Targeting the Roots of Psychosis: The Role of Aberrant Salience
Abstract
1. Introduction
2. Analysis of Early Psychotic Symptoms Contributing Factors to Aberrant Salience
3. Bonn’s Group Contribution: The Basic Symptoms
4. Aberrant Salience, Bayesian Theory and Reality Testing Inference
From the Definition of Prodrome to At-Risk Mental States and Help Seeking
5. Neurobiological Hypotheses and Connectivity Alterations
5.1. Dopaminergic Hypothesis
5.2. Glutamatergic Hypothesis
6. Aberrant Salience and Psychotic Ideation Research Methodologies
6.1. Neuroimaging and Aberrant Salience
6.2. Psychotic Risk, Cognitive Impairment and Neuropsychological Assessment
7. The Relevance of Early Diagnosis and Aberrant Salience Assessment in the Prevention of Psychosis
- -
- -
- Basic cognitive disturbances (SPI-A, SPI-CY profiles): Symptoms such as thought interference, receptive language disturbances, and derealization indicate vulnerability to psychosis. Metacognitive Training (MCT) and Cognitive Remediation Therapy can enhance cognitive flexibility and insight, reducing risk [78].
- -
- -
- -
- Genetic risk with symptom exacerbation (SIPS genetic risk criteria): Strong familial predisposition combined with functional deterioration suggests integrated pharmacological and psychosocial preventive strategies [164].
8. Therapeutic Approaches and Targeted Intervention Strategies in Psychosis Prevention
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yung, A.R.; McGorry, P.D.; McFarlane, C.A.; Jackson, H.J.; Patton, G.C.; Rakkar, A. Monitoring and Care of Young People at Incipient Risk of Psychosis. Schizophr. Bull. 1996, 22, 283–303. [Google Scholar] [CrossRef] [PubMed]
- Massuda, R. Schneider’s first-rank symptoms and treatment outcome. Braz. J. Psychiatry 2020, 42, 5. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Toffel, E.; Schmidt, S.; Eliez, S.; Armando, M.; Solida-Tozzi, A.; Schultze-Lutter, F.; Debbané, M. Détection et traitement précoce des sujets à haut risque clinique de psychose: Définitions et recommandations. Encephale 2017, 43, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.M.; David, A.S.; Ajnakina, O. Prevention of psychosis: Moving on from the at-risk mental state to universal primary prevention. Psychol. Med. 2021, 51, 223–227. [Google Scholar] [CrossRef]
- Godini, L.; Lelli, L.; Campone, B.; Ciampi, E.; Corsi, E.; Cravaro, V.R.; Ballerini, A. The clinical, psychopathological and neurobiological features of salience. Riv. Psichiatr. 2015, 50, 255–264. [Google Scholar] [CrossRef]
- Lisi, G.; Raballo, A.; Ribolsi, M.; Niolu, C.; Siracusano, A.; Preti, A. Aberrant salience in adolescents is related to indicators of psychopathology that are relevant in the prodromal phases of psychosis. Early Interv. Psychiatry 2021, 15, 856–864. [Google Scholar] [CrossRef]
- Raballo, A.; Parnas, J.M. Examination of Anomalous Self-Experience. J. Nerv. Ment. Dis. 2012, 200, 577–583. [Google Scholar] [CrossRef]
- Parnas, J.; Møller, P.; Kircher, T.; Thalbitzer, J.; Jansson, L.; Handest, P.; Zahavi, D.; Cermolacce, M.; Bovet, P. EASE: Évaluation des Anomalies de l’Expérience de Soi#. Encephale 2012, 38, S121–S145. [Google Scholar] [CrossRef]
- Nordgaard, J.; Henriksen, M.G.; Jansson, L.; Handest, P.; Møller, P.; Rasmussen, A.R.; Sandsten, K.E.; Nilsson, L.S.; Zandersen, M.; Zahavi, D.; et al. Disordered Selfhood in Schizophrenia and the Examination of Anomalous Self-Experience: Accumulated Evidence and Experience. Psychopathology 2021, 54, 275–281. [Google Scholar] [CrossRef]
- Harrison, P.J.; Weinberger, D.R. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol. Psychiatry 2005, 10, 40–68. [Google Scholar] [CrossRef]
- Crow, T. Genetic hypotheses for schizophrenia. Br. J. Psychiatry 2007, 191, 180. [Google Scholar] [CrossRef] [PubMed]
- Smigielski, L.; Jagannath, V.; Rössler, W.; Walitza, S.; Grünblatt, E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: A systematic review of empirical human findings. Mol. Psychiatry 2020, 25, 1718–1748. [Google Scholar] [CrossRef]
- Wahbeh, M.H.; Avramopoulos, D. Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes 2021, 12, 1850. [Google Scholar] [CrossRef] [PubMed]
- Murlanova, K.; Pletnikov, M.V. Modeling psychotic disorders: Environment x environment interaction. Neurosci. Biobehav. Rev. 2023, 152, 105310. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.; Bioque, M.; Cabrera, B.; Lobo, A.; González-Pinto, A.; Pina, L.; Corripio, I.; Sanjuán, J.; Mané, A.; Castro-Fornieles, J.; et al. Modelling gene-environment interaction in first episodes of psychosis. Schizophr. Res. 2017, 189, 181–189. [Google Scholar] [CrossRef]
- Robin, R.W.; Gottesman, I.I.; Albaugh, B.; Goldman, D. Schizophrenia and psychotic symptoms in families of two American Indian tribes. BMC Psychiatry 2007, 7, 30. [Google Scholar] [CrossRef]
- Myllyaho, T.; Siira, V.; Wahlberg, K.-E.; Hakko, H.; Läksy, K.; Roisko, R.; Niemelä, M.; Räsänen, S. Interaction of genetic vulnerability to schizophrenia and family functioning in adopted-away offspring of mothers with schizophrenia. Psychiatry Res. 2019, 278, 205–212. [Google Scholar] [CrossRef]
- Polderman, T.J.C.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; Van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef]
- Réthelyi, J.M.; Benkovits, J.; Bitter, I. Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neurosci. Biobehav. Rev. 2013, 37, 2424–2437. [Google Scholar] [CrossRef]
- Zwicker, A.; Fullerton, J.M.; Mullins, N.; Rice, F.; Hafeman, D.M.; van Haren, N.E.; Setiaman, N.; Merranko, J.A.; Goldstein, B.I.; Ferrera, A.G.; et al. Polygenic Scores and Onset of Major Mood or Psychotic Disorders Among Offspring of Affected Parents. Am. J. Psychiatry 2023, 180, 285–293. [Google Scholar] [CrossRef]
- Zwicker, A.; Denovan-Wright, E.M.; Uher, R. Gene–environment interplay in the etiology of psychosis. Psychol. Med. 2018, 48, 1925–1936. [Google Scholar] [CrossRef]
- Serretti, A.; Lattuada, E.; Lorenzi, C.; Lilli, R.; Smeraldi, E. Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses. Mol. Psychiatry 2000, 5, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Lencer, R.; Bishop, J.R.; Harris, M.S.H.; Reilly, J.L.; Patel, S.; Kittles, R.; Prasad, K.M.; Nimgaonkar, V.L.; Keshavan, M.S.; Sweeney, J.A. Association of variants in DRD2 and GRM3 with motor and cognitive function in first-episode psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Melbourne, J.K.; Rosen, C.; Feiner, B.; Sharma, R.P. C4A mRNA expression in PBMCs predicts the presence and severity of delusions in schizophrenia and bipolar disorder with psychosis. Schizophr. Res. 2018, 197, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Hatzimanolis, A.; Foteli, S.; Stefanatou, P.; Ntigrintaki, A.-A.; Ralli, I.; Kollias, K.; Nikolaou, C.; Gazouli, M.; Stefanis, N.C. Deregulation of complement components C4A and CSMD1 peripheral expression in first-episode psychosis and links to cognitive ability. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 1219–1228. [Google Scholar] [CrossRef]
- Li, J.; Yoshikawa, A.; Alliey-Rodriguez, N.; Meltzer, H.Y. Schizophrenia risk loci from xMHC region were associated with antipsychotic response in chronic schizophrenic patients with persistent positive symptom. Transl. Psychiatry 2022, 12, 92. [Google Scholar] [CrossRef]
- Chen, C.C.; Howie, J.; Ebrahimi, M.; Teymouri, K.; Woo, J.J.; Tiwari, A.K.; Zai, C.C.; Kennedy, J.L. Analysis of the complement component C4 gene with schizophrenia subphenotypes. Schizophr. Res. 2024, 271, 309–318. [Google Scholar] [CrossRef]
- Sekar, A.; Bialas, A.R.; De Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016, 530, 177–183. [Google Scholar] [CrossRef]
- Prasad, K.M.; Chowdari, K.V.; D’aiuto, L.A.; Iyengar, S.; Stanley, J.A.; Nimgaonkar, V.L. Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients—A pilot study. Transl. Psychiatry 2018, 8, 134. [Google Scholar] [CrossRef]
- Sønderby, I.E.; Ching, C.R.K.; Thomopoulos, S.I.; van der Meer, D.; Sun, D.; Villalon-Reina, J.E.; Agartz, I.; Amunts, K.; Arango, C.; Armstrong, N.J.; et al. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum. Brain Mapp. 2022, 43, 300–328. [Google Scholar] [CrossRef]
- Marshall, C.R.; Howrigan, D.P.; Merico, D.; Thiruvahindrapuram, B.; Wu, W.; Greer, D.S.; Antaki, D.; Shetty, A.; Holmans, P.A.; Pinto, D.; et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 2017, 49, 27–35. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental disorders—The history and future of a diagnosticconcept. Dialog- Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.M.; Bracher-Smith, M.; Fitzpatrick, H.; Lynham, A.; Rees, E.; Escott-Price, V.; Owen, M.J.; O’Donovan, M.C.; Walters, J.T.; Kirov, G. Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: Analysis of the UK Biobank. Br. J. Psychiatry 2019, 214, 297–304. [Google Scholar] [CrossRef]
- Owen, M.J.; Doherty, J.L. What can we learn from the high rates of schizophrenia in people with 22q11.2 deletion syndrome? World Psychiatry 2016, 15, 23–25. [Google Scholar] [CrossRef]
- Maury, E.A.; Sherman, M.A.; Genovese, G.; Gilgenast, T.G.; Kamath, T.; Burris, S.; Rajarajan, P.; Flaherty, E.; Akbarian, S.; Chess, A.; et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genom. 2023, 3, 100356. [Google Scholar] [CrossRef]
- Niarchou, M.; Moore, T.M.; Tang, S.X.; Calkins, M.E.; McDonald-McGuinn, D.M.; Zackai, E.H.; Emanuel, B.S.; Gur, R.C.; Gur, R.E. The dimensional structure of psychopathology in 22q11.2 Deletion Syndrome. J. Psychiatr. Res. 2017, 92, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Cleynen, I.; Engchuan, W.; Hestand, M.S.; Heung, T.; Holleman, A.M.; Johnston, H.R.; Monfeuga, T.; McDonald-McGinn, D.M.; Gur, R.E.; Morrow, B.E.; et al. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol. Psychiatry 2021, 26, 4496–4510. [Google Scholar] [CrossRef] [PubMed]
- Avramopoulos, D. Neuregulin 3 and its roles in schizophrenia risk and presentation. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2018, 177, 257–266. [Google Scholar] [CrossRef]
- Bossche, M.J.V.D.; Docx, L.; Morrens, M.; Cammaerts, S.; Strazisar, M.; Bervoets, C.; Smolders, S.; Depreeuw, V.; Lenaerts, A.-S.; De Rijk, P.; et al. Less Cognitive and Neurological Deficits in Schizophrenia Patients Carrying Risk Variant in ZNF804A. Neuropsychobiology 2012, 66, 158–166. [Google Scholar] [CrossRef]
- Holen, B.; Shadrin, A.A.; Icick, R.; Filiz, T.T.; Hindley, G.; Rødevand, L.; O’Connell, K.S.; Hagen, E.; Frei, O.; Bahrami, S.; et al. Genome-wide analyses reveal novel opioid use disorder loci and genetic overlap with schizophrenia, bipolar disorder, and major depression. Addict. Biol. 2023, 28, e13282. [Google Scholar] [CrossRef]
- Lee, P.H.; Anttila, V.; Won, H.; Feng, Y.C.A.; Rosenthal, J.; Zhu, Z.; Tucker-Drob, E.M.; Nivard, M.G.; Grotzinger, A.D.; Posthuma, D.; et al. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 2019, 179, 1469–1482.e11. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019, 51, 793–803. [Google Scholar] [CrossRef]
- Als, T.D.; Kurki, M.I.; Grove, J.; Voloudakis, G.; Therrien, K.; Tasanko, E.; Nielsen, T.T.; Naamanka, J.; Veerapen, K.; Levey, D.F.; et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 2023, 29, 1832–1844. [Google Scholar] [CrossRef]
- Marano, G.; Mazza, M.; Lisci, F.M.; Ciliberto, M.; Traversi, G.; Kotzalidis, G.D.; De Berardis, D.; Laterza, L.; Sani, G.; Gasbarrini, A.; et al. The Microbiota–Gut–Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023, 15, 1496. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Guo, P.; Li, Y.; Liu, L.; Yan, R.; Liu, S.; Wang, S.; Xue, F.; Zhou, X.; Yuan, Z. Role of the Gut-Brain Axis in the Shared Genetic Etiology Between Gastrointestinal Tract Diseases and Psychiatric Disorders. JAMA Psychiatry 2023, 80, 360. [Google Scholar] [CrossRef]
- Marconi, A.; Di Forti, M.; Lewis, C.M.; Murray, R.M.; Vassos, E. Meta-analysis of the Association Between the Level of Cannabis Use and Risk of Psychosis. Schizophr. Bull. 2016, 42, 1262–1269. [Google Scholar] [CrossRef]
- Varese, F.; Smeets, F.; Drukker, M.; Lieverse, R.; Lataster, T.; Viechtbauer, W.; Read, J.; van Os, J.; Bentall, R.P. Childhood Adversities Increase the Risk of Psychosis: A Meta-analysis of Patient-Control, Prospective- and Cross-sectional Cohort Studies. Schizophr. Bull. 2012, 38, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Adler, N.E.; Boyce, T.; Chesney, M.A.; Cohen, S.; Folkman, S.; Kahn, R.L.; Syme, S.L. Socioeconomic status and health: The challenge of the gradient. Am. Psychol. 1994, 49, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Yu, B.; Le, T.P.; Weintraub, M.J.; Zinberg, J.; Addington, J.; O’Brien, M.P.; Walsh, B.C.; Friedman-Yakoobian, M.; Auther, A.; Cornblatt; et al. Race/ethnicity and socioeconomic status as predictors of outcome following family therapy in youth at clinical high risk for psychosis. Early Interv. Psychiatry 2024, 18, 981–990. [Google Scholar] [CrossRef]
- Vargas, T.; Rouhakhtar, P.J.R.; Schiffman, J.; Zou, D.S.; Rydland, K.J.; Mittal, V.A. Neighborhood crime, socioeconomic status, and suspiciousness in adolescents and young adults at Clinical High Risk (CHR) for psychosis. Schizophr. Res. 2020, 215, 74–80. [Google Scholar] [CrossRef]
- Jester, D.J.; Thomas, M.L.; Sturm, E.T.; Harvey, P.D.; Keshavan, M.; Davis, B.J.; Saxena, S.; Tampi, R.; Leutwyler, H.; Compton, M.T.; et al. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: I. Clinical Outcomes. Schizophr. Bull. 2023, 49, 837–850. [Google Scholar] [CrossRef]
- Thompson, A.D.; Nelson, B.; Yuen, H.P.; Lin, A.; Amminger, G.P.; McGorry, P.D.; Wood, S.J.; Yung, A.R. Sexual Trauma Increases the Risk of Developing Psychosis in an Ultra High-Risk “Prodromal” Population. Schizophr. Bull. 2014, 40, 697–706. [Google Scholar] [CrossRef]
- Peh, O.H.; Rapisarda, A.; Lee, J. Childhood adversities in people at ultra-high risk (UHR) for psychosis: A systematic review and meta-analysis. Psychol. Med. 2019, 49, 1089–1101. [Google Scholar] [CrossRef]
- Barbeito, S.; Gómez-Juncal, R.; Vega, P.; Becerra, J.A.; Petkari, E.; González-Pinto, A.; Sánchez-Gutiérrez, T. Attachment styles and associated psychosocial factors in patients at ultra-high risk for psychosis: A systematic review. Int. J. Soc. Psychiatry 2024, 70, 850–860. [Google Scholar] [CrossRef]
- O’Donoghue, B.; Oliver, D.; Geros, H.; Sizer, H.; Thompson, A.; McGorry, P.; Nelson, B. Enriching ultra-high risk for psychosis cohorts based on accumulated exposure to environmental risk factors for psychotic disorders. Psychol. Med. 2024, 54, 4255–4263. [Google Scholar] [CrossRef] [PubMed]
- Lubman, D.I.; Cheetham, A.; Yücel, M. Cannabis and adolescent brain development. Pharmacol. Ther. 2015, 148, 1–16. [Google Scholar] [CrossRef]
- DeRosse, P.; Karlsgodt, K.H. Examining the Psychosis Continuum. Curr. Behav. Neurosci. Rep. 2015, 2, 80–89. [Google Scholar] [CrossRef]
- van Os, J.; Hanssen, M.; Bijl, R.V.; Vollebergh, W. Prevalence of Psychotic Disorder and Community Level of Psychotic Symptoms. Arch. Gen. Psychiatry 2001, 58, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, M.; Numminen, L.; Holm, M.; Therman, S.; Tuulio-Henriksson, A. Psychotic-like experiences of young adults in the general population predict mental disorders. Psychiatry Res. 2022, 312, 114543. [Google Scholar] [CrossRef] [PubMed]
- Rietdijk, J.; Fokkema, M.; Stahl, D.; Valmaggia, L.; Ising, H.K.; Dragt, S.; Klaassen, R.M.C.; Nieman, D.H.; Loewy, R.; Cuijpers, P.; et al. The distribution of self-reported psychotic-like experiences in non-psychotic help-seeking mental health patients in the general population; a factor mixture analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 349–358. [Google Scholar] [CrossRef]
- Kendler, K.S.; Gallagher, T.J.; Abelson, J.M.; Kessler, R.C. Lifetime Prevalence, Demographic Risk Factors, and Diagnostic Validity of Nonaffective Psychosis as Assessed in a US Community Sample. Arch. Gen. Psychiatry 1996, 53, 1022. [Google Scholar] [CrossRef]
- Ohayon, M.M. Prevalence of hallucinations and their pathological associations in the general population. Psychiatry Res. 2000, 97, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Wroński, M.; Samochowiec, J. Unravelling early transdiagnostic dynamics of psychotic-like experiences in young adults: Results from a cross-lagged panel network analysis. Compr. Psychiatry 2025, 139, 152594. [Google Scholar] [CrossRef] [PubMed]
- Cowan, H.R.; Mittal, V.A. Three types of psychotic-like experiences in youth at clinical high risk for psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 733–744. [Google Scholar] [CrossRef]
- Kelleher, I.; Cannon, M. A neural efficiency-threshold model to understand psychotic experiences. Psychol. Med. 2021, 51, 1777–1782. [Google Scholar] [CrossRef]
- Lindgren, M.; Therman, S. Psychotic-like experiences in a nationally representative study of general population adolescents. Schizophr. Res. 2024, 270, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Miret, S.; Fatjó-Vilas, M.; Peralta, V.; Fañanás, L. Síntomas básicos en la esquizofrenia, su estudio clínico y relevancia en investigación. Rev. de Psiquiatr. Y Salud Ment. 2016, 9, 111–122. [Google Scholar] [CrossRef]
- Gross, G. The ‘Basic’ Symptoms of Schizophrenia. Br. J. Psychiatry 1989, 155, 21–25. [Google Scholar] [CrossRef]
- Gross, G. The onset of schizophrenia. Schizophr. Res. 1997, 28, 187–198. [Google Scholar] [CrossRef]
- Schultze-Lutter, F.; Debbané, M.; Theodoridou, A.; Wood, S.J.; Raballo, A.; Michel, C.; Schmidt, S.J.; Kindler, J.; Ruhrmann, S.; Uhlhaas, P.J. Revisiting the Basic Symptom Concept: Toward Translating Risk Symptoms for Psychosis into Neurobiological Targets. Front. Psychiatry 2016, 7, 9. [Google Scholar] [CrossRef]
- Pec, O.; Lysaker, P.H.; Bob, P. Basic symptoms of schizophrenia are related to symptoms of traumatic stress: A pivotal role of sensitization. An observational study. Medicine 2022, 101, e29517. [Google Scholar] [CrossRef]
- Youn, S.; Phillips, L.; Amminger, G.; Berger, G.; Chen, E.; de Haan, L.; Hartmann, J.; Hickie, I.; Lavoie, S.; Markulev, C.; et al. Basic symptoms in young people at ultra-high risk of psychosis: Association with clinical characteristics and outcomes. Schizophr. Res. 2020, 216, 255–261. [Google Scholar] [CrossRef]
- Schultze-Lutter, F.; Ruhrmann, S.; Fusar-Poli, P.; Bechdolf, A.; Schimmelmann, B.G.; Klosterkotter, J. Basic Symptoms and the Prediction of First-Episode Psychosis. Curr. Pharm. Des. 2012, 18, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Maggini, C.; Raballo, A. Alexithymia and schizophrenic psychopathology. Acta Biomed 2004, 75, 40–49. [Google Scholar] [PubMed]
- Lindhardt, L.; Lindhardt, M.; Haahr, U.H.; Hastrup, L.H.; Simonsen, E.; Nordgaard, J. Help-Seekers in an Early Detection of Psychosis Service: The Non-cases. Front. Psychiatry 2021, 12, 778785. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Gross, G. The concept of basic symptoms in schizophrenic and schizoaffective psychoses. Recenti. Prog. Med. 1989, 80, 646–652. [Google Scholar]
- Schultze-Lutter, F. Subjective Symptoms of Schizophrenia in Research and the Clinic: The Basic Symptom Concept. Schizophr. Bull. 2009, 35, 5–8. [Google Scholar] [CrossRef]
- Meller, T.; Lundberg, C.; Maj, C.; Hoffmann, P.; Forstner, A.J.; Nöthen, M.M.; Nenadić, I. Schizotypy, Psychosis Proneness, and the Polygenic Risk for Schizophrenia and Resilience. Schizophr. Bull. 2025, 51 (Suppl. 2), S85–S94. [Google Scholar] [CrossRef]
- Meng, H.; Schimmelmann, B.G.; Koch, E.; Bailey, B.; Parzer, P.; Günter, M.; Mohler, B.; Kunz, N.; Schulte-Markwort, M.; Felder, W.; et al. Basic symptoms in the general population and in psychotic and non-psychotic psychiatric adolescents. Schizophr. Res. 2009, 111, 32–38. [Google Scholar] [CrossRef]
- Grant, S.G.N.; O’Dell, T.J.; Karl, K.A.; Stein, P.L.; Soriano, P.; Kandel, E.R. Impaired Long-Term Potentiation, Spatial Learning, and Hippocampal Development in fyn Mutant Mice. Science 1992, 258, 1903–1910. [Google Scholar] [CrossRef]
- Kapur, S.; Mizrahi, R.; Li, M. From dopamine to salience to psychosis—Linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 2005, 79, 59–68. [Google Scholar] [CrossRef]
- Baklushev, M.; Nazarova, M.; Novikov, P.; Nikulin, V. Methods for assessing aberrant and adaptive salience. S.S. Korsakov J. Neurol. Psychiatry 2023, 123, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Hird, E.J.; Adams, R.A.; Corlett, P.R.; McGuire, P. Aberrant Salience, Information Processing, and Dopaminergic Signaling in People at Clinical High Risk for Psychosis. Biol. Psychiatry 2020, 88, 304–314. [Google Scholar] [CrossRef]
- Friston, K.; Brown, H.R.; Siemerkus, J.; Stephan, K.E. The dysconnection hypothesis. Schizophr. Res. 2016, 176, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, J.O.; Joa, I. Modern understanding of psychosis: From brain disease to stress disorder. And some other important aspects of psychosis…. Psychosis 2021, 13, 289–301. [Google Scholar] [CrossRef]
- Birchwood, M.; Todd, P.; Jackson, C. Early intervention in psychosis. The critical period hypothesis. Br. J. Psychiatry Suppl. 1998, 172, 53–59. [Google Scholar] [CrossRef]
- Häfner, H.; Maurer, K.; Trendler, G.; der Heiden, W.A.; Schmidt, M. The early course of schizophrenia and depression*. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 167–173. [Google Scholar] [CrossRef]
- Merola, G.P.; Patti, A.; Catania, G.; Boy, O.B.; Noschese, I.; Becerra, Á.R.; Garcelán, S.P.; Munuera, C.C.; Rodríguez-Testal, J.F.; Di Lorenzo, G.; et al. Phenomenological psychopathology meets machine learning: A multicentric retrospective study (Mu.St.A.R.D.) targeting the role of Aberrant Salience assessment in psychosis detection. Schizophr. Res. 2025, 281, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Yung, A.R.; Stanford, C.; Cosgrave, E.; Killackey, E.; Phillips, L.; Nelson, B.; McGorry, P.D. Testing the Ultra High Risk (prodromal) criteria for the prediction of psychosis in a clinical sample of young people. Schizophr. Res. 2006, 84, 57–66. [Google Scholar] [CrossRef]
- Moreno-Küstner, B.; Martín, C.; Pastor, L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE 2018, 13, e0195687. [Google Scholar] [CrossRef]
- de Pablo, G.S.; Woods, S.W.; Drymonitou, G.; de Diego, H.; Fusar-Poli, P. Prevalence of Individuals at Clinical High-Risk of Psychosis in the General Population and Clinical Samples: Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 1544. [Google Scholar] [CrossRef]
- de Pablo, G.S.; Radua, J.; Pereira, J.; Bonoldi, I.; Arienti, V.; Besana, F.; Soardo, L.; Cabras, A.; Fortea, L.; Catalan, A.; et al. Probability of Transition to Psychosis in Individuals at Clinical High Risk. JAMA Psychiatry 2021, 78, 970. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Carpenter, W.; Woods, S.; McGlashan, T. Attenuated Psychosis Syndrome: Ready for DSM-5.1? Annu. Rev. Clin. Psychol. 2014, 10, 155–192. [Google Scholar] [CrossRef] [PubMed]
- Hazan, H.; Ferrara, M.; Zhou, B.; Li, F.; Imetovski, S.; Yoviene Sykes, L.A.; Pollard, J.; Cahill, J.; Gibbs-Dean, T.; Corbera, S.; et al. Enhancing Coordinated Specialty Care Through Early Detection: Impact of Reduced Duration of Untreated Psychosis. Schizophr. Bull. 2025, sbaf044. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Borgwardt, S.; Bechdolf, A.; Addington, J.; Riecher-Rössler, A.; Schultze-Lutter, F.; Keshavan, M.; Wood, S.; Ruhrmann, S.; Seidman, L.J.; et al. The Psychosis High-Risk State. JAMA Psychiatry 2013, 70, 107–120. [Google Scholar] [CrossRef]
- McHugh, M.; McGorry, P.; Yuen, H.; Hickie, I.; Thompson, A.; de Haan, L.; Mossaheb, N.; Smesny, S.; Lin, A.; Markulev, C.; et al. The Ultra-High-Risk for psychosis groups: Evidence to maintain the status quo. Schizophr. Res. 2018, 195, 543–548. [Google Scholar] [CrossRef]
- Polari, A.; Lavoie, S.; Yuen, H.-P.; Amminger, P.; Berger, G.; Chen, E.; Dehaan, L.; Hartmann, J.; Markulev, C.; Melville, F.; et al. Clinical trajectories in the ultra-high risk for psychosis population. Schizophr. Res. 2018, 197, 550–556. [Google Scholar] [CrossRef]
- Catalan, A.; de Pablo, G.S.; Aymerich, C.; Damiani, S.; Sordi, V.; Radua, J.; Oliver, D.; McGuire, P.; Giuliano, A.J.; Stone, W.S.; et al. Neurocognitive Functioning in Individuals at Clinical High Risk for Psychosis. JAMA Psychiatry 2021, 78, 859–867. [Google Scholar] [CrossRef]
- West, M.L.; Pfluger, J.; Sharif, S.; Goods, C.; Friedman-Yakoobian, M. Enhancing Role Functioning in Clinical High Risk for Psychosis: An Open Trial of "InVEST" (Individualised Vocational and Educational Support and Training). Early Interv. Psychiatry 2025, 19, e70041. [Google Scholar] [CrossRef]
- Yung, A.R.; Phillips, L.J.; Yuen, H.P.; McGorry, P.D. Risk factors for psychosis in an ultra high-risk group: Psychopathology and clinical features. Schizophr. Res. 2004, 67, 131–142. [Google Scholar] [CrossRef]
- Ruhrmann, S.; Schultze-Lutter, F.; Maier, W.; Klosterkötter, J. Pharmacological intervention in the initial prodromal phase of psychosis. Eur. Psychiatry 2005, 20, 1–6. [Google Scholar] [CrossRef]
- Yung, A.R.; Nelson, B. Young people at ultra high risk for psychosis: A research update. Early Interv. Psychiatry 2011, 5, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Pelizza, L.; Poletti, M.; Azzali, S.; Paterlini, F.; Garlassi, S.; Scazza, I.; Chiri, L.R.; Pupo, S.; Pompili, M.; Raballo, A. Suicide risk in young people at Ultra-High Risk (UHR) of psychosis: Findings from a 2-year longitudinal study. Schizophr. Res. 2020, 220, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Yung, A.R.; Nelson, B.; Brewer, W.J.; Riley, R.; Simmons, M.; Pantelis, C.; Wood, S.J. Neurocognitive predictors of transition to psychosis: Medium- to long-term findings from a sample at ultra-high risk for psychosis. Psychol. Med. 2013, 43, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef]
- Stahl, S.M. Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectrums 2016, 21, 355–359. [Google Scholar] [CrossRef]
- Ballanger, B.; Strafella, A.P.; van Eimeren, T.; Zurowski, M.; Rusjan, P.M.; Houle, S.; Fox, S.H. Serotonin 2A Receptors and Visual Hallucinations in Parkinson Disease. Arch. Neurol. 2010, 67, 416–421. [Google Scholar] [CrossRef]
- Cummings, J.; Ballard, C.; Tariot, P.; Owen, R.; Foff, E.; Youakim, J.; Norton, J.; Stankovic, S. Pimavanserin: Potential Treatment For Dementia-Related Psychosis. J. Prev. Alzheimer’s Dis. 2018, 5, 253–258. [Google Scholar] [CrossRef]
- Niolu, C.; Bianciardi, E.; Di Lorenzo, G.; Marchetta, C.; Barone, Y.; Sterbini, N.; Ribolsi, M.; Reggiardo, G.; Siracusano, A. Enhancing adherence, subjective well-being and quality of life in patients with schizophrenia: Which role for long-acting risperidone? Ther. Adv. Psychopharmacol. 2015, 5, 278–288. [Google Scholar] [CrossRef]
- Bonoldi, I.; Howes, O.D. The Enduring Centrality of Dopamine in the Pathophysiology of Schizophrenia. Adv. Pharmacol. 2013, 68, 199–220. [Google Scholar] [CrossRef]
- Howes, O.D.; Bose, S.K.; Turkheimer, F.; Valli, I.; Egerton, A.; Valmaggia, L.R.; Murray, R.M.; McGuire, P. Dopamine Synthesis Capacity Before Onset of Psychosis: A Prospective [18F]-DOPA PET Imaging Study. Am. J. Psychiatry 2011, 168, 1311–1317. [Google Scholar] [CrossRef]
- Howes, O.D.; Montgomery, A.J.; Asselin, M.-C.; Murray, R.M.; Valli, I.; Tabraham, P.; Bramon-Bosch, E.; Valmaggia, L.; Johns, L.; Broome, M.; et al. Elevated Striatal Dopamine Function Linked to Prodromal Signs of Schizophrenia. Arch. Gen. Psychiatry 2009, 66, 13. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.J.; Stergiakouli, E.; Tansey, K.E.; Hubbard, L.; Heron, J.; Cannon, M.; Holmans, P.; Lewis, G.; Linden, D.E.J.; Jones, P.B.; et al. Phenotypic Manifestation of Genetic Risk for Schizophrenia During Adolescence in the General Population. JAMA Psychiatry 2016, 73, 221–228. [Google Scholar] [CrossRef]
- Smith, C.M.; Gilbert, E.B.; Riordan, P.A.; Helmke, N.; von Isenburg, M.; Kincaid, B.R.; Shirey, K.G. COVID-19-associated psychosis: A systematic review of case reports. Gen. Hosp. Psychiatry 2021, 73, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.L.; Sachdeva, S.; Stahl, S.M. Genetic Data Supporting the NMDA Glutamate Receptor Hypothesis for Schizophrenia. Curr. Pharm. Des. 2012, 18, 1580–1592. [Google Scholar] [CrossRef]
- Krystal, J.H. Effects of NMDA Receptor Antagonists: Implications for the Pathophysiology of Schizophrenia. Arch. Gen. Psychiatry 2002, 59, 663–664. [Google Scholar] [CrossRef]
- Snyder, M.A.; Gao, W.-J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front. Cell. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef]
- Kaur, C.; Sivakumar, V.; Ang, L.S.; Sundaresan, A. Hypoxic damage to the periventricular white matter in neonatal brain: Role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J. Neurochem. 2006, 98, 1200–1216. [Google Scholar] [CrossRef]
- El-Khodor, B.F.; Flores, G.; Srivastava, L.K.; Boksa, P. Effects of birth insult and stress at adulthood on excitatory amino acid receptors in adult rat brain. Synapse 2004, 54, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, A.-M.; Jennische, E.; Hansson, H.-A.; Holmäng, A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am. J. Physiol. Integr. Comp. Physiol. 2006, 290, R1345–R1356. [Google Scholar] [CrossRef]
- Owen, D.; Setiawan, E.; Li, A.; McCabe, L.; Matthews, S.G. Regulation of N-Methyl-d-Aspartate Receptor Subunit Expression in the Fetal Guinea Pig Brain1. Biol. Reprod. 2004, 71, 676–683. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Wang, C.-J.; Gamo, N.J.; Jin, L.E.; Mazer, J.A.; Morrison, J.H.; Wang, X.-J.; Arnsten, A.F. NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex. Neuron 2013, 77, 736–749. [Google Scholar] [CrossRef]
- Feinberg, I. Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 1982, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- McGlashan, T.H.; Johannessen, J.O. Early Detection and Intervention with Schizophrenia: Rationale. Schizophr. Bull. 1996, 22, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Curley, A.A.; Arion, D.; Volk, D.W.; Asafu-Adjei, J.K.; Sampson, A.R.; Fish, K.N.; Lewis, D.A. Cortical Deficits of Glutamic Acid Decarboxylase 67 Expression in Schizophrenia: Clinical, Protein, and Cell Type-Specific Features. Am. J. Psychiatry 2011, 168, 921–929. [Google Scholar] [CrossRef]
- Hyde, T.M.; Lipska, B.K.; Ali, T.; Mathew, S.V.; Law, A.J.; Metitiri, O.E.; Straub, R.E.; Ye, T.; Colantuoni, C.; Herman, M.M.; et al. Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia. J. Neurosci. 2011, 31, 11088–11095. [Google Scholar] [CrossRef]
- Floresco, S.B.; Todd, C.L.; Grace, A.A. Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons. J. Neurosci. 2001, 21, 4915–4922. [Google Scholar] [CrossRef] [PubMed]
- Haijma, S.V.; Van Haren, N.; Cahn, W.; Koolschijn, P.C.M.P.; Pol, H.E.H.; Kahn, R.S. Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects. Schizophr. Bull. 2013, 39, 1129–1138. [Google Scholar] [CrossRef]
- Blakemore, S.-J. Imaging brain development: The adolescent brain. NeuroImage 2012, 61, 397–406. [Google Scholar] [CrossRef]
- Pol, H.E.H.; Kahn, R.S. What Happens After the First Episode? A Review of Progressive Brain Changes in Chronically Ill Patients with Schizophrenia. Schizophr. Bull. 2007, 34, 354–366. [Google Scholar] [CrossRef]
- Pol, H.E.H.; Brans, R.G.; van Haren, N.E.; Schnack, H.G.; Langen, M.; Baaré, W.F.; van Oel, C.J.; Kahn, R.S. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol. Psychiatry 2004, 55, 126–130. [Google Scholar] [CrossRef]
- Cahn, W.; van Haren, N.E.M.; Pol, H.E.H.; Schnack, H.G.; Caspers, E.; Laponder, D.A.J.; Kahn, R.S. Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. Br. J. Psychiatry 2006, 189, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Van Haren, N.; Cahn, W.; Pol, H.H.; Kahn, R. Confounders of excessive brain volume loss in schizophrenia. Neurosci. Biobehav. Rev. 2013, 37, 2418–2423. [Google Scholar] [CrossRef] [PubMed]
- van Haren, N.E.M.; Schnack, H.G.; Cahn, W.; Lepage, C.; Collins, L.; Evans, A.C.; Pol, H.E.H.; Kahn, R.S. Changes in Cortical Thickness During the Course of Illness in Schizophrenia. Arch. Gen. Psychiatry 2011, 68, 871. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, N.C.; Liu, D.; Ziebell, S.; Vora, A.; Ho, B.-C. Relapse Duration, Treatment Intensity, and Brain Tissue Loss in Schizophrenia: A Prospective Longitudinal MRI Study. Am. J. Psychiatry 2013, 170, 609–615. [Google Scholar] [CrossRef]
- Kahn, R.S.; Sommer, I.E. The neurobiology and treatment of first-episode schizophrenia. Mol. Psychiatry 2015, 20, 84–97. [Google Scholar] [CrossRef]
- Berkovitch, L.; Charles, L.; Del Cul, A.; Hamdani, N.; Delavest, M.; Sarrazin, S.; Mangin, J.-F.; Guevara, P.; Ji, E.; D’Albis, M.-A.; et al. Disruption of Conscious Access in Psychosis Is Associated with Altered Structural Brain Connectivity. J. Neurosci. 2021, 41, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bo, Q.; Zhang, Z.; Chen, Z.; Wang, Y.; Zhang, D.; Li, T.; Yang, N.; Zhou, Y.; Wang, C. Altered Dynamic Functional Connectivity in Early Psychosis Between the Salience Network and Visual Network. Neuroscience 2022, 491, 166–175. [Google Scholar] [CrossRef]
- Lefebvre, S.; Gehrig, G.; Nadesalingam, N.; Nuoffer, M.G.; Kyrou, A.; Wüthrich, F.; Walther, S. The pathobiology of psychomotor slowing in psychosis: Altered cortical excitability and connectivity. Brain 2024, 147, 1423–1435. [Google Scholar] [CrossRef]
- del Re, E.C.; Bouix, S.; Fitzsimmons, J.; Blokland, G.A.; Mesholam-Gately, R.; Wojcik, J.; Kikinis, Z.; Kubicki, M.; Petryshen, T.; Pasternak, O.; et al. Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Res. 2019, 277, 45–51. [Google Scholar] [CrossRef]
- Park, H.-J.; Westin, C.-F.; Kubicki, M.; Maier, S.E.; Niznikiewicz, M.; Baer, A.; Frumin, M.; Kikinis, R.; Jolesz, F.A.; McCarley, R.W.; et al. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: A diffusion tensor MRI study. NeuroImage 2004, 23, 213–223. [Google Scholar] [CrossRef]
- Podwalski, P.; Tyburski, E.; Szczygieł, K.; Waszczuk, K.; Rek-Owodziń, K.; Mak, M.; Plichta, P.; Bielecki, M.; Rudkowski, K.; Kucharska-Mazur, J.; et al. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J. Clin. Med. 2021, 10, 2225. [Google Scholar] [CrossRef] [PubMed]
- Podwalski, P.; Tyburski, E.; Szczygieł, K.; Rudkowski, K.; Waszczuk, K.; Andrusewicz, W.; Kucharska-Mazur, J.; Michalczyk, A.; Mak, M.; Cyranka, K.; et al. Psychopathology and Integrity of the Superior Longitudinal Fasciculus in Deficit and Nondeficit Schizophrenia. Brain Sci. 2022, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.; Deep, R.; Khandelwal, S.K.; Garg, A. Reduced integrity of superior longitudinal fasciculus and arcuate fasciculus as a marker for auditory hallucinations in schizophrenia: A DTI tractography study. Asian J. Psychiatry 2019, 44, 179–186. [Google Scholar] [CrossRef]
- Bernal, B.; Altman, N. The connectivity of the superior longitudinal fasciculus: A tractography DTI study. Magn. Reson. Imaging 2010, 28, 217–225. [Google Scholar] [CrossRef]
- Tang, B.; Yao, L.; Strawn, J.R.; Zhang, W.; Lui, S. Neurostructural, Neurofunctional, and Clinical Features of Chronic, Untreated Schizophrenia: A Narrative Review. Schizophr. Bull. 2025, 51, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Kim, M.-K.; Bang, S.Y.; Bang, M.; Lee, S.-H. White matter integrity associated with severity reductions in positive symptoms after amisulpride treatment in drug-free patients with schizophrenia. Neurosci. Lett. 2018, 685, 131–136. [Google Scholar] [CrossRef]
- Sagarwala, R.; Nasrallah, H.A. The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: A review of DTI studies. Asian J. Psychiatry 2021, 61, 102688. [Google Scholar] [CrossRef]
- Pigoni, A.; Delvecchio, G.; Dusi, N.; Schiena, G.; Andreella, A.; Finos, L.; Cecchetto, F.; Perlini, C.; Rossetti, M.G.; Ferro, A.; et al. Insula volumes in first-episode and chronic psychosis: A longitudinal MRI study. Schizophr. Res. 2022, 241, 14–23. [Google Scholar] [CrossRef]
- Keymer-Gausset, A.; Alonso-Solís, A.; Corripio, I.; Sauras-Quetcuti, R.B.; Pomarol-Clotet, E.; Canales-Rodriguez, E.J.; Grasa-Bello, E.; Álvarez, E.; Portella, M.J. Gray and white matter changes and their relation to illness trajectory in first episode psychosis. Eur. Neuropsychopharmacol. 2018, 28, 392–400. [Google Scholar] [CrossRef]
- Chopra, S.; Segal, A.; Oldham, S.; Holmes, A.; Sabaroedin, K.; Orchard, E.R.; Francey, S.M.; O’donoghue, B.; Cropley, V.; Nelson, B.; et al. Network-Based Spreading of Gray Matter Changes Across Different Stages of Psychosis. JAMA Psychiatry 2023, 80, 1246. [Google Scholar] [CrossRef]
- Garcia-Marti, G.; Escarti, M.J.; Nacher, J.; Perez-Rando, M.; Mane, A.; Usall, J.; Berrocoso, E.; Pomarol-Clotet, E.; Lopez-Ilundain, J.M.; Cuesta, M.J.; et al. Progressive loss of cortical gray matter in first episode psychosis patients with auditory hallucinations. Schizophr. Res. 2024, 267, 534–545. [Google Scholar] [CrossRef]
- Curtis, M.T.; Coffman, B.A.; Salisbury, D.F. Parahippocampal area three gray matter is reduced in first-episode schizophrenia spectrum: Discovery and replication samples. Hum. Brain Mapp. 2021, 42, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Deste, G.; Sacchetti, E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2012, 2, e190. [Google Scholar] [CrossRef]
- Mallikarjun, P.K.; Lalousis, P.A.; Dunne, T.F.; Heinze, K.; Reniers, R.L.; Broome, M.R.; Farmah, B.; Oyebode, F.; Wood, S.J.; Upthegrove, R. Aberrant salience network functional connectivity in auditory verbal hallucinations: A first episode psychosis sample. Transl. Psychiatry 2018, 8, 69. [Google Scholar] [CrossRef]
- Kowalski, J.; Aleksandrowicz, A.; Dąbkowska, M.; Gawęda, Ł. Neural Correlates of Aberrant Salience and Source Monitoring in Schizophrenia and At-Risk Mental States—A Systematic Review of fMRI Studies. J. Clin. Med. 2021, 10, 4126. [Google Scholar] [CrossRef] [PubMed]
- Fong, A.H.C.; Yoo, K.; Rosenberg, M.D.; Zhang, S.; Li, C.-S.R.; Scheinost, D.; Constable, R.T.; Chun, M.M. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage 2019, 188, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fryer, S.L.; Fu, Z.; Lin, D.; Sui, J.; Chen, J.; Damaraju, E.; Mennigen, E.; Stuart, B.; Loewy, R.L.; et al. Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. NeuroImage 2018, 180, 632–645. [Google Scholar] [CrossRef]
- Vaiana, M.; Muldoon, S.F. Multilayer Brain Networks. J. Nonlinear Sci. 2020, 30, 2147–2169. [Google Scholar] [CrossRef]
- Gifford, G.; Crossley, N.; Kempton, M.J.; Morgan, S.; Dazzan, P.; Young, J.; McGuire, P. Resting state fMRI based multilayer network configuration in patients with schizophrenia. NeuroImage Clin. 2020, 25, 102169. [Google Scholar] [CrossRef]
- Zheng, H.; Li, F.; Bo, Q.; Li, X.; Yao, L.; Yao, Z.; Wang, C.; Wu, X. The dynamic characteristics of the anterior cingulate cortex in resting-state fMRI of patients with depression. J. Affect. Disord. 2018, 227, 391–397. [Google Scholar] [CrossRef]
- Di Plinio, S.; Ebisch, S.J.H. Probabilistically Weighted Multilayer Networks disclose the link between default mode network instability and psychosis-like experiences in healthy adults. NeuroImage 2022, 257, 119291. [Google Scholar] [CrossRef] [PubMed]
- Niendam, T.A.; Jalbrzikowski, M.; Bearden, C.E. Exploring Predictors of Outcome in the Psychosis Prodrome: Implications for Early Identification and Intervention. Neuropsychol. Rev. 2009, 19, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Comparelli, A.; Corigliano, V.; De Carolis, A.; Mancinelli, I.; Trovini, G.; Ottavi, G.; Dehning, J.; Tatarelli, R.; Brugnoli, R.; Girardi, P. Emotion recognition impairment is present early and is stable throughout the course of schizophrenia. Schizophr. Res. 2013, 143, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D.; van Erp, T.G.M.; Rosso, I.M.; Huttunen, M.; Lönnqvist, J.; Pirkola, T.; Salonen, O.; Valanne, L.; Poutanen, V.-P.; Standertskjöld-Nordenstam, C.-G. Fetal Hypoxia and Structural Brain Abnormalities in Schizophrenic Patients, Their Siblings, and Controls. Arch. Gen. Psychiatry 2002, 59, 35. [Google Scholar] [CrossRef]
- Horan, W.P.; Catalano, L.T.; Green, M.F. An Update on Treatment of Cognitive Impairment Associated with Schizophrenia. In Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework; Springer: Berlin/Heidelberg, Germany, 2022; pp. 407–436. [Google Scholar] [CrossRef]
- Gebreegziabhere, Y.; Habatmu, K.; Mihretu, A.; Cella, M.; Alem, A. Cognitive impairment in people with schizophrenia: An umbrella review. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 1139–1155. [Google Scholar] [CrossRef]
- Lewandowski, K.E.; Blotner, J.; Yao, B.; Hechinger, R.; Coleman, M.J.; Shenton, M.E. Distinct cognitive trajectories in the early course of psychosis are associated with clinical and functional outcomes longitudinally. World Psychiatry 2025, 24, 260–266. [Google Scholar] [CrossRef]
- Ward, H.B.; Beermann, A.; Xie, J.; Yildiz, G.; Felix, K.M.; Addington, J.; Bearden, C.E.; Cadenhead, K.; Cannon, T.D.; Cornblatt, B.; et al. Robust Brain Correlates of Cognitive Performance in Psychosis and Its Prodrome. Biol. Psychiatry 2025, 97, 139–147. [Google Scholar] [CrossRef]
- Rossetti, I.; Brambilla, P.; Papagno, C. Metaphor Comprehension in Schizophrenic Patients. Front. Psychol. 2018, 9, 670. [Google Scholar] [CrossRef]
- Perlini, C.; Bellani, M.; Finos, L.; Lasalvia, A.; Bonetto, C.; Scocco, P.; D’agostino, A.; Torresani, S.; Imbesi, M.; Bellini, F.; et al. Non literal language comprehension in a large sample of first episode psychosis patients in adulthood. Psychiatry Res. 2018, 260, 78–89. [Google Scholar] [CrossRef]
- Perlini, C.; Marini, A.; Garzitto, M.; Isola, M.; Cerruti, S.; Marinelli, V.; Rambaldelli, G.; Ferro, A.; Tomelleri, L.; Dusi, N.; et al. Linguistic production and syntactic comprehension in schizophrenia and bipolar disorder. Acta Psychiatr. Scand. 2012, 126, 363–376. [Google Scholar] [CrossRef]
- Brambilla, P.; Cerruti, S.; Bellani, M.; Perlini, C.; Ferro, A.; Marinelli, V.; Giusto, D.; Tomelleri, L.; Rambaldelli, G.; Tansella, M.; et al. Shared impairment in associative learning in schizophrenia and bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Fett, A.-K.J.; Viechtbauer, W.; Dominguez, M.-D.; Penn, D.L.; van Os, J.; Krabbendam, L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 573–588. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Deste, G.; Smieskova, R.; Barlati, S.; Yung, A.R.; Howes, O.; Stieglitz, R.-D.; Vita, A.; McGuire, P.; Borgwardt, S. Cognitive Functioning in Prodromal Psychosis. Arch. Gen. Psychiatry 2012, 69, 562–571. [Google Scholar] [CrossRef]
- Green, M.F.; Bearden, C.E.; Cannon, T.D.; Fiske, A.P.; Hellemann, G.S.; Horan, W.P.; Kee, K.; Kern, R.S.; Lee, J.; Sergi, M.J.; et al. Social Cognition in Schizophrenia, Part 1: Performance Across Phase of Illness. Schizophr. Bull. 2012, 38, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Addington, J.; Stowkowy, J.; Liu, L.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; McGlashan, T.H.; Perkins, D.O.; Seidman, L.J.; Tsuang, M.T.; et al. Clinical and functional characteristics of youth at clinical high-risk for psychosis who do not transition to psychosis. Psychol. Med. 2019, 49, 1670–1677. [Google Scholar] [CrossRef]
- Thompson, A.; Nelson, B.; Yung, A. Predictive validity of clinical variables in the “at risk” for psychosis population: International comparison with results from the North American Prodrome Longitudinal Study. Schizophr. Res. 2011, 126, 51–57. [Google Scholar] [CrossRef]
- Di Plinio, S.; Arnò, S.; Perrucci, M.G.; Ebisch, S.J. Environmental control and psychosis-relevant traits modulate the prospective sense of agency in non-clinical individuals. Conscious. Cogn. 2019, 73, 102776. [Google Scholar] [CrossRef]
- de Paula, A.L.D.; Hallak, J.E.C.; Maia-De-Oliveira, J.P.; Bressan, R.A.; Machado-De-Sousa, J.P. Cognition in at-risk mental states for psychosis. Neurosci. Biobehav. Rev. 2015, 57, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.E.; Borgwardt, S.; Riecher-Rössler, A.; Velthorst, E.; de Haan, L.; Fusar-Poli, P. Moving beyond transition outcomes: Meta-analysis of remission rates in individuals at high clinical risk for psychosis. Psychiatry Res. 2013, 209, 266–272. [Google Scholar] [CrossRef]
- Li, Y.; Ang, M.S.; Yee, J.Y.; See, Y.M.; Lee, J. Predictors of functioning in treatment-resistant schizophrenia: The role of negative symptoms and neurocognition. Front. Psychiatry 2024, 15, 1444843. [Google Scholar] [CrossRef]
- Bora, E.; Lin, A.; Wood, S.J.; Yung, A.R.; McGorry, P.D.; Pantelis, C. Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2014, 130, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.; Zhang, J.-P.; Sheridan, E.M.; Burdick, K.E.; Mogil, R.; Kane, J.M.; Auther, A.; Carrión, R.E.; Cornblatt, B.A.; Correll, C.U. Neuropsychological Test Performance to Enhance Identification of Subjects at Clinical High Risk for Psychosis and Be Most Promising for Predictive Algorithms for Conversion to Psychosis. J. Clin. Psychiatry 2017, 78, e28–e40. [Google Scholar] [CrossRef] [PubMed]
- Seidman, L.J.; Giuliano, A.J.; Meyer, E.C.; Addington, J.; Cadenhead, K.S.; Cannon, T.D.; McGlashan, T.H.; Perkins, D.O.; Tsuang, M.T.; Walker, E.F.; et al. Neuropsychology of the Prodrome to Psychosis in the NAPLS Consortium: Relationship to Family History and Conversion to Psychosis. Arch. Gen. Psychiatry 2010, 67, 578. [Google Scholar] [CrossRef]
- Riecher-Rössler, A.; Pflueger, M.O.; Aston, J.; Borgwardt, S.J.; Brewer, W.J.; Gschwandtner, U.; Stieglitz, R.-D. Efficacy of Using Cognitive Status in Predicting Psychosis: A 7-Year Follow-Up. Biol. Psychiatry 2009, 66, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; de Pablo, G.S.; Correll, C.U.; Meyer-Lindenberg, A.; Millan, M.J.; Borgwardt, S.; Galderisi, S.; Bechdolf, A.; Pfennig, A.; Kessing, L.V.; et al. Prevention of Psychosis. JAMA Psychiatry 2020, 77, 755. [Google Scholar] [CrossRef]
- Brandizzi, M.; Valmaggia, L.; Byrne, M.; Jones, C.; Iwegbu, N.; Badger, S.; McGuire, P.; Fusar-Poli, P. Predictors of functional outcome in individuals at high clinical risk for psychosis at six years follow-up. J. Psychiatr. Res. 2015, 65, 115–123. [Google Scholar] [CrossRef]
- Zuliani, R.; Delvecchio, G.; Bonivento, C.; Cattarinussi, G.; Perlini, C.; Bellani, M.; Marinelli, V.; Rossetti, M.G.; Lasalvia, A.; McIntosh, A.; et al. Increased gyrification in schizophrenia and non affective first episode of psychosis. Schizophr. Res. 2018, 193, 269–275. [Google Scholar] [CrossRef]
- Baglivo, V.; Cao, B.; Mwangi, B.; Bellani, M.; Perlini, C.; Lasalvia, A.; Dusi, N.; Bonetto, C.; Cristofalo, D.; Alessandrini, F.; et al. Hippocampal Subfield Volumes in Patients with First-Episode Psychosis. Schizophr. Bull. 2018, 44, 552–559. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, L.; Fan, L.; Zheng, W.; Li, Z.; Tang, J.; Yuan, L.; Li, C.; Jin, K.; Liu, W.; et al. Functional and structural abnormalities of thalamus in individuals at early stage of schizophrenia. Schizophr. Res. 2024, 271, 292–299. [Google Scholar] [CrossRef]
- Cai, J.; Xie, M.; Liang, S.; Gong, J.; Deng, W.; Guo, W.; Ma, X.; Sham, P.C.; Wang, Q.; Li, T. Dysfunction of thalamocortical circuits in early-onset schizophrenia. Cereb Cortex. 2024, 34, bhae313. [Google Scholar] [CrossRef]
- Buechler, R.; Wotruba, D.; Michels, L.; Theodoridou, A.; Metzler, S.; Walitza, S.; Hänggi, J.; Kollias, S.; Rössler, W.; Heekeren, K. Cortical Volume Differences in Subjects at Risk for Psychosis Are Driven by Surface Area. Schizophr. Bull. 2020, 46, 1511–1519. [Google Scholar] [CrossRef]
- Koutsouleris, N.; Meisenzahl, E.M.; Davatzikos, C.; Bottlender, R.; Frodl, T.; Scheuerecker, J.; Schmitt, G.; Zetzsche, T.; Decker, P.; Reiser, M.; et al. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition. Arch. Gen. Psychiatry 2009, 66, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Millman, Z.B.; Roemer, C.; Vargas, T.; Schiffman, J.; Mittal, V.A.; Gold, J.M. Neuropsychological Performance Among Individuals at Clinical High-Risk for Psychosis vs Putatively Low-Risk Peers with Other Psychopathology: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2022, 48, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Reichenberg, A.; Harvey, P.D. Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychol. Bull. 2007, 133, 833–858. [Google Scholar] [CrossRef]
- Blyler, C.R.; Gold, J.M.; Iannone, V.N.; Buchanan, R.W. Short form of the WAIS-III for use with patients with schizophrenia. Schizophr. Res. 2000, 46, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Nuechterlein, K.H.; Green, M.F.; Kern, R.S.; Baade, L.E.; Barch, D.M.; Cohen, J.D.; Essock, S.; Fenton, W.S.; Frese, F.J., 3rd; Gold, J.M.; et al. The MATRICS Consensus Cognitive Battery, Part 1: Test Selection, Reliability, and Validity. Am. J. Psychiatry 2008, 165, 203–213. [Google Scholar] [CrossRef]
- Kern, R.S.; Nuechterlein, K.H.; Green, M.F.; Baade, L.E.; Fenton, W.S.; Gold, J.M.; Keefe, R.S.; Mesholam-Gately, R.; Mintz, J.; Seidman, L.J.; et al. The MATRICS Consensus Cognitive Battery, Part 2: Co-Norming and Standardization. Am. J. Psychiatry 2008, 165, 214–220. [Google Scholar] [CrossRef]
- Ding, Y.; Hou, W.; Wang, C.; Sha, S.; Dong, F.; Li, X.; Wang, N.; Lam, S.T.; Zhou, F.; Wang, C. Longitudinal changes in cognitive function in early psychosis: A meta-analysis with the MATRICS consensus cognitive battery (MCCB). Schizophr. Res. 2024, 270, 349–357. [Google Scholar] [CrossRef]
- Keefe, R.S.; Poe, M.; Walker, T.M.; Kang, J.W.; Harvey, P.D. The Schizophrenia Cognition Rating Scale: An Interview-Based Assessment and Its Relationship to Cognition, Real-World Functioning, and Functional Capacity. Am. J. Psychiatry 2006, 163, 426–432. [Google Scholar] [CrossRef]
- Keefe, R.; Harvey, P.; Goldberg, T.; Gold, J.; Walker, T.; Kennel, C.; Hawkins, K. Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr. Res. 2008, 102, 108–115. [Google Scholar] [CrossRef]
- Halverson, T.F.; Hajdúk, M.; Pinkham, A.E.; Harvey, P.D.; Jarskog, L.F.; Nye, L.; Penn, D.L. Psychometric properties of the Observable Social Cognition Rating Scale (OSCARS): Self-report and informant-rated social cognitive abilities in schizophrenia. Psychiatry Res. 2020, 286, 112891. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Lloyd, A.J.; Hastedt, C.E.; Versteegh, M.M. Societal Utilities for Cognitive Impairment in Schizophrenia: Developing a Preference-Based Scoring Algorithm Based on the Schizophrenia Cognition Rating Scale. Adv. Ther. 2023, 40, 4060–4073. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Czekaj, A.; Frick, J.; Steinert, T.; Purdon, S.E.; Uhlmann, C. The screen for cognitive impairment in psychiatry (SCIP) as a routinely applied screening tool: Pathology of acute psychiatric inpatients and cluster analysis. BMC Psychiatry 2021, 21, 494. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Anderson, N.; Baune, B.T.; Brietzke, E.; Burdick, K.; Fossati, P.; Gorwood, P.; Harmer, C.; Harrison, J.; Harvey, P.; et al. Expert Consensus on Screening and Assessment of Cognition in Psychiatry. CNS Spectrums 2019, 24, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.J.; Baune, B.T. Cognitive dysfunction in major depressive disorder. Curr. Opin. Psychiatry 2018, 31, 26–31. [Google Scholar] [CrossRef]
- Guilera, G.; Pino, O.; Gómez-Benito, J.; Rojo, J.E.; Vieta, E.; Tabarés-Seisdedos, R.; Segarra, N.; Martínez-Arán, A.; Franco, M.; Cuesta, M.J.; et al. Clinical usefulness of the screen for cognitive impairment in psychiatry (SCIP-S) scale in patients with type I bipolar disorder. Health Qual. Life Outcomes 2009, 7, 28. [Google Scholar] [CrossRef]
- Cuesta, M.J.; Pino, O.; Guilera, G.; Rojo, J.E.; Gómez-Benito, J.; Purdon, S.E.; Franco, M.; Martínez-Arán, A.; Segarra, N.; Tabarés-Seisdedos, R.; et al. Brief cognitive assessment instruments in schizophrenia and bipolar patients, and healthy control subjects: A comparison study between the Brief Cognitive Assessment Tool for Schizophrenia (B-CATS) and the Screen for Cognitive Impairment in Psychiatry (SCIP). Schizophr. Res. 2011, 130, 137–142. [Google Scholar] [CrossRef]
- Daderwal, M.C.; Sreeraj, V.S.; Suhas, S.; Rao, N.P.; Venkatasubramanian, G. Montreal Cognitive Assessment (MoCA) and Digit Symbol Substitution Test (DSST) as a screening tool for evaluation of cognitive deficits in schizophrenia. Psychiatry Res. 2022, 316, 114731. [Google Scholar] [CrossRef]
- Murri, M.B.; Folesani, F.; Costa, S.; Biancosino, B.; Colla, C.; Zerbinati, L.; Caruso, R.; Nanni, M.G.; Purdon, S.E.; Grassi, L. Screening for cognitive impairment in non-affective psychoses: A comparison between the SCIP and the MoCA. Schizophr. Res. 2020, 218, 188–194. [Google Scholar] [CrossRef]
- Stainton, A.; Bryce, S.; Rattray, A.; Pert, A.; Zbukvic, I.; Fisher, E.; Anderson, D.; Bowden, S.C.; Chakma, S.; Cheng, N.; et al. Validating cognitive screening in young people with first-episode psychosis: The CogScreen protocol. Early Interv. Psychiatry 2025, 19, e13558. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S. Psychosis as a State of Aberrant Salience: A Framework Linking Biology, Phenomenology, and Pharmacology in Schizophrenia. Am. J. Psychiatry 2003, 160, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Merola, G.P.; Boy, O.B.; Fascina, I.; Pecoraro, V.; Falone, A.; Patti, A.; Santarelli, G.; Cicero, D.C.; Ballerini, A.; Ricca, V. Aberrant Salience Inventory: A meta-analysis to investigate its psychometric properties and identify screening cutoff scores. Scand. J. Psychol. 2023, 64, 734–745. [Google Scholar] [CrossRef]
- Azzali, S.; Pelizza, L.; Scazza, I.; Paterlini, F.; Garlassi, S.; Chiri, L.R.; Poletti, M.; Pupo, S.; Raballo, A. Examining subjective experience of aberrant salience in young individuals at ultra-high risk (UHR) of psychosis: A 1-year longitudinal study. Schizophr. Res. 2022, 241, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.E.; Dvorsky, D.N.; Boesch, J.; Roth, B.; Isler, E.; Schueler, P.; Petralli, C.; Umbricht, D. Defining subjects at risk for psychosis: A comparison of two approaches. Schizophr. Res. 2006, 81, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Palaniyappan, L.; Supekar, K. Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia. Biol. Psychiatry 2023, 94, 108–120. [Google Scholar] [CrossRef]
- Del Fabro, L.; Schmidt, A.; Fortea, L.; Delvecchio, G.; D’agostino, A.; Radua, J.; Borgwardt, S.; Brambilla, P. Functional brain network dysfunctions in subjects at high-risk for psychosis: A meta-analysis of resting-state functional connectivity. Neurosci. Biobehav. Rev. 2021, 128, 90–101. [Google Scholar] [CrossRef]
- Whitford, T.J.; Jack, B.N.; Pearson, D.; Griffiths, O.; Luque, D.; Harris, A.W.; Spencer, K.M.; Le Pelley, M.E. Neurophysiological evidence of efference copies to inner speech. ELife 2017, 6, e28197. [Google Scholar] [CrossRef]
- Leptourgos, P.; Corlett, P.R. Embodied Predictions, Agency, and Psychosis. Front. Big Data 2020, 3, 27. [Google Scholar] [CrossRef]
- Ord, L.M.; Myles-Worsley, M.; Blailes, F.; Ngiralmau, H. Screening for prodromal adolescents in an isolated high-risk population. Schizophr. Res. 2004, 71, 507–508. [Google Scholar] [CrossRef]
- Woods, S.W.; Parker, S.; Kerr, M.J.; Walsh, B.C.; Wijtenburg, S.A.; Prunier, N.; Nunez, A.R.; Buccilli, K.; Mourgues-Codern, C.; Brummitt, K.; et al. Development of the PSYCHS: Positive SYmptoms and Diagnostic Criteria for the CAARMS Harmonized with the SIPS. Early Interv. Psychiatry 2024, 18, 255–272. [Google Scholar] [CrossRef]
- Savill, M.; D’Ambrosio, J.; Cannon, T.D.; Loewy, R.L. Psychosis risk screening in different populations using the Prodromal Questionnaire: A systematic review. Early Interv. Psychiatry 2018, 12, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Yung, A.R.; Yuen, H.P.; Mcgorry, P.D.; Phillips, L.J.; Kelly, D.; Dell’Olio, M.; Francey, S.M.; Cosgrave, E.M.; Killackey, E.; Stanford, C.; et al. Mapping the Onset of Psychosis: The Comprehensive Assessment of At-Risk Mental States. Aust. N. Z. J. Psychiatry 2005, 39, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Cicero, D.C.; Kerns, J.G.; McCarthy, D.M. The Aberrant Salience Inventory: A new measure of psychosis proneness. Psychol. Assess. 2010, 22, 688–701. [Google Scholar] [CrossRef]
- Rausch, F.; Eifler, S.; Esser, A.; Esslinger, C.; Schirmbeck, F.; Meyer-Lindenberg, A.; Zink, M. The Early Recognition Inventory ERIraos detects at risk mental states of psychosis with high sensitivity. Compr. Psychiatry 2013, 54, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Maurer, K.; Zink, M.; Rausch, F.; Häfner, H. The early recognition inventory ERIraos assesses the entire spectrum of symptoms through the course of an at-risk mental state. Early Interv. Psychiatry 2018, 12, 217–228. [Google Scholar] [CrossRef]
- Fux, L.; Walger, P.; Schimmelmann, B.G.; Schultze-Lutter, F. The Schizophrenia Proneness Instrument, Child and Youth version (SPI-CY): Practicability and discriminative validity. Schizophr. Res. 2013, 146, 69–78. [Google Scholar] [CrossRef]
- Oliver, D.; Kotlicka-Antczak, M.; Minichino, A.; Spada, G.; McGuire, P.; Fusar-Poli, P. Meta-analytical prognostic accuracy of the Comprehensive Assessment of at Risk Mental States (CAARMS): The need for refined prediction. Eur. Psychiatry 2018, 49, 62–68. [Google Scholar] [CrossRef]
- Montemagni, C.; Carluccio, A.; Brasso, C.; Vischia, F.; Rocca, P. Factorial structure of the Comprehensive Assessment of At-Risk Mental States in help-seeking individuals: Mapping the structure and the prediction of subsequent transition to psychosis. Front. Psychiatry 2024, 15, 1381133. [Google Scholar] [CrossRef]
- Raballo, A.; Nelson, B.; Thompson, A.; Yung, A. The Comprehensive Assessment of At-Risk Mental States: From mapping the onset to mapping the structure. Schizophr. Res. 2011, 127, 107–114. [Google Scholar] [CrossRef]
- Zhu, Y.; Krause, M.; Huhn, M.; Rothe, P.; Schneider-Thoma, J.; Chaimani, A.; Li, C.; Davis, J.M.; Leucht, S. Antipsychotic drugs for the acute treatment of patients with a first episode of schizophrenia: A systematic review with pairwise and network meta-analyses. Lancet Psychiatry 2017, 4, 694–705. [Google Scholar] [CrossRef]
- Drake, R.J.; Husain, N.; Marshall, M.; Lewis, S.W.; Tomenson, B.; Chaudhry, I.B.; Everard, L.; Singh, S.; Freemantle, N.; Fowler, D.; et al. Effect of delaying treatment of first-episode psychosis on symptoms and social outcomes: A longitudinal analysis and modelling study. Lancet Psychiatry 2020, 7, 602–610. [Google Scholar] [CrossRef]
- Garrido-Torres, N.; Rocha-Gonzalez, I.; Alameda, L.; Rodriguez-Gangoso, A.; Vilches, A.; Canal-Rivero, M.; Crespo-Facorro, B.; Ruiz-Veguilla, M. Metabolic syndrome in antipsychotic-naïve patients with first-episode psychosis: A systematic review and meta-analysis. Psychol. Med. 2021, 51, 2307–2320. [Google Scholar] [CrossRef]
- Merritt, K.; Perez-Iglesias, R.; Sendt, K.-V.; Goozee, R.; Jauhar, S.; Pepper, F.; Barker, G.J.; Glenthøj, B.; Arango, C.; Lewis, S.; et al. Remission from antipsychotic treatment in first episode psychosis related to longitudinal changes in brain glutamate. NPJ Schizophr. 2019, 5, 12. [Google Scholar] [CrossRef]
- Reyes-Madrigal, F.; Guma, E.; León-Ortiz, P.; Gómez-Cruz, G.; Mora-Durán, R.; Graff-Guerrero, A.; Kegeles, L.S.; Chakravarty, M.M.; de la Fuente-Sandoval, C. Striatal glutamate, subcortical structure and clinical response to first-line treatment in first-episode psychosis patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 113, 110473. [Google Scholar] [CrossRef]
- Pollak, T.A.; Vincent, A.; Iyegbe, C.; Coutinho, E.; Jacobson, L.; Rujescu, D.; Stone, J.; Jezequel, J.; Rogemond, V.; Jamain, S.; et al. Relationship Between Serum NMDA Receptor Antibodies and Response to Antipsychotic Treatment in First-Episode Psychosis. Biol. Psychiatry 2021, 90, 9–15. [Google Scholar] [CrossRef]
- Javitt, D.C. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 119–141. [Google Scholar] [CrossRef]
- A Kim, S. 5-HT1A and 5-HT2A Signaling, Desensitization, and Downregulation: Serotonergic Dysfunction and Abnormal Receptor Density in Schizophrenia and the Prodrome. Cureus 2021, 13, e15811. [Google Scholar] [CrossRef]
Perceptual Impairments (Cognitive Perceptive, COPER) and Cognitive Disturbances (COGDIS) |
---|
- Thought interference: subjective experience related to the presence of intrusive thoughts that appear to the young person as completely meaningless and hinder concentration |
- Persistent thinking: obsessive repetition of meaningless thoughts or mental images |
- Thought pressure: reported chaos of unrelated thoughts |
- Mental blocks with or without intrusions of a new thought: a sudden loss of the thread or train of thought |
- Alteration of receptive language: paralysis in immediate comprehension of simple words and sentences, read or heard, which may result in abandoning reading or avoiding conversations |
- Expressive language impairment: problems in producing appropriate words, sometimes subjective experience of loss of active vocabulary |
- Abstract thinking disorders: difficulty for the patient to explain sayings or idioms |
- Difficulty with distributed attention: difficulty in dividing attention between tasks that are not given simultaneously and do not usually require a shift in attention |
- Decreased ability to discriminate between perception and ideas, good memories and fantasies |
- Unstable idea of reference with intuition |
- Derealization and depersonalization |
- Visual or auditory perceptual disturbances with preserved insight, e.g., hypersensitivity to light, distorted vision, hypersensitivity to sounds |
Stage | Psychosis | Treatment |
---|---|---|
0 | No symptoms Genetic risk | Promote knowledge and dissemination of accurate mental health information and drug use prevention. Educational interventions aimed at families. |
1a | Non-specific symptoms, basic cognitive symptoms | Interventions similar to the previous stage, with the addition of psychoeducational interventions and cognitive-behavioral therapy aimed at reducing distress caused by the onset of symptoms |
1b | Attenuated psychotic symptoms (APS) | Interventions similar to the previous stage, with the addition of individual cognitive-behavioral therapy and possible pharmacological treatment for comorbid anxiety and depression symptoms |
1c | Brief limited intermittent psychotic symptoms (BLIPS) | Interventions aimed at the remission of psychotic symptoms |
2 | First psychotic episode | Early intervention for the first psychotic episode, as in stage 2b, with greater emphasis on pharmacological treatments and social support for role maintenance. Relapse prevention |
3a | Incomplete remission | Interventions from the previous stage, with more emphasis on pharmacological therapy and psychosocial support strategies to facilitate symptom remission |
3b | Relapse | Interventions similar to the previous stage, with more attention to relapse prevention strategies |
3c | Recurring relapses with clinical deterioration | Interventions similar to stage 3b, with greater focus on long-term stabilization |
4 | Severe and persistent disorder | Interventions similar to the previous stage with possible introduction of clozapine. Encourage social participation to address ongoing disability |
Instrument | Domains Covered | Sensitivity/Specificity | Clinical Applicability |
---|---|---|---|
CAARMS | Positive symptoms, cognitive changes, negative symptoms, behavioral and emotional disturbances | High/Moderate | Specialized centers (early intervention, research) |
SIPS/SOPS | Psychosis-risk symptoms, functional deterioration, genetic vulnerability | High/High | Specialized centers, longitudinal monitoring |
SPI-A/SPI-CY | Basic cognitive-perceptual anomalies | High/Moderate | Early detection in youth and adults |
ASI | Aberrant salience attribution (subjective anomalies) | Moderate/Moderate | High-risk group screening, research contexts |
PQ-16 | Perceptual anomalies, unusual thoughts, negative symptoms | Moderate/Low | Rapid community screening, primary care |
Checklist ERIraos | Early distress and psychotic symptoms, family risk factors | Moderate/Moderate | Broad screening in general practice |
Domain | Marker/Feature | Implication for Aberrant Salience | Assessment Tools | Clinical Implications |
---|---|---|---|---|
Neurobiological | Dopaminergic dysregulation (mesolimbic pathway) | Hyperdopaminergia leads to inappropriate salience attribution | PET, fMRI, DTI imaging | Supports early use of dopamine-modulating agents; risk stratification via PET imaging. |
Neurobiological | Glutamatergic and GABAergic imbalance | Loss of inhibitory tone affects salience processing and prediction error | MR spectroscopy, post-mortem studies | Indicates potential for glutamate-targeted interventions (e.g., NMDA enhancers). |
Neurobiological | Salience network dysfunction (ACC, insula, striatum) | Disrupted connectivity leads to impaired filtering and evaluation of stimuli | Resting-state fMRI, DTI connectivity studies | Supports use of network-targeted neurofeedback or neuromodulation strategies. |
Cognitive | Deficits in attention | Difficulty in filtering relevant from irrelevant stimuli | Neuropsychological batteries (e.g., MATRICS, BACS) | Recommends early cognitive training and attention-enhancement therapies. |
Cognitive | Impaired working memory | Poor integration of information increases cognitive noise | Working memory tests (e.g., WAIS subtests) | Justifies inclusion of working memory training in early intervention programs. |
Cognitive | Slowed processing speed | Reduces capacity to adjust to complex environments, enhancing salience misattribution | Processing speed tasks (e.g., Trail Making Test) | Highlights need for strategies enhancing processing speed to reduce overload. |
Cognitive | Social cognition deficits | Impaired understanding of social cues fosters delusional interpretations | Theory of mind and facial emotion recognition tasks | Indicates benefits from social cognition-focused therapies (e.g., ToM training). |
Clinical | Basic Symptoms (BS) | Subjective anomalies linked to emerging misattribution of significance | SPI-A/SPI-CY (Schizophrenia Proneness Instruments) | Alerts clinicians to subtle self-disturbances; use of BS-based screening tools. |
Clinical | Attenuated Psychotic Symptoms (APS) | Emergence of mild, persistent misattributions of meaning | CAARMS (Comprehensive Assessment of At-Risk Mental States) | Supports continuous symptom monitoring and use of CBT to delay progression. |
Clinical | Brief Limited Intermittent Psychotic Symptoms (BLIPS) | Short-lived but fully formed salience-related perceptual disturbances | SIPS/SOPS, clinical interviews | Justifies close follow-up and rapid intervention strategies post-BLIPS episodes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marano, G.; Lisci, F.M.; Sfratta, G.; Marzo, E.M.; Abate, F.; Boggio, G.; Traversi, G.; Mazza, O.; Pola, R.; Gaetani, E.; et al. Targeting the Roots of Psychosis: The Role of Aberrant Salience. Pediatr. Rep. 2025, 17, 63. https://doi.org/10.3390/pediatric17030063
Marano G, Lisci FM, Sfratta G, Marzo EM, Abate F, Boggio G, Traversi G, Mazza O, Pola R, Gaetani E, et al. Targeting the Roots of Psychosis: The Role of Aberrant Salience. Pediatric Reports. 2025; 17(3):63. https://doi.org/10.3390/pediatric17030063
Chicago/Turabian StyleMarano, Giuseppe, Francesco Maria Lisci, Greta Sfratta, Ester Maria Marzo, Francesca Abate, Gianluca Boggio, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Eleonora Gaetani, and et al. 2025. "Targeting the Roots of Psychosis: The Role of Aberrant Salience" Pediatric Reports 17, no. 3: 63. https://doi.org/10.3390/pediatric17030063
APA StyleMarano, G., Lisci, F. M., Sfratta, G., Marzo, E. M., Abate, F., Boggio, G., Traversi, G., Mazza, O., Pola, R., Gaetani, E., & Mazza, M. (2025). Targeting the Roots of Psychosis: The Role of Aberrant Salience. Pediatric Reports, 17(3), 63. https://doi.org/10.3390/pediatric17030063