Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study
Abstract
:1. Introduction
1.1. Background
1.2. Rationale
1.3. Aim
2. Materials and Methods
2.1. Study Design
2.2. Research Material
2.3. Test Methods
2.4. Analyses
3. Results
3.1. Sample Tested
3.2. Test Results
4. Discussion
4.1. Decayed Teeth
4.2. Missing Teeth
4.3. Filled Teeth
4.4. Root Canal Fillings and Endodontic Lesions
4.5. Limitations
4.6. Strengths
4.7. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathur, V.P.; Dhillon, J.K. Dental Caries: A Disease Which Needs Attention. Indian J. Pediatr. 2018, 85, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Rathee, M.; Sapra, A. Dental Caries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Olszowski, T.; Milona, M.; Janiszewska-Olszowska, J.; Safranow, K.; Uzar, I.; Walczak, A.; Sikora, M.; Chlubek, D.; Adler, G. FCN1 Polymorphisms Are Not the Markers of Dental Caries Susceptibility in Polish Children: A Case-Control Study. Oral. Dis. 2022, 28, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Olszowski, T.; Milona, M.; Janiszewska-Olszowska, J.; Safranow, K.; Skonieczna-Żydecka, K.; Walczak, A.; Sikora, M.; Chlubek, D.; Madlani, A.; Adler, G. The Lack of Association between FCN2 Gene Promoter Region Polymorphisms and Dental Caries in Polish Children. Caries Res. 2017, 51, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Milona, M.; Olszowski, T.; Uzar, I.; Safranow, K.; Janiszewska-Olszowska, J.; Szmidt-Kądys, M.; Rola, H.; Sikora, M.; Chlubek, D.; Adler, G. TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children. Int. J. Mol. Sci. 2024, 25, 6985. [Google Scholar] [CrossRef]
- Tungare, S.; Paranjpe, A.G. Early Childhood Caries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- DMF Index—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/dmf-index (accessed on 20 June 2024).
- Ghodasra, R.; Brizuela, M. Dental Caries Diagnostic Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Różyło-Kalinowska, I. Panoramic Radiography in Dentistry. Clin. Dent. Rev. 2021, 5, 26. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Hug, I.; Diniz, M.B.; Lussi, A. Performance of Fluorescence Methods, Radiographic Examination and ICDAS II on Occlusal Surfaces in Vitro. Caries Res. 2008, 42, 297–304. [Google Scholar] [CrossRef]
- Pulido, G.; Arango, M.; Adriana, H.; Gaviria, Á.; Ocampo, J.; Gutiérrez, B.; Martínez, C.; Sinisterra, G.; Valencia, C. Degree of Concordance Between Cone Beam Computerized Tomography (Cbct) And 2d Digital Radiography System Used for Caries Diagnosis: An Observational Study. Open Dent. J. 2023, 17, e230414. [Google Scholar] [CrossRef]
- American Dental Association. Dental Radiographic Examinations: Recommendations for Patient Selection And Limiting Radiation Exposure; American Dental Association: Chicago, IL, USA, 2012. [Google Scholar]
- Li, Y.-W.; Liu, F.; Zhang, T.-N.; Xu, F.; Gao, Y.-C.; Wu, T. Artificial Intelligence in Pediatrics. Chin. Med. J. 2020, 133, 358–360. [Google Scholar] [CrossRef]
- Della Corte, M.; Clemente, E.; Checcucci, E.; Amparore, D.; Cerchia, E.; Tulelli, B.; Fiori, C.; Porpiglia, F.; Gerocarni Nappo, S. Pediatric Urology Metaverse. Surgeries 2023, 4, 325–334. [Google Scholar] [CrossRef]
- Padash, S.; Mohebbian, M.R.; Adams, S.J.; Henderson, R.D.E.; Babyn, P. Pediatric Chest Radiograph Interpretation: How Far Has Artificial Intelligence Come? A Systematic Literature Review. Pediatr. Radiol. 2022, 52, 1568–1580. [Google Scholar] [CrossRef]
- Vishwanathaiah, S.; Fageeh, H.N.; Khanagar, S.B.; Maganur, P.C. Artificial Intelligence Its Uses and Application in Pediatric Dentistry: A Review. Biomedicines 2023, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-H.; Kim, S.-H.; Choi, Y.-Y. Prediction Models of Early Childhood Caries Based on Machine Learning Algorithms. Int. J. Environ. Res. Public. Health 2021, 18, 8613. [Google Scholar] [CrossRef] [PubMed]
- Turosz, N.; Chęcińska, K.; Chęciński, M.; Brzozowska, A.; Nowak, Z.; Sikora, M. Applications of Artificial Intelligence in the Analysis of Dental Panoramic Radiographs: An Overview of Systematic Reviews. Dentomaxillofac. Radiol. 2023, 52, 20230284. [Google Scholar] [CrossRef]
- Turosz, N.; Chęcińska, K.; Chęciński, M.; Rutański, I.; Sielski, M.; Sikora, M. Oral Health Status and Treatment Needs Based on Artificial Intelligence (AI) Dental Panoramic Radiograph (DPR) Analysis: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 3686. [Google Scholar] [CrossRef]
- Frontier, A. Flywheel & AWS|Navigating the Pediatric AI Frontier: Overcoming Data Challenges [Internet]. Flywheel.io. 2024. Available online: https://flywheel.io/insights/youtube-insights/flywheel-aws-navigating-the-pediatric-ai-frontier-overcoming-data-challenges (accessed on 6 September 2024).
- Di Sarno, L.; Caroselli, A.; Tonin, G.; Graglia, B.; Pansini, V.; Causio, F.A.; Gatto, A.; Chiaretti, A. Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives. Biomedicines 2024, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- WMA. The World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Study Details|The Use of Artificial Intelligence in the Dental X-rays Analysis|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06258798?cond=NCT06258798&rank=1 (accessed on 22 August 2024).
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.W.; et al. STARD 2015 Guidelines for Reporting Diagnostic Accuracy Studies: Explanation and Elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef]
- Sekhar, D.M.C.; Thabusum, D.D.A.; Firdous, D.P.S. Unfolding The Link: Age Estimation through Comparison of Demirijian and Moore’s Method. Saudi J. Biomed. Res. 2019, 4, 168–173. [Google Scholar]
- Umer, F.; Habib, S.; Adnan, N. Application of Deep Learning in Teeth Identification Tasks on Panoramic Radiographs. Dentomaxillofac. Radiol. 2022, 51, 20210504. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Sample Size Estimation in Diagnostic Accuracy Studies. Turk. J. Emerg. Med. 2022, 22, 177–185. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On Evaluation Metrics for Medical Applications of Artificial Intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef] [PubMed]
- Schoonjans, F. MedCalc Statistical Software. Available online: https://www.medcalc.org/ (accessed on 14 November 2023).
- Mohammad-Rahimi, H.; Motamedian, S.R.; Rohban, M.H.; Krois, J.; Uribe, S.E.; Mahmoudinia, E.; Rokhshad, R.; Nadimi, M.; Schwendicke, F. Deep Learning for Caries Detection: A Systematic Review. J. Dent. 2022, 122, 104115. [Google Scholar] [CrossRef]
- Prados-Privado, M.; García Villalón, J.; Martínez-Martínez, C.H.; Ivorra, C.; Prados-Frutos, J.C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. J. Clin. Med. 2020, 9, 3579. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Zhao, J.; Yu, Y.; Li, X.; Shi, K.; Zhang, F.; Yu, F.; Shi, K.; Sun, Z.; et al. Artificial Intelligence in the Diagnosis of Dental Diseases on Panoramic Radiographs: A Preliminary Study. BMC Oral Health 2023, 23, 358. [Google Scholar] [CrossRef]
- Zadrożny, Ł.; Regulski, P.; Brus-Sawczuk, K.; Czajkowska, M.; Parkanyi, L.; Ganz, S.; Mijiritsky, E. Artificial Intelligence Application in Assessment of Panoramic Radiographs. Diagnostics 2022, 12, 224. [Google Scholar] [CrossRef]
- Ammar, N.; Kühnisch, J. Diagnostic Performance of Artificial Intelligence-Aided Caries Detection on Bitewing Radiographs: A Systematic Review and Meta-Analysis. Jpn. Dent. Sci. Rev. 2024, 60, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Weetman, K.; Wake, B.; Hyde, C. Comparison of Panoramic and Bitewing Radiography for the Detection of Dental Caries: A Systematic Review of Diagnostic Tests. In Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews; Centre for Reviews and Dissemination: York, UK, 2002. [Google Scholar]
- Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The Use and Performance of Artificial Intelligence Applications in Dental and Maxillofacial Radiology: A Systematic Review. Dentomaxillofac. Radiol. 2020, 49, 20190107. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Jung, Y.-H.; Cho, B.-H.; Heo, M.-S. An Overview of Deep Learning in the Field of Dentistry. Imaging Sci. Dent. 2019, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khanagar, S.B.; Al-ehaideb, A.; Maganur, P.C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H.A.; Sarode, S.C.; Bhandi, S. Developments, Application, and Performance of Artificial Intelligence in Dentistry—A Systematic Review. J. Dent. Sci. 2021, 16, 508–522. [Google Scholar] [CrossRef]
- Orhan, K.; Aktuna Belgin, C.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Önder, M.; Ezhov, M.; Shamshiev, M.; et al. Determining the Reliability of Diagnosis and Treatment Using Artificial Intelligence Software with Panoramic Radiographs. Imaging Sci. Dent. 2023, 53, 199–208. [Google Scholar] [CrossRef]
- Brady, A.; Laoide, R.Ó.; McCarthy, P.; McDermott, R. Discrepancy and Error in Radiology: Concepts, Causes and Consequences. Ulst. Med. J. 2012, 81, 3–9. [Google Scholar]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | DPRs of patients with incomplete development of permanent dentition | Incomplete development of third molars only |
Intervention | Assessment of the presence and condition of each permanent tooth by an AI algorithm | Incomplete or erroneous results due to software or human error |
Comparator | Assessment of the presence and condition of each permanent tooth by researchers | Not applicable |
Outcomes | Variables regarding the condition of teeth: decay, missing, filled, root canal filling, endodontic lesion | Not applicable |
Settings | DPRs from 2022–2023 from a single diagnostic imaging facility in Kielce, Poland | DPRs of a quality inconsistent with local regulations |
Performance Metric | Formula |
---|---|
Sensitivity | |
Specificity | |
Precision | |
Accuracy |
Decay | Missing | Filled | Root Canal Filling | Endodontic Lesion | |
---|---|---|---|---|---|
Index test negative | 991 | 1024 | 1044 | 1117 | 1090 |
Reference test negative | 1075 | 1033 | 1087 | 1119 | 1115 |
Index test positive | 129 | 96 | 76 | 3 | 30 |
Reference test positive | 45 | 87 | 33 | 1 | 5 |
True positive results (correctly identified) | 34 | 13 | 29 | 1 | 2 |
True negative results (correctly excluded) | 980 | 950 | 1040 | 1117 | 1087 |
False-positive results (overdiagnosed) | 95 | 83 | 47 | 2 | 28 |
False-negative results (misdiagnosed) | 11 | 74 | 4 | 0 | 3 |
Sensitivity | 75.56% (95% CI 60.46% to 87.12%) | 14.94% (95% CI 8.20% to 24.20%) | 87.88% (95% CI 71.80% to 96.60%) | 100.00% (95% CI 2.50% to 100.00%) | 40.00% (95% CI 5.27% to 85.34%) |
Specificity | 91.16% (95% CI 89.30% to 92.79%) | 91.97% (95% CI 90.14% to 93.55%) | 95.68% (95% CI 94.29% to 96.81%) | 99.82% (95% CI 99.36% to 99.98%) | 97.49% (95% CI 96.39% to 98.32%) |
Precision | 26.36% (95% CI 21.73% to 31.57%) | 13.54% (95% CI 8.35% to 21.22%) | 38.16% (95% CI 31.22% to 45.62%) | 33.33% (95% CI 11.13% to 66.63%) | 6.67% (95% CI 2.25% to 18.17%) |
Accuracy | 90.54% (95% CI 88.67% to 92.19%) | 85.98% (95% CI 83.81% to 87.96%) | 95.45% (95% CI 94.06% to 96.59%) | 99.82% (95% CI 99.36% to 99.98%) | 97.23% (95% CI 96.09% to 98.11%) |
Decayed Teeth | Missing Teeth | Filled Teeth | Root Canal Filling | Endodontic Lesions | |
---|---|---|---|---|---|
Correlation with false positives | 0.20 | 0.07 | 0.00 | −0.02 | −0.04 |
Correlation with false negatives | −0.05 | −0.13 | −0.03 | N/A | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turosz, N.; Chęcińska, K.; Chęciński, M.; Lubecka, K.; Bliźniak, F.; Sikora, M. Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study. Pediatr. Rep. 2024, 16, 794-805. https://doi.org/10.3390/pediatric16030067
Turosz N, Chęcińska K, Chęciński M, Lubecka K, Bliźniak F, Sikora M. Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study. Pediatric Reports. 2024; 16(3):794-805. https://doi.org/10.3390/pediatric16030067
Chicago/Turabian StyleTurosz, Natalia, Kamila Chęcińska, Maciej Chęciński, Karolina Lubecka, Filip Bliźniak, and Maciej Sikora. 2024. "Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study" Pediatric Reports 16, no. 3: 794-805. https://doi.org/10.3390/pediatric16030067
APA StyleTurosz, N., Chęcińska, K., Chęciński, M., Lubecka, K., Bliźniak, F., & Sikora, M. (2024). Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study. Pediatric Reports, 16(3), 794-805. https://doi.org/10.3390/pediatric16030067