Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Material
2.2. Chemical Reagents
2.3. Leaf Morpho-Physiological Traits at Different Stages in Canephora Coffee Leaves
- Chla = 0.0056x2 + 0.3014x + 0.6767 (r2 = 0.95),
- Chlb = 0.0014x2 + 0.2687x − 1.1945 (r2 = 0.94),
- Chltotal = 0.0080x2 + 0.5104x + 0.281 (r2 = 0.95),
- and Car = 0.0007x2 − 0.0094x + 0.5439 (r2 = 0.74), respectively.
2.4. Analysis of Phytochemical Compositions and Antioxidant Activity in Canephora Coffee Leaves
2.4.1. Preparing the Samples
2.4.2. Antioxidant Activity (AA)
2.4.3. Total Phenolic Content (TPC) and Total Tannin Content (TTC)
2.4.4. Total Flavonoid Content (TFC)
2.5. Statistical Analysis
3. Results
3.1. Leaf Morpho-Physiological Traits at Different Stages of Canephora Coffee Leaves
3.2. Phytochemical Contents and Antioxidant Activity at Different Stages of Canephora Coffee Leaves
4. Discussion
4.1. Leaf Morpho-Physiological Traits at Different Stages of Canephora Coffee Leaves
4.2. Phytochemical Contents and Antioxidant Activity at Different Stages of Canephora Coffee Leaves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertrand, C.; Noirot, M.; Doulbeau, S.; De Kochko, A.; Hamon, S.; Campa, C. Chlorogenic Acid Content Swap during Fruit Maturation in Coffea pseudozanguebariae Qualitative Comparison with Leaves. Plant Sci. 2003, 165, 1355–1361. [Google Scholar] [CrossRef]
- Echeverria, M.C.; Nuti, M. Valorisation of the Residues of Coffee Agro-Industry: Perspectives and Limitations. Open Waste Manag. J. 2017, 10, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Lambot, C.; Herrera, J.C.; Bertrand, B.; Sadeghian, S.; Benavides, P.; Gaita´n, A. Cultivating Coffee Quality Terroir and Agro-Ecosystem. In The Craft and Science of Coffee; Britta, F., Ed.; Elsevier Inc.: London, UK, 2017; pp. 17–49. [Google Scholar]
- Campa, C.; Urban, L.; Mondolot, L.; Fabre, D.; Roques, S.; Lizzi, Y.; Aarrouf, J.; Doulbeau, S.; Breitler, J.C.; Letrez, C.; et al. Juvenile Coffee Leaves Acclimated to Low Light Are Unable to Cope with a Moderate Light Increase. Front. Plant Sci. 2017, 8, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, L.; Léchaudel, M.; Lu, P. Effect of Fruit Load and Girdling on Leaf Photosynthesis in Mangifera indica L. J. Exp. Bot. 2004, 55, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kitts, D.D.; Ji, D.; Ding, J. Free Radical Scavenging Activities of Phytochemical Mixtures and Aqueous Methanolic Extracts Recovered from Processed Coffee Leaves. Int. J. Food Sci. Technol. 2019, 54, 2872–2879. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; de Rezende, T.R.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Patay, É.B.; Sali, N.; Koszegi, T.; Csepregi, R.; Balázs, V.L.; Németh, T.S.; Németh, T.; Papp, N. Antioxidant Potential, Tannin and Polyphenol Contents of Seed and Pericarp of Three Coffea Species. Asian Pac. J. Trop. Med. 2016, 9, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. A Review on Coffee Leaves: Phytochemicals, Bioactivities and Applications. Crit. Rev. Food Sci. Nutr. 2019, 59, 1008–1025. [Google Scholar] [CrossRef]
- Ratanamarno, S.; Surbkar, S. Caffeine and Catechins in Fresh Coffee Leaf (Coffea arabica) and Coffee Leaf Tea. Maejo Int. J. Sci. Technol. 2017, 11, 211–218. [Google Scholar]
- Novita, R.; Kasim, A.; Anggraini, T.; Putra, D.P. Kahwa Daun: Traditional Knowledge of a Coffee Leaf Herbal Tea from West Sumatera, Indonesia. J. Ethn. Foods 2018, 5, 286–291. [Google Scholar] [CrossRef]
- Chen, X.M.; Ma, Z.; Kitts, D.D. Effects of Processing Method and Age of Leaves on Phytochemical Profiles and Bioactivity of Coffee Leaves. Food Chem. 2018, 249, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Segatz, V.; Steger, M.C.; Blumenthal, P.; Gottstein, V.; Rigling, M.; Schwarz, S.; Zhang, Y.; Lachenmeier, D.W. Evaluation of Analytical Methods to Determine Regulatory Compliance of Coffee Leaf Tea. Biol. Life Sci. Forum 2021, 6, 45. [Google Scholar]
- Tritsch, N.; Steger, M.C.; Segatz, V.; Blumenthal, P.; Rigling, M.; Schwarz, S.; Zhang, Y.; Franke, H.; Lachenmeier, D.W. Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 2022, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R. Photosynthetic Pigments, Nitrogen, Chlorophyll a Fluorescence and SPAD-502 Readings in Coffee Leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Panda, S.K. Assay Guided Comparison for Enzymatic and Non-Enzymatic Antioxidant Activities with Special Reference to Medicinal Plants. In Antioxidant Enzyme; Intech: London, UK, 2012; pp. 381–400. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic Content and Antioxidant Activity of Olive Extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Doğan, A.; Uyak, C. A Different Approach for Grape Leaf Color. J. Agric. Fac. Gaziosmanpasa Univ. 2020, 37, 44–52. [Google Scholar] [CrossRef]
- Nurzaman, M.; Abadi, S.A.; Setiawati, T.; Mutaqin, A.Z. Characterization of the Phytochemical and Chlorophyll Content as Well as the Morphology and Anatomy of the Rhizophoraceae Family in the Mangrove Forest in Bulaksetra, Pangandaran. AIP Conf. Proc. 2018, 2021, 030015. [Google Scholar] [CrossRef]
- Bhakta, D.; Ganjewala, D. Effect of Leaf Positions on Total Phenolics, Flavonoids and Proanthocyanidins Content and Antioxidant Activities in Lantana camara (L). J. Sci. Res. 2009, 1, 363–369. [Google Scholar] [CrossRef]
- Pan, L.; Li, J.; Yin, H.; Fan, Z.; Li, X. Integrated Physiological and Transcriptomic Analyses Reveal a Regulatory Network of Anthocyanin Metabolism Contributing to the Ornamental Value in a Novel Hybrid Cultivar of Camellia japonica. Plants 2020, 9, 1724. [Google Scholar] [CrossRef]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V.; Agarwal, T.; González-Aguilar, G.A.; Yahia, E.M. Chlorophylls: Chemistry and Biological Functions. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Volume 1, pp. 269–284. [Google Scholar] [CrossRef]
- Acidri, R.; Sawai, Y.; Sugimoto, Y.; Handa, T.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants 2020, 9, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Patay, É.B.; Németh, T.; Németh, T.S.; Filep, R.; Vlase, L.; Papp, N. Histological and Phytochemical Studies of Coffea benghalensis B. Heyne Ex Schult., Compared with Coffea arabica L. Farmacia 2016, 64, 125–130. [Google Scholar]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC-MSn Analysis of the Cis Isomers of Chlorogenic Acids. Food Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- El Senousy, A.S.; Farag, M.A.; Al-Mahdy, D.A.; Wessjohann, L.A. Developmental Changes in Leaf Phenolics Composition from Three Artichoke Cvs. (Cynara scolymus) as Determined via UHPLC–MS and Chemometrics. Phytochemistry 2014, 108, 67–76. [Google Scholar] [CrossRef]
- Sielicka-Różyńska, M.; Isik, E.; Szulc, J. Comparison of Phenolic Content and Antioxidant Activity of Matcha, Green Leaf and White Leaf Tea Infusions. Bulg. J. Agric. Sci. 2020, 26, 1309–1314. [Google Scholar]
- Close, D.C.; McArthur, C. Rethinking the Role of Many Plant Phenolics—Protection from Photodamage Not Herbivores? Oikos 2002, 99, 166–172. [Google Scholar] [CrossRef]
Developmental Stages | LA (cm2) | DW (g) | SLA (cm2/g) |
---|---|---|---|
S1 | 3.57 ± 0.80 e | 0.03 ± 0.01 d | 115.98 ± 24.08 b |
S2 | 12.56 ± 1.67 d | 0.10 ± 0.01 c | 131.83 ± 18.23 b |
S3 | 19.32 ± 1.69 c | 0.12 ± 0.01 c | 161.91 ± 16.55 a |
S4 | 36.16 ± 2.33 b | 0.26 ± 0.03 b | 140.52 ± 27.07 ab |
S5 | 58.36 ± 2.26 a | 0.46 ± 0.03 a | 127.90 ± 11.36 b |
Developmental Stages | Leaf Color | |||
---|---|---|---|---|
(SPAD Unit) | (a*) | (b*) | (L*) | |
S1 | 10.00–18.00 | (−5.99)–\0.00 | 34.40–45.00 | 49.50–60.00 |
S2 | 18.01–23.99 | (−10.00)–\(−6.00) | 30.30–34.39 | 46.00–49.49 |
S3 | 24.00–27.99 | (−12.59)–\(−10.01) | 27.40–30.29 | 42.00–45.99 |
S4 | 28.00–37.99 | (−18.00)–\(−12.60) | 20.51–27.39 | 37.50–41.99 |
S5 | 38.00–45.00 | (−25.00)–\(−18.01) | 15.00–20.50 | 32.00–37.49 |
Developmental Stages | Chla (mg/cm2) | Chlb (mg/cm2) | Chltotal (mg/cm2) | Car (mg/cm2) |
---|---|---|---|---|
S1 | 6.31 ± 0.73 e | 3.05 ± 0.48 e | 9.50 ± 1.16 e | 0.56 ± 0.02 e |
S2 | 9.90 ± 0.90 d | 5.32 ± 0.55 d | 15.19 ± 1.42 d | 0.67 ± 0.03 d |
S3 | 12.17 ± 0.66 c | 6.66 ± 0.38 c | 18.75 ± 1.03 c | 0.77 ± 0.03 c |
S4 | 16.41 ± 1.71 b | 9.02 ± 0.92 b | 25.36 ± 2.65 b | 0.98 ± 0.09 b |
S5 | 22.51 ± 1.87 a | 12.20 ± 0.94 a | 34.75 ± 2.87 a | 1.34 ± 0.12 a |
Developmental Stages | Antioxidant Activity Content (mg Fe (II) Equivalent/g DW Extract) | Phenolic Compound Content (mg Gallic Acid Equivalent/g DW Extract) | Flavonoid Content (mg Catechin Equivalent/g DW Extract) | Tannin Content (mg Tannic Acid Equivalent/g DW Extract) |
---|---|---|---|---|
S1–S2 | 38.73 ± 0.36 a | 29.01 ± 0.28 a | 20.09 ± 0.88 a | 27.43 ± 1.19 a |
S3 | 35.04 ± 0.84 b | 25.68 ± 0.45 b | 17.26 ± 0.49 b | 25.01 ± 1.03 a |
S4–S5 | 22.14 ± 1.48 c | 18.76 ± 1.15 c | 14.46 ± 1.17 c | 15.36 ± 0.88 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxiselly, Y.; Anusornwanit, P.; Rugkong, A.; Chiarawipa, R.; Chanjula, P. Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. Int. J. Plant Biol. 2022, 13, 106-114. https://doi.org/10.3390/ijpb13020011
Maxiselly Y, Anusornwanit P, Rugkong A, Chiarawipa R, Chanjula P. Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. International Journal of Plant Biology. 2022; 13(2):106-114. https://doi.org/10.3390/ijpb13020011
Chicago/Turabian StyleMaxiselly, Yudithia, Pisamai Anusornwanit, Adirek Rugkong, Rawee Chiarawipa, and Pin Chanjula. 2022. "Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages" International Journal of Plant Biology 13, no. 2: 106-114. https://doi.org/10.3390/ijpb13020011
APA StyleMaxiselly, Y., Anusornwanit, P., Rugkong, A., Chiarawipa, R., & Chanjula, P. (2022). Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. International Journal of Plant Biology, 13(2), 106-114. https://doi.org/10.3390/ijpb13020011