Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallick, P.; Ghosh, S.; Chattaraj, S.; Sikdar, S.R. Isolation of mesophyll protoplast from Indian mulberry (Morus alba L.) cv. S1635. J. Environ. Sociobiol. 2016, 13, 217–222. [Google Scholar]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-Acid-Fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.; Praditasari, A.; Rahayu, D.; Aulifa, D.L. Formulation of antioxidant gel from black mulberry fruit extract (Morus nigra L.). J. Pharm. Bioallied Sci. 2019, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Chemical characterization and antioxidant activities of Morus alba var. nigra fruits. Sci. Hort. 2019, 253, 120–127. [Google Scholar] [CrossRef]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.G. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Func. Food. 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Yadav, S.; Nair, N.; Biharee, A.; Morris Prathap, V.; Majeed, J. Updated ethnobotanical notes, phytochemistry and phytopharmacology of plants belonging to the genus Morus (Family: Moraceae). Phytomedicine Plus 2022, 2, 100120. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Amorós, A.; Hernández, F.; Martínez, J.J. Physicochemical properties of white (Morus alba) and black (Morus nigra) mulberry leaves, a new food supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar]
- Wei, H.; Zhu, J.J.; Liu, X.Q.; Feng, W.H.; Wang, Z.M.; Yan, L.H. Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects. Cogent Chem. 2016, 2, 1212320. [Google Scholar] [CrossRef]
- Miljković, V.M.; Nikolić, G.S.; Nikolić, L.B.; Arsić, B.B. Morus species through centuries in pharmacy and as food. Savrem. Tehnol. 2014, 3, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asian Pac. J. Trop. Biomed. 2017, 7, 950–956. [Google Scholar] [CrossRef]
- Zafar, M.S.; Muhammad, F.; Javed, I.; Akhtar, M.; Khaliq, T.; Aslam, B.; Waheed, A.; Yasmin, R.; Zafar, H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. Int. J. Agric. Biol. 2013, 15, 612–620. [Google Scholar]
- KeshtkarAghababaee, S.; Vafa, M.R.; Shidfar, F.; Gohari, M.R.; Katebi, D.; Mohammadi, V. Effect of black mulberry (Morus nigra L.) consumption on serum concentrations of lipoproteins, Apo-A1, Apo-B and hs-CRP and blood pressure in dyslipidemic patients. Iran. J. Nutr. Sci. Food Technol. 2014, 8, 67–81. [Google Scholar]
- Ahkami, A.H.; Melzer, M.; Ghaffari, M.R.; Pollmann, S.; Javid, M.G.; Shahinnia, F.; Hajirezaei, M.R.; Druege, U. Distribution of indole-3-Acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 2013, 238, 499–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyuncu, F.; Senel, E. Rooting of black mulberry (Morus nigra) hardwood cuttings. J. Fruit Ornam. Plant. Res. 2003, 11, 53–57. [Google Scholar]
- Hoermayer, L.; Montesinos, J.C.; Marhava, P.; Benková, E.; Yoshida, S.; Friml, J. Wounding-Induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proc. Natl. Acad. Sci. USA 2020, 117, 15322–15331. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Mo, Y.W.; Wang, S.B.; Zhang, Z. Auxin efflux carriers, MiPINs, are involved in adventitious root formation of mango cotyledon segments. Plant Physiol. Biochem. 2020, 150, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Finet, C.; Jaillais, Y. Auxology: When auxin meets plant evo–devo. Dev. Biol. 2012, 369, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imin, N.; Nizamidin, M.; Daniher, D.; Nolan, K.E.; Rose, R.J.; Rolfe, B.G. Proteomic analysis of somatic embryogenesis in Medicago truncatula explants culture grown under 6-benzylaminopurine and 1-Naphthaleneacetic acid treatments. Plant Physiol. 2005, 137, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Kaewchangwat, N.; Thanayupong, E.; Jarussophon, S.; Niamnont, N.; Yata, T.; Prateepchinda, S.; Unger, O.; Han, B.H.; Suttisintong, K. Coumarin-Caged compounds of 1-naphthaleneacetic acid as light-Responsive controlled-Release plant root stimulators. J. Agric. Food Chem. 2020, 68, 6268–6279. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Amin, T. Effects of location, gender and indole butyric acid on rooting of Laurus nobilis L. semi-Hardwood stem cuttings. Agric. Sci. Technol. 2020, 12, 260–263. [Google Scholar] [CrossRef]
- Costa, C.T.; Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.K.; Choudhary, T.; Kumar, A. Effect of various concentrations of IBA and NAA on the rooting of stem cuttings of mulberry (Morus Alba L.) under mist house condition in Garhwal Hill region. Indian J. Hill Farm. 2014, 27, 74–77. [Google Scholar]
- Abdel-Rahman, S.; Abdul-Hafeez, E.; Saleh, A.M. Improving rooting and growth of Conocarpus erectus stem cuttings using indole-3-Butyric acid (IBA) and some biostimulants. Sci. J. Flowers Ornam. Plants 2020, 7, 109–129. [Google Scholar] [CrossRef]
- Henrique, A.; Campinhos, E.N.; Ono, E.O.; Pinho, S.Z. Effect of plant growth regulators in the rooting of Pinus cuttings. Braz. Arch. Biol. Technol. 2006, 49, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.K.; Dev Kishan, J.; Mehta, S.K. Rootability of hardwood cuttings of mulberry (Morus alba L.) influenced by planting time and growing conditions under valley condition of Garhwal Himalayas. Plant Arch. 2015, 15, 1031–1036. [Google Scholar]
- Niczyporuk, A.P.; Bajguz, A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 2014, 73, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Latoh, L.P.; Gomes, E.N.; Zuffellato-Ribas, K.C. Can indolebutyric and fulvic acids induce adventitious rhizogenesis on mini-cuttings from Brazilian native tibouchinas? Ornam. Hortic. 2019, 25, 42–48. [Google Scholar] [CrossRef]
- Abdallah, A.; Mekdad, A.; Shaaban, A. Integrative applications of nitrogen, zinc, and boron to nutrients-Deficient soil improves sugar beet productivity and technological sugar contents under semi-arid conditions. J. Plant Nutr. 2020, 43, 1935–1950. [Google Scholar]
- Kumar-Tewari, R.; Kumar, P.; Sharma, P.N. Morphology and physiology of zinc-Stressed mulberry plants. J. Plant Nutr. Soil Sci. 2008, 171, 286–294. [Google Scholar] [CrossRef]
- dos Santos, L.R.; da Silva, B.R.S.; Pedron, T.; Batista, B.L.; da Silva Lobato, A.K. 24-Epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. J. Soil Sci. Plant Nutr. 2020, 20, 105–124. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, X.; Zhang, X.; Tang, Y.; Hu, Y.; Chen, S.; Xiang, L.; Zhang, Q. Transcriptional regulation of Arabidopsis copper amine oxidase (CuAO) in indole-3-butyric acid-induced lateral root development. Plant Growth Regul. 2019, 9, 287–297. [Google Scholar] [CrossRef]
- Aryal, B.; Huynh, J.; Schneuwly, J.; Siffert, A.; Liu, J.; Alejandro, S.; Ludwid-Müller, J.; Martinoia, E.; Geisler, M. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 2019, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Radakrishnan, S.; Sikdar, A.K.; Datta, R.K.; Shetty, H.S. Effect of growth regulators on the propagation of S-36 mulberry stem cuttings. Indian For. 1996, 122, 525–527. [Google Scholar]
- Brondani, G.E.; Baccarin, F.J.B.; Ondas, H.W.W.; Stape, J.L.; Gonçalves, A.N.; Almeida, M. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. J. For. Res. 2012, 23, 583–592. [Google Scholar] [CrossRef]
- Gehlot, A.; Gupta, R.K.; Tripathi, A.; Arya, I.D.; Arya, S. Vegetative propagation of Azadirachtaindica: Effect of auxin and rooting media on adventitious root induction in mini-cuttings. Adv. For. Sci. 2014, 1, 1–9. [Google Scholar]
- Ruppert, D.C. Hormone concentrations. Comb. Proc. Int. Plant Prop. Soc. 1974, 24, 349–350. [Google Scholar]
- Kentelky, E.; Jucan, D.; Cantor, M.; Szekely-Varga, Z. Efficacy of different concentrations of NAA on selected ornamental woody shrubs cuttings. Horticulturae 2021, 7, 464. [Google Scholar] [CrossRef]
- Poston, A.L. Cutting Propagation and Container Production of Rudy Haag Burning Bush [Euonymus Alatus Rudy Haag]. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2007. [Google Scholar]
- Meng, Y.; Xing, L.; Li, K.; Wei, Y.; Wang, H.; Mao, J.; Dong, F.; Ma, D.; Zhang, Z.; Han, M.; et al. Genome-Wide identification, characterization and expression analysis of novel long non-Coding RNAs that mediate IBA-Induced adventitious root formation in apple rootstocks. Plant Growth Regul. 2019, 87, 287–302. [Google Scholar] [CrossRef]
- Ebrahim, A.M.; Alnajjar, A.O.; Mohammed, M.E.; Idris, A.M.; Mohammed, M.E.; Michalke, B. Investigation of total zinc contents and zinc-protein profile in medicinal plants traditionally used for diabetes treatment. BioMetals 2020, 33, 65–74. [Google Scholar] [CrossRef]
- Gai, A.P.C.; Santos, D.S.; Vieira, E.A. Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthusimpetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ. Exp. Bot. 2017, 144, 88–99. [Google Scholar] [CrossRef]
- Zayed, Z.E.; El-Dawayati, M.M.; Hussien, F.A.; Saber, T.Y. Enhanced in vitro multiplication and rooting of date palm cv. yellow maktoum by zinc and copper ions. Plant Arch. 2020, 20, 517–528. [Google Scholar]
- Castillo-González, J.; Ojeda-Barrios, D.; Hernández-Rodríguez, A.; Cecilia González-Franco, A.; Robles-Hernández, L.; López-Ochoa, G.R. Zinc metalloenzymes in plants. Interciencia 2018, 43, 242–248. [Google Scholar]
- Karakeçili, A.; Korpayev, S.; Dumanoğlu, H.; Alizadeh, S. Synthesis of indole-3-Acetic acid and indole-3-Butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis. J. Biotech. 2019, 303, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mano, Y.; Nemoto, K. The pathway of auxin biosynthesis in plants. J. Experim. Bot. 2012, 63, 2853–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Ferrer, J.L.; Ljung, K.; Pojer, F.; Hong, F.; Long, J.A.; Li, L.; Moreno, J.E.; Bowman, M.E.; Ivans, L.J.; et al. Rapid synthesis of auxin via a new tryptophan-Dependent pathway is required for shade avoidance in Plants. Cell 2008, 133, 164–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y. Auxin biosynthesis: A simple two-Step pathway converts tryptophan to Indole-3-Acetic Acid in plants. Mol. Plant 2012, 5, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Erland, L.A.E.; Saxena, P. Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.). PLoS ONE 2019, 14, e0223878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, E.A.; Galvão, F.C.A.; Barros, A.L. Influence of water limitation on the competitive interaction between two Cerrado species and the invasive grass Brachiariabrizantha cv. Piatã. Plant Physiol. Biochem. 2019, 135, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, D.; Merkulova, E.A.; Naya, L.; Horie, T.; Kanno, Y.; Seo, M.; Ohsumi, Y.; Masclaux-Daubresse, C.; Yoshimoto, K. Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol. 2020, 182, 284–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejad, R.H.; Najafi, F.; Arvin, P.; Firuzeh, R. Study different levels of zinc sulfate (ZnSO4) on fresh and dry weight, leaf area, relative water content and total protein in bean (Phaseolus vulgaris L.) plant. Bull. Environ. Pharm. Life Sci. 2014, 13, 144–151. [Google Scholar]
- Cristofori, V.; Rouphael, Y.; Rugini, E. Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Sci. Hort. 2010, 124, 189–194. [Google Scholar] [CrossRef]
Factor | df | NL (n) | LSS (cm) | NRC (n) | RP (%) | NSP (n) | LRS (cm) | WRW (g) | DRW (g) | WLW (g) | DLW (g) | WSW (g) | DSW (g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cutting time | 1 | 784.7 ** | 850.7 ** | 0.03 | 3.00 | 1.3 | 122.0 ** | 33.80 * | 1.4 * | 93.6 | 7.04 | 2.38 | 0.18 |
Hormone + Zn sulfate | 20 | 60.6 ** | 95.5 ** | 7.4 ** | 737.6 ** | 3.0 | 75.5 ** | 1.86 * | 0.07 * | 16.5 ** | 1.24 ** | 1.17 ** | 0.09 |
Cutting time × hormone + Zn sulfate | 21 | 118.6 ** | 44.9 | 17.3 ** | 1734 ** | 2.1 | 11.3 | 3.89 ** | 0.16 | 21.6 ** | 1.63 ** | 0.84 | 0.06 ** |
Error | 195 | 8.9 | 46.9 | 1.5 | 146.6 | 2.3 | 32.4 | 1.09 | 0.04 | 5.61 | 0.42 | 0.56 | 0.04 |
CV% | 13.8 | 27.7 | 18.6 | 18.5 | 72.5 | 24.8 | 23.53 | 23.5 | 19.33 | 19.32 | 36.25 | 36.27 |
Cutting Time | NL (n) | NRC (n) | RP (%) |
---|---|---|---|
March | 22.27a | 5.32b | 53.21b |
April | 17.08b | 6.90a | 69.04a |
LSD (5%) | 2.69 | 0.65 | 6.52 |
Hormone and Zn Sulfate | LSS (cm) | LRS (cm) | WSW (g) |
---|---|---|---|
Control (NAA + IBA + Zn sulfate = 0 mg L−1) (Control) | 21.8c | 21.2bc | 1.71d |
NAA (100 mg L−1) (T1) | 23.5b | 23.7b | 2.10b |
NAA (100 mg L−1) + Zn sulfate (200 mg L−1) (T2) | 25.5b | 24.5ab | 2.16b |
NAA (100 mg L−1) + Zn sulfate (400 mg L−1) (T3) | 22.3bc | 20.5bc | 1.88c |
NAA (200 mg L−1) (T4) | 21.8c | 22.1bc | 1.83cd |
NAA (200 mg L−1) + Zn sulfate (200 mg L−1) (T5) | 29.9a | 25.3ab | 2.29ab |
NAA (200 mg L−1) + Zn sulfate (400 mg L−1) (T6) | 27.4ab | 23.4b | 2.13b |
NAA (400 mg L−1) (T7) | 22.8bc | 22.4b | 2.07b |
NAA (400 mg L−1) + Zn sulfate (200 mg L−1) (T8) | 22.3c | 24.4ab | 1.69d |
NAA (400 mg L−1) + Zn sulfate (400 mg L−1) (T9) | 21.2c | 21.9bc | 1.74d |
IBA (100 mg L−1) (T10) | 25.1b | 26.2a | 1.99bc |
IBA (100 mg L−1) + Zn sulfate (200 mg L−1) (T11) | 23.4b | 23.5b | 1.98bc |
IBA (100 mg L−1) + Zn sulfate (400 mg L−1) (T12) | 23.3b | 29.2a | 1.91bc |
IBA (200mg L−1) (T13) | 24.6b | 23.5b | 2.03b |
IBA (200 mg L−1) + Zn sulfate (200 mg L−1) (T14) | 29.6a | 22.8b | 2.74a |
IBA (200 mg L−1) + Zn sulfate (400 mg L−1) (T15) | 28.8a | 23.5b | 2.20ab |
IBA (400 mg L−1) (T16) | 26.5ab | 23.9b | 2.33ab |
IBA (400 mg L−1) + Zn sulfate (200 mg L−1) (T17) | 24.2b | 18.0c | 2.17b |
IBA (400 mg L−1) + Zn sulfate (400 mg L−1) (T18) | 29.0a | 22.9b | 2.92a |
Zn sulfate (200 mg L−1) (T19) | 23.2b | 19.3c | 1.87c |
Zn sulfate (400 mg L−1) (T20) | 21.5c | 19.1c | 1.80cd |
LSD (5%) | 5.52 | 4.59 | 0.60 |
Parameters→ Treatments↓ | NL (n) | NRC (n) | RP (%) | WRW (g) | DRW (g) | WLW (g) | DLW (g) | DSW (g) |
---|---|---|---|---|---|---|---|---|
Control (NAA + IBA + Zn sulfate = 0 mg L−1) (Control) | 20.5abcd | 7.3abc | 73.3abc | 4.5abc | 0.89abc | 12.6abcd | 3.4abcd | 0.57abc |
NAA (100 mg L−1) (T1) | 20.8abcd | 7.0abc | 70.1abc | 4.8abc | 0.97abc | 13.7abcd | 3.7abcd | 0.65abc |
NAA (100 mg L−1) + Zn sulfate (200 mg L−1)(T2) | 20.7abcd | 6.3abcde | 63.3abcde | 4.7abc | 0.95abc | 14.2abc | 3.9abc | 0.67abc |
NAA (100 mg L−1) + Zn sulfate (400 mg L−1)(T3) | 21.4abc | 6.8abcd | 68.3abcd | 4.1abc | 0.82abc | 11.9abcd | 3.2abcd | 0.49bc |
NAA (200 mg L−1) (T4) | 17.3bcd | 4.6dgef | 46.6defg | 3.2c | 0.65c | 11.1abcd | 3.0abcd | 0.47c |
NAA (200 mg L−1) + Zn sulfate (200 mg L−1)(T5) | 22.8ab | 6.1abcde | 61.6abcde | 5.2ab | 1.02ab | 14.3abc | 3.9abc | 0.67abc |
NAA (200 mg L−1) + Zn sulfate (400 mg L−1)(T6) | 19.9abcd | 5.3cdgef | 53.3bcde | 4.8abc | 0.97abc | 13.3abcd | 3.6abcd | 0.56abc |
NAA (400 mg L−1) (T7) | 20.3abcd | 3.5g | 35.0g | 3.9abc | 0.78abc | 11.5abcd | 3.2abcd | 0.61abc |
NAA (400 mg L−1) + Zn sulfate (200 mg L−1)(T8) | 16.4cd | 5.2cdgef | 51.6cdefg | 3.4bc | 0.68bc | 10.1cd | 2.8cd | 0.37c |
NAA (400 mg L−1) + Zn sulfate (400 mg L−1)(T9) | 19.2abcd | 5.5bcdefg | 55.0bcdefg | 3.4bc | 0.69bc | 9.2d | 2.5d | 0.39c |
IBA (100 mg L−1) (T10) | 20.9abcd | 6.7abcd | 66.6abcd | 5.3a | 1.07a | 13.6abcd | 3.7abcd | 0.57abc |
IBA (100 mg L−1) + Zn sulfate (200 mg L−1) (T11) | 18.9abcd | 7.3abc | 73.3abc | 3.6bc | 0.72bc | 13.5abcd | 3.7abcd | 0.57abc |
IBA (100 mg L−1) + Zn sulfate (400 mg L−1) (T12) | 22.6ab | 6.8abcd | 68.3abcd | 4.2abc | 0.84abc | 10.3bcd | 2.8cd | 0.49bc |
IBA (200mg L−1)(T13) | 19.0abcd | 5.7bcdefg | 56.6cdefg | 3.6abc | 0.73abc | 12.3abcd | 3.3abcd | 0.53abc |
IBA (200 mg L−1) + Zn sulfate (200 mg L−1) (T14) | 18.7abcd | 7.7ab | 76.6ab | 4.4abc | 0.89abc | 15.3a | 4.2a | 0.89ab |
IBA (200 mg L−1) + Zn sulfate (400 mg L−1) (T15) | 17.9abcd | 6.5abcd | 65.0abcd | 3.9abc | 0.80abc | 13.8abcd | 3.8abcd | 0.60abc |
IBA (400 mg L−1) (T16) | 18.8abcd | 4.0fg | 40.0fg | 3.9abc | 0.78abc | 13.7abcd | 3.7abcd | 0.63abc |
IBA (400 mg L−1) + Zn sulfate (200 mg L−1) (T17) | 15.2d | 4.1fg | 41.6fg | 3.2c | 0.65c | 10.2bcd | 2.8cd | 0.52abc |
IBA (400 mg L−1) + Zn sulfate (400 mg L−1) (T18) | 17.8bcd | 7.0abc | 70.3abc | 4.5abc | 0.90abc | 13.9abc | 3.8abc | 0.92a |
Zn sulfate (200 mg L−1)(T19) | 23.7a | 7.8a | 78.7a | 5.1ab | 1.00ab | 14.9ab | 4.1ab | 0.64abc |
Zn sulfate (400 mg L−1)(T20) | 19.6abcd | 6.8abcd | 68.3abcd | 4.8abc | 0.96abc | 13.5abcd | 3.7abcd | 0.58abc |
LSD (5%) | 5.8 | 2.2 | 22.03 | 1.7 | 0.34 | 4.7 | 1.3 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sourati, R.; Sharifi, P.; Poorghasemi, M.; Alves Vieira, E.; Seidavi, A.; Anjum, N.A.; Sehar, Z.; Sofo, A. Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings. Int. J. Plant Biol. 2022, 13, 245-256. https://doi.org/10.3390/ijpb13030021
Sourati R, Sharifi P, Poorghasemi M, Alves Vieira E, Seidavi A, Anjum NA, Sehar Z, Sofo A. Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings. International Journal of Plant Biology. 2022; 13(3):245-256. https://doi.org/10.3390/ijpb13030021
Chicago/Turabian StyleSourati, Reza, Peyman Sharifi, Mohammadreza Poorghasemi, Evandro Alves Vieira, Alireza Seidavi, Naser A. Anjum, Zebus Sehar, and Adriano Sofo. 2022. "Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings" International Journal of Plant Biology 13, no. 3: 245-256. https://doi.org/10.3390/ijpb13030021
APA StyleSourati, R., Sharifi, P., Poorghasemi, M., Alves Vieira, E., Seidavi, A., Anjum, N. A., Sehar, Z., & Sofo, A. (2022). Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings. International Journal of Plant Biology, 13(3), 245-256. https://doi.org/10.3390/ijpb13030021