Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Research Procedure
2.3. Measured Variables
2.4. Data Analysis
3. Results and Discussion
3.1. Comparative Analysis of Leaf Morphological Character
3.2. Comparative Analysis of Leaf Eco-Physiological Characters
3.3. Comparative Analysis and Correlation of Leaf Pigmentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, G.A. Oranges and lemons: Clues to the taxonomy of Cirus from molecular markers. Trends Genet. 2001, 17, 536–540. [Google Scholar] [CrossRef]
- Qin, W.; Assinck, F.B.T.; Heinen, M.; Oenema, O. Water and nitrogen use efficiencies in citrus production: A meta-analysis. Agric. Ecosyst. Environ. 2016, 222, 103–111. [Google Scholar] [CrossRef]
- Wu, G.; Terol, J.; Ibanez, V.; Lopez-Garcia, A.; Perez-Roman, E.; Borreda, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Budiarto, R.; Pratita, D. Citrus export performances of southeast asian countries: A comparative analysis. Teknotan 2022, 16, 7–12. [Google Scholar] [CrossRef]
- Mabberley, D.J. Citrus (Rutaceae): A review of recent advances in etymology, systematics and medical applications. Blumea 2004, 49, 481–498. [Google Scholar] [CrossRef]
- Araujo, E.F.D.; Queiroz, L.P.D.; Machado, M.A. What is citrus? taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Org. Divers. Evol. 2003, 3, 55–62. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Short Communication: Allometric model to estimate bifoliate leaf area and weight of kaffir lime (Citrus hystrix). Biodiversitas 2021, 22, 2815–2820. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D. Morphological evaluation and determination keys of 21 citrus genotypes at seedling stage. Biodiversitas 2021, 22, 1570–1579. [Google Scholar] [CrossRef]
- Wongpornchai, S. Kaffir lime leaf. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Sensory evaluation of the quality of kaffir lime (Citrus hystrix DC.) leaves exposed to different postharvest treatments. J. Trop. Crop Sci. 2021, 8, 71–79. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Production, post- harvest and marketing of kaffir lime (Citrus hystrix DC) in Tulungagung, Indonesia. J. Trop. Crop Sci. 2019, 6, 138–143. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. The effects of preharvest mild shading on the quality and production of essential oil from kaffir lime leaves (Citrus hystrix). J. Trop. Crop Sci. 2022, 9, 15–21. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Preliminary study on antioxidant and antibacterial activity of kaffir lime (Citrus hystrix DC) leaf essential oil. Appl. Res. Sci. Technol. 2021, 1, 58–65. [Google Scholar] [CrossRef]
- Efendi, D.; Budiarto, R.; Poerwanto, R.; Santosa, E.; Agusta, A. Relationship among agroclimatic variables, soil and leaves nutrient status with the yield and main composition of kaffir lime (Citrus hystrix DC) leaves essential oil. Metabolites 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Chandharakool, S.; Koomhin, P.; Sinlapasorn, J.; Suanjan, S.; Phungsai, J.; Suttipromma, N.; Songsamoe, S.; Matan, N.; Sattayakhom, A. Effects of tangerine essential oil on brain waves, moods and sleep onset latency. Molecules 2020, 25, 4865. [Google Scholar] [CrossRef] [PubMed]
- Eleni, M.; Antonios, M.; George, K.; Alexios-Leandros, S.; Prokopios, M. High-quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector. Molecules 2009, 14, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Othman, S.N.A.M.; Hassan, M.A.; Nahar, L.; Basar, N.; Jamil, S.; Sarker, S.D. Essential oils from the Malaysian citrus (Rutaceae) medicinal plants. Medicines 2016, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, T.; Wang, L.; Liu, L.; Li, X.; Wu, X. Antibacterial effects and mechanism of mandarin (Citrus retculata L.) essential oil against Staphylococcus aureus. Molecules 2020, 25, 4956. [Google Scholar] [CrossRef]
- De Clerck, C.; Maso, S.D.; Parisi, O.; Dresen, F.; Zhiri, A.; Jijakli, M.H. Screening of antifungal and antibacterial activity of 90 commercial essential oils against 10 pathogens of agronomical importance. Foods 2020, 9, 1418. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef]
- Aliberti, L.; Caputo, L.; Feo, V.D.; Martino, L.D.; Nazzaro, F.; Souza, L.F. Chemical composition and in vitro antimicrobial, cytotoxic and central nervous system activities of the essential oils of Citrus medica L. cv ‘Liscia’ and C. medica cv. ‘Rugosa’ cultivated in Southern Italy. Molecules 2016, 21, 1244. [Google Scholar] [CrossRef]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and anticancer activities of essential oil from Gannan navel orange peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef]
- Plastina, P.; Apriantini, A.; Meijerink, J.; Witkamp, R.; Gabriele, B.; Fazio, A. In vitro anti-inflammatory and radical scavenging properties of chinotto (Citrus myrtifoloia Raf.) essential oils. Nutrients 2018, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Yang, K.M.; Huang, T.Z.; Wu, M.L. Traditional small-size Citrus from Taiwan: Essential oils, bioactive compounds, and antioxidant capacity. Medicines 2017, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D. Shoot manipulations improve flushing and flowering of mandarin citrus in Indonesia. J. Appl. Hortic. 2018, 20, 112–118. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Agronomical and physiological characters of kaffir lime (Citrus hystrix DC) seedling under artificial shading and pruning. Emir. J. Food Agric. 2019, 31, 222–230. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D. A review of root pruning to regulate citrus growth. J. Trop. Crop Sci. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Wu, X.Y.; Kuai, B.K.; Jia, J.Z.; Jing, H.C. Regulation of leaf senescence and crop genetic improvement. J. Integr. Plant Biol. 2012, 54, 936–952. [Google Scholar] [CrossRef]
- Bielczynski, L.W.; Łacki, M.K.; Hoefnagels, I.; Gambin, A.; Croce, R. Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiol. 2017, 175, 1634–1648. [Google Scholar] [CrossRef]
- De Carli, L.F.; Miranda, M.P.; Volpe, H.X.L.; Zanardi, O.Z.; Vizoni, M.C.; Martini, F.M.; Lopes, J.P.A. Leaf age affects the efficacy of insecticides to control Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 2018, 142, 689–695. [Google Scholar] [CrossRef]
- Tomaseto, A.F.; Krugner, R.; Lopes, J.R.S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 2016, 140, 91–102. [Google Scholar] [CrossRef]
- Seo, Y.D.; Kim, D.S. Effects of humidity and citrus leaf age on the multiplication of Aculops pelekassi (Acari: Eriophyoidea) and seasonal population abundances in citrus orchards. Korean J. Appl. Entomol. 2014, 53, 1–6. [Google Scholar] [CrossRef]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Pantin, F.; Simonneau, T.; Rolland, G.; Dauzat, M.; Muller, B. Control of leaf expansion: A developmental switch from metabolics to hydraulics. Plant Physiol. 2011, 156, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.A.; Gamon, J.A. Relationship between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Weraduwage, S.M.; Chen, J.; Anozie, F.C.; Moreles, A.; Weise, S.E.; Sharkey, T.D. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef] [PubMed]
- Lakitan, B.; Widuri, L.I.; Meihana, M. Simplifying procedure for a non- destructive, inexpensive, yet accurate trifoliate leaf area estimation in snap bean (Phaseolus vulgaris). J. Appl. Hortic. 2017, 19, 15–21. [Google Scholar] [CrossRef]
- Nihayati, E.; Rosida, A.; Azizah, N. Growth and yield of temulawak (Curcuma xanthorizha Roxb.) and corn (Zea mays L.) with various intercropping patterns. Int. J. Plant Biol. 2018, 9, 9–14. [Google Scholar] [CrossRef]
- Hamdani, J.S.; Tunniza, A.Z.; Nuraini, A.; Budiarto, R. Production of G0 ‘Median’ potato on different media composition and fertilizer method. Asian J. Plant Sci. 2022, 21, 312–320. [Google Scholar] [CrossRef]
- Efendi, D.; Budiarto, R. Benefit and challenges of using tropical fruits as ornamental trees for green city. Acta Hortic. 2022, 1334, 369–377. [Google Scholar] [CrossRef]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D. The potentials of limau (Citrus amblycarpa) as a functional food and ornamental mini tree based on metabolomic and morphological approach. J. Trop. Crop Sci. 2017, 4, 49–57. [Google Scholar] [CrossRef]
- Salazar, J.C.S.; Melgarejo, L.M.; Bautista, E.H.D.; Rienzoc, J.A.D.; Casanoves, F. Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Sci. Hortic. 2018, 229, 19–24. [Google Scholar] [CrossRef]
- Bhakta, D.; Ganjewala, D. Effect of leaf positions on total phenolics, flavonoids and proanthocyanidins content and antioxidant activities in Lantana camara (L). J. Sci. Res. 2009, 1, 363–369. [Google Scholar] [CrossRef]
- Maxiselly, Y.; Anusornwanit, P.; Rugkong, A.; Chiarawipa, R.; Chanjula, P. Morpho-physiological traits, phytochemical composition, and antioxidant activity of canephora coffee leaves at various stages. Int. J. Plant Biol. 2022, 13, 106–114. [Google Scholar] [CrossRef]
- Campa, C.; Urban, L.; Mondolot, L.; Fabre, D.; Roques, S.; Lizzi, Y.; Aarrouf, J.; Doulbeau, S.; Breitler, J.C.; Letrez, C.; et al. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Front. Plant Sci. 2017, 8, 1126. [Google Scholar] [CrossRef]
- Prihastanti, E.; Nurchayati, Y. Differences in leaf area, trichome density, and xylem structure between the two types of Theobroma cacao l. cultivation: With or without shade plants. Int. J. Plant Biol. 2020, 11, 28–31. [Google Scholar] [CrossRef]
- Niinemets, U.; Keenan, T.F.; Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical andphysiological traits across plant functional types. New Phytol. 2015, 205, 973–993. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Machado, E.C. Some aspects of citrus ecophysiology in subtropical climates: Re-visiting photosynthesis under natural conditions. Braz. J. Plant Physiol. 2007, 19, 393–411. [Google Scholar] [CrossRef]
- Nii, N.; Watanabe, N.T.; Yamaguchi, K.; Nishimura, M. Changes of anatomical features, photosynthesis and ribulose bisphosphate carboxylase-oxygenase content of mango leaves. Ann. Bot. 1995, 76, 649–656. [Google Scholar] [CrossRef]
- Hieke, S.; Menzel, C.M.; Ludders, P. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis). Tree Physiol. 2002, 22, 955–961. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Johnson, D. Changes in photosynthetic characteristic during leaf development in apple. Photosynth. Res. 1981, 2, 213–223. [Google Scholar] [CrossRef]
- Schaffer, B.; Whiley, A.W.; Kholi, R.R. Effects of leaf age on gas exchange characteristics of avocado (Persea americana Mill.). Sci. Hortic. 1991, 48, 21–28. [Google Scholar] [CrossRef]
- Flore, J.A.; Lakso, A.N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 1989, 11, 111–157. [Google Scholar]
- Bauerle, W.L.; McCullough, C.; Iversen, M.; Hazlett, M. Leaf age and position effects on quantum yield and photosynthetic capacity in hemp crowns. Plants 2020, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.T.; Pan, J.F.; Hu, N.J.; Chen, H.H.; Jiang, H.X.; Lu, Y.B.; Chen, L.S. Citrus physiological and molecular response to boron stresses. Plants 2022, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, C.; Gallardo, M.; Thompson, R.B. Plant–Water Relations. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Sofiyanti, N.; Wahyuni, P.I.; Iriani, D. Stomatal characteristics of 5 Citrus L. species (Rutaceae) from Pekanbaru, Riau Province. J. Biol. Trop. 2022, 22, 173–178. [Google Scholar] [CrossRef]
- Yordanov, I.; Tsonev, T.; Velikova, V.; Georgieva, K.; Ivanov, P.; Tsenov, N.; Petrova, T. Changes in CO2 assimilation, transpiration and stomatal resistance of different wheat cultivars experiencing drought under field conditions. Bulg. J. Plant Physiol. 2001, 27, 20–33. [Google Scholar]
- Roccuzzo, G.; Villalobos, F.J.; Testu, L.; Fereres, E. Effects of water deficits on whole tree water use efficiency of orange. Agric. Water Manag. 2014, 140, 61–68. [Google Scholar] [CrossRef]
- Pena-Rojas, K.; Aranda, X.; Fleck, I. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Tree Physiol. 2004, 24, 813–822. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef]
- Garcia-Sanchez, F.; Syvertsen, J.P.; Gimeno, V.; Botia, P.; Perez-perez, J.G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Gimeno, V.; Simón, I.; Martínez, V.; Lidón, V.; Shahid, M.A.; Garcia-Sanchez, F. Effect of shade screen on production, fruit quality and growth parameters of ‘Fino 49′ lemon trees grafted on Citrus macrophylla and sour orange. Acta Hortic. 2015, 1065, 1845–1852. [Google Scholar] [CrossRef]
- Raza, A.; Zaka, M.A.; Khurshid, T.; Nawaz, M.A.; Ahmed, W.; Afzal, M.B.S. Different irrigation systems affect the yield and water use efficiency of kinnow mandarin (Citrus reticulata Blanco). J. Anim. Plant Sci. 2020, 30, 1178–1186. [Google Scholar] [CrossRef]
- Tejero, I.G.; Zuazo, V.H.D.; Bocanegra, J.A.J.; Fernandez, J.L.M. Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Sci. Hortic. 2011, 128, 274–282. [Google Scholar] [CrossRef]
- Hutton, R.J.; Loveys, B.R. A partial root zone drying irrigation strategy for citrus—Effects on water use efficiency and fruit characteristics. Agric. Water Manag. 2011, 98, 1485–1496. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Y.; Jia, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation. Nongye Gongcheng Xuebao/Trans. Chin. Soc Agric Eng. 2018, 34, 143–150. [Google Scholar] [CrossRef]
- Acidri, R.; Sawai, Y.; Sugimoto, Y.; Handa, T.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Phytochemical profile and antioxidant capacity of coffee plant organs compared to green and roasted coffee beans. Antioxidants 2020, 9, 93. [Google Scholar] [CrossRef]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Efendi, D.; Sumiasih, I.H.; Budiarto, R.; Poerwanto, R.; Agusta, A.; Yuliani, S. Orange color formation and pigment variation on tropical tangerine peel by precooling and degreening. Asian J. Plant Sci. 2022, 21, 56–65. [Google Scholar] [CrossRef]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef]
- Ait Bihi, M.; Ain-Lhout, F.; Hatimi, A.; Fahmi, F.; Tahrouch, S. Ecophysiological response and morphological adjustment of Argania spinosa L. Skeels under contrasting climates: Case study of marginal populations. Int. J. Plant Biol. 2022, 12, 9404. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Suminar, E.; Budiarto, R.; Nuraini, N.; Mubarok, S.; Ezura, H. Morpho-physiological responses of iaa9 tomato mutants to different levels of PEG simulated drought stress. Biodiversitas 2022, 6, 3115–3126. [Google Scholar] [CrossRef]
- Mubarok, S.; Wicaksono, F.Y.; Budiarto, R.; Rahmat, B.P.N.; Khoerunnisa, S.A. Metabolite correlation with antioxidant activity in different fruit maturation stages of Physalis peruviana. Biodiversitas 2021, 22, 2743–2749. [Google Scholar] [CrossRef]
Variable | Chl-a | Chl-b | Ant | Car | Chl-t |
---|---|---|---|---|---|
Chl-b | 0.9992 * | ||||
Ant | 0.5496 | 0.5744 | |||
Car | 0.9927 * | 0.9939 * | 0.6343 | ||
Chl-t | 0.9999 * | 0.9996 * | 0.5561 | 0.9932 * | |
Photo | 0.8777 * | 0.883 * | 0.6569 | 0.8946 * | 0.8792 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D.; Agusta, A. Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics. Int. J. Plant Biol. 2022, 13, 270-280. https://doi.org/10.3390/ijpb13030023
Budiarto R, Poerwanto R, Santosa E, Efendi D, Agusta A. Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics. International Journal of Plant Biology. 2022; 13(3):270-280. https://doi.org/10.3390/ijpb13030023
Chicago/Turabian StyleBudiarto, Rahmat, Roedhy Poerwanto, Edi Santosa, Darda Efendi, and Andria Agusta. 2022. "Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics" International Journal of Plant Biology 13, no. 3: 270-280. https://doi.org/10.3390/ijpb13030023
APA StyleBudiarto, R., Poerwanto, R., Santosa, E., Efendi, D., & Agusta, A. (2022). Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics. International Journal of Plant Biology, 13(3), 270-280. https://doi.org/10.3390/ijpb13030023