [CrossRef]
- Goit, L.N.; Yang, S.; Laurent, S.; Nunes, R.; Arantes, M.B.; Menezes, S.; Pereira, D.F.; Leandro, L.; Passos, M.D.S.; Moraes, L.P.; et al. Roadmap to achieve 25% hypertension control in Africa by 2025. Ther. Adv. Cardiovasc. Dis. 2016, 9, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.S.S.; Mill, J.G.; Griep, R.H.; Sichieri, R.; Molina, M.D.C.B. Effect of urinary sodium-to-potassium ratio change on blood pressure in participants of the longitudinal health of adults study–ELSA-Brasil. Medicine 2019, 98, e16278. [Google Scholar] [CrossRef]
- Ooi, D.-J.; Iqbal, S.; Ismail, M. Proximate Composition, Nutritional Attributes and Mineral Composition of Peperomia pellucida L. (Ketumpangan Air) Grown in Malaysia. Molecules 2012, 17, 11139–11145. [Google Scholar] [CrossRef]
- Haruna, S.S.; Ahmed, O.; Titilayo, J.O. Nutritional and anti-nu- tritional composition of Lantana camara leaf. J. Investig. Biochem. 2015, 4, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Añuli, N.A.; Ekwutosi, O.T.; Udodi, N.C.; Ijeoma, E.-K.C.; Chisom, O.V. Assessment of Proximate, Phytochemical and 484 Selected Mineral Content of Acanthus montanus Leaf. Asian J. Biotechnol. Bioresour. Technol. 2020, 6, 45–54. [Google Scholar] [CrossRef]
- Abbey, L.; Asiedu, S. An Overview of Nutritional and Antinutritional Factors in Green Leafy Vegetables. Hortic. Int. J. 2017, 1, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Andzouana, M.; Mombouli, J.B. Proximate, mineral and phytochemical analysis of the leaves of H. Myriantha and Urera trinervis. Pak. J. Biol. Sci. 2012, 15, 536–540. [Google Scholar]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.; Orsini, N. Meta-Analysis of Potassium Intake and the Risk of Stroke. J. Am. Heart Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef]
- Ebu, V.T.; Mgbang, J.E.; Bukie, J.O. Anti-nutrient contents of herbs used in the treatment of “ailments of ‘‘utmost native importance” in Cross River State, Nigeria. J. Agric. For. Soc. Sci. 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Diab, L.; Krebs, N.F. Vitamin Excess and Deficiency. Pediatr. Rev. 2018, 39, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Asensi-Fabado, M.A.; Munné-Bosch, S. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends Plant Sci. 2010, 15, 582–592. [Google Scholar] [CrossRef]
- Nortje, J.; van Wyk, B.-E. Medicinal plants of the Kamiesberg, Namaqualand, South Africa. J. Ethnopharmacol. 2015, 171, 205–222. [Google Scholar] [CrossRef]
Parameters | Leaf | Stem |
---|---|---|
Moisture | 6.01 ± 0.22 a | 4.86 ± 0.02 b |
Ash | 10.07 ± 0.26 a | 5.27 ± 0.22 b |
Crude fat | 7.61 ± 0.39 a | 2.25 ± 0.19 b |
Crude fibre | 43.56 ± 2.77 b | 68.54 ± 0.91 a |
Crude Protein | 7.82 ± 0.38 a | 3.40 ± 0.17 b |
ADF | 32.31 ± 0.09 b | 47.27 ± 1.59 a |
NDF | 46.56 ± 0.01 b | 68.54 ± 0.91 a |
Carbohydrate (NFC) | 34.13 ± 0.02 a | 15.67± 0.35 b |
Energy value (KJ/100 g) | 199.46 ± 9.72 a | 96.54 ± 3.74 b |
Vitamin (mg/100 g) DW | Leaf | Stem |
---|---|---|
Retinol (A) (µg) | 373.5 ± 1.25 b | 489.5 ± 9.67 a |
Thiamine (B1) | 24.59 ± 0.01 b | 26.39 ± 2.14 a |
Riboflavin (B2) | 0.62 ± 0.001 b | 2.34 ± 0.001 a |
Niacin (B3) | 0.18 ± 0.0004 a | 0.095 ± 0.0002 a |
Ascorbic acid (C) | 15.65 ± 1.11 b | 17.55 ± 0.35 a |
Alpha-tocopherol (µg) | 2.25 ± 0.001 a | 0.92 ± 0.001 b |
Anti-nutrient (%) | ||
Oxalate | 0 ± 0 | 6.05 ± 0.08 |
Phytate | 0.36 ± 0.04 | 1.06 ± 0.23 |
Elements | Leaf | Stem |
---|---|---|
Calcium (Ca) | 9.07 ± 0.05 a | 5.67 ± 0.45 b |
Magnesium (Mg) | 3.73 ± 0.19 a | 2.03 ± 0.09 b |
Potassium (K) | 11.13 ± 0.62 a | 7.87 ± 0.29 b |
Sodium (Na) | 7.53 ± 0.62 a | 2.83 ± 0.12 b |
Phosphorus (P) | 0.03 ± 0.05 a | 0.73 ± 0.05 a |
K/Ca+ Mg | 0.37 ± 0.01 b | 0.45 ± 0.02 a |
Zinc (Zn) | 5.67 ± 0.05 a | 4.13 ± 0.12 a |
Manganese (Mn) | 9.03 ± 1.56 a | 8.13 ± 0.58 a |
Copper (Cu) | 2.33 ± 0.52 a | 1.37 ± 0.21 a |
Iron (Fe) | 107.3 ± 31.5 a | 70.7 ± 15.8 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afuape, A.O.; Afolayan, A.J.; Buwa-Komoreng, L.V. Proximate, Vitamins, Minerals and Anti-Nutritive Constituents of the Leaf and Stem of Helichrysum odoratissimum (L.) Sweet: A Folk Medicinal Plant in South Africa. Int. J. Plant Biol. 2022, 13, 463-472. https://doi.org/10.3390/ijpb13040037
Afuape AO, Afolayan AJ, Buwa-Komoreng LV. Proximate, Vitamins, Minerals and Anti-Nutritive Constituents of the Leaf and Stem of Helichrysum odoratissimum (L.) Sweet: A Folk Medicinal Plant in South Africa. International Journal of Plant Biology. 2022; 13(4):463-472. https://doi.org/10.3390/ijpb13040037
Chicago/Turabian StyleAfuape, Abolaji Olajumoke, Anthony Jide Afolayan, and Lisa Valencia Buwa-Komoreng. 2022. "Proximate, Vitamins, Minerals and Anti-Nutritive Constituents of the Leaf and Stem of Helichrysum odoratissimum (L.) Sweet: A Folk Medicinal Plant in South Africa" International Journal of Plant Biology 13, no. 4: 463-472. https://doi.org/10.3390/ijpb13040037
APA StyleAfuape, A. O., Afolayan, A. J., & Buwa-Komoreng, L. V. (2022). Proximate, Vitamins, Minerals and Anti-Nutritive Constituents of the Leaf and Stem of Helichrysum odoratissimum (L.) Sweet: A Folk Medicinal Plant in South Africa. International Journal of Plant Biology, 13(4), 463-472. https://doi.org/10.3390/ijpb13040037