The Influence of the Dominant Leg in Body Asymmetries in Children and Adolescent Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Postural and Muscular Asymmetries Evaluations
2.3.1. Assessment of Thoracic Kyphosis and Lumbar Lordosis
2.3.2. Assessment of Truncal Rotation (Thoracic, Thoracolumbar, and Lumbar)
2.3.3. Shoulder Alignment
2.3.4. Pelvic Tilt
2.3.5. Anterior Superior Iliac Spine (ASIS) Level Examination
2.3.6. Hamstring Tightness
2.3.7. Leg Length
2.4. Statistical Analysis
3. Results
3.1. Intraclass Correlation Coefficient
3.2. Demographics
3.3. Chi-Square (χ2)—Association of the Dominant Leg and Truncal Rotation Side
3.4. Logistic Regressions—Whole Sample
3.5. Logistic Regressions—Functional Scoliosis Group
4. Discussion
4.1. Leg Dominance
4.2. Predictors for Functional Scoliosis in Youth Soccer
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magee, D.J. Orthopedic Physical Assessment, 6th ed.; Elsevier Health Sciences: Toronto, ON, Canada, 2014. [Google Scholar]
- Barczyk-Pawelec, K.; Rubajczyk, K.; Stefańska, M.; Pawik, Ł.; Dziubek, W. Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer. Symmetry 2022, 14, 210. [Google Scholar] [CrossRef]
- Kluszczyński, M.; Pilis, A.; Czaprowski, D. The Importance of the Size of the Trunk Inclination Angle in the Early Detection of Scoliosis in Children. BMC Musculoskelet. Disord. 2022, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, O.; Mazet, C.; Mazet, D.; Hammes, A.; Schmitt, E. Age-Dependency of Posture Parameters in Children and Adolescents. J. Phys. Ther. Sci. 2016, 28, 1607–1610. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Yan, B.; Huang, Y. Prevalence of Incorrect Posture among Children and Adolescents: Finding from a Large Population-Based Study in China. iScience 2020, 23, 101043. [Google Scholar] [CrossRef] [PubMed]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G.; Rodgers, M.M.; Romani, W.A. Muscles: Testing and Function with Posture and Pain, 5th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2005. [Google Scholar]
- Corso, M. Developmental changes in the youth athlete: Implications for movement, skills acquisition, performance and injuries. J. Can. Chiropr. Assoc. 2018, 62, 150–160. [Google Scholar] [PubMed] [PubMed Central]
- Latalski, M.; Danielewicz-Bromberek, A.; Fatyga, M.; Latalska, M.; Kröber, M.; Zwolak, P. Current Insights into the Aetiology of Adolescent Idiopathic Scoliosis. Arch. Orthop. Trauma Surg. 2017, 137, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Ciortea, V.; Ungur, R.; Irsay, L.; Onac, I.; Popa, A.; Popa, D.; Borda, I.M. Classification of scoliosis. Palestrica Third Millenn. Civiliz. Sport 2014, 15, 353–356. [Google Scholar]
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent Idiopathic Scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
- Wik, E.H.; Martínez-Silván, D.; Farooq, A.; Cardinale, M.; Johnson, A.; Bahr, R. Skeletal Maturation and Growth Rates Are Related to Bone and Growth Plate Injuries in Adolescent Athletics. Scand. Med. Sci. Sports 2020, 30, 894–903. [Google Scholar] [CrossRef]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of Functional Strength Imbalance of the Lower Extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar]
- Parrington, L.; Ball, K. Biomechanical Considerations of Laterality in Sport. In Laterality in Sports; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–308. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of Inter-Limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Chromik, K.; Stachoń, A. Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. Int. J. Environ. Res. Public Health 2020, 17, 4695. [Google Scholar] [CrossRef] [PubMed]
- Hanimann, J.; Ellenberger, L.; Bernhard, T.; Franchi, M.V.; Roth, R.; Faude, O.; Spörri, J. More than Just a Side Effect: Dynamic Knee Valgus and Deadbug Bridging Performance in Youth Soccer Players and Alpine Skiers Have Similar Absolute Values and Asymmetry Magnitudes but Differ in Terms of the Direction of Laterality. Front. Physiol. 2023, 14, 1129351. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, E.; Tryfonidis, M.; Zaras, N.; Hadjicharalambous, M. Musculoskeletal Asymmetries in Young Soccer Players: 8 Weeks of an Applied Individual Corrective Exercise Intervention Program. Appl. Sci. 2023, 13, 6445. [Google Scholar] [CrossRef]
- Asadi, M.; Nourasteh, A.; Daneshmandi, H. Comparison of spinal column curvatures between master football players and their non-athletes peers. IJSS 2014, 4, 338–342. [Google Scholar]
- Całka-Lizis, T.; Jankowicz-Szymańska, A.; Adamczyk, K. Body Posture in School Children undergoing Regular Football Training Compared to their Peers. Pol. J. Sports Med. Med. Sport. 2008, 24, 224–230. [Google Scholar]
- Grabara, M. Analysis of Body Posture Between Young Football Players and Their Untrained Peers. Hum. Mov. 2012, 13, 120–126. [Google Scholar] [CrossRef]
- Marques, V.B.; Medeiros, T.M.; de Souza Stigger, F.; Nakamura, F.Y.; Baroni, B.M. The Functional Movement Screen (FMSTM) in Elite Young Soccer Players between 14 and 20 Years: Composite Score, Individual-Test Scores and Asymmetries. Int. J. Sports Phys. Ther. 2017, 12, 977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theodorou, E.; Christou, M.; Apostolidis, A.; Tryfonidis, M.; Zaras, N.; Hadjicharalambous, M. The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players. Symmetry 2022, 14, 2497. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L. Sports Rehabilitation of Patients with Scoliosis Based On Intelligent Data Collection Technology under the Background of Artificial Intelligence. In Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced, Manufacture, Manchester, UK, 23–25 October 2021; ACM: Manchester, UK, 2021; pp. 1131–1136. [Google Scholar] [CrossRef]
- Blanchet, M.; Guertin, P.; Pilon, F.; Gorce, P.; Prince, F. From Neural Command to Robotic Use: The Role of Symmetry/Asymmetry in Postural and Locomotor Activities. Symmetry 2021, 13, 1773. [Google Scholar] [CrossRef]
- Van Dillen, L.R.; Bloom, N.J.; Gombatto, S.P.; Susco, T.M. Hip Rotation Range of Motion in People with and without Low Back Pain Who Participate in Rotation-Related Sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Gera, C.; Malik, M. Effect of Spinal Manipulation on Cardiopulmonary Parameters in Patients with Functional Scoliosis: A Randomised Controlled Pilot Trial. Adv. Rehabil. 2022, 36, 11–17. [Google Scholar] [CrossRef]
- Xing, L.; Popik, S. A Systematic Review of the Impact of Sports on Body Posture in Adolescents. J. Med. Imaging Health Inform. 2020, 10, 1159–1164. [Google Scholar] [CrossRef]
- Loebl, W. Measurement of Spinal Posture and Range of Spinal Movement. Rheumatology 1967, 9, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Palastanga, N.; Field, D.; Soames, R. Anatomy and Human Movement: Structure and Function, 4th ed.; Butterworth-Heinemann: London, UK, 2002. [Google Scholar]
- Van Blommestein, A.S.; MaCrae, S.; Lewis, J.; Morrissey, M. Reliability of Measuring Thoracic Kyphosis Angle, Lumbar Lordosis Angle and Straight Leg Raise with an Inclinometer. Open Spine J. 2012, 4, 10–15. [Google Scholar] [CrossRef]
- Kotwicki, T.; Negrini, S.; Grivas, T.B.; Rigo, M.; Maruyama, T.; Durmala, J.; Zaina, F.; International Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT). Methodology of Evaluation of Morphology of the Spine and the Trunk in Idiopathic Scoliosis and Other Spinal Deformities-6 Th SOSORT Consensus Paper. Scoliosis 2009, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, H.M. Musculoskeletal Assessment: Joint Motion and Muscle Testing; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; De Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT Guidelines: Orthopaedic and Rehabilitation Treatment of Idiopathic Scoliosis during Growth. Scoliosis 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Aulisa, A.G.; Aulisa, L.; Circo, A.B.; De Mauroy, J.C.; Durmala, J.; Grivas, T.B.; Knott, P.; Kotwicki, T.; Maruyama, T.; et al. 2011 SOSORT Guidelines: Orthopaedic and Rehabilitation Treatment of Idiopathic Scoliosis during Growth. Scoliosis 2012, 7, 3. [Google Scholar] [CrossRef]
- Kadri, M.A.; Noé, F.; Maitre, J.; Maffulli, N.; Paillard, T. Effects of Limb Dominance on Postural Balance in Sportsmen Practicing Symmetric and Asymmetric Sports: A Pilot Study. Symmetry 2021, 13, 2199. [Google Scholar] [CrossRef]
- Taketomi, S.; Kawaguchi, K.; Mizutani, Y.; Yamagami, R.; Sameshima, S.; Takei, S.; Kage, T.; Kono, K.; Inui, H.; Fujiwara, S.; et al. Musculoskeletal Asymmetry in Young Soccer Players: Differences between the Dominant and Nondominant Leg. Int. J. Hum. Mov. Sports Sci. 2022, 10, 294–302. [Google Scholar] [CrossRef]
- Mahrová, A.; Hráský, P.; Zahálka, F.; Požárek, P. The Effect of Two Types of Stretching on Flexibility in Selected Joints in Youth Soccer Players. Acta Gymnica 2014, 44, 23–32. [Google Scholar] [CrossRef]
- AMSSM Collaborative Research Network Youth Early Sport Specialization Summit; Tenforde, A.S.; Montalvo, A.M.; Nelson, V.R.; Myer, G.D.; Brenner, J.S.; DiFiori, J.P.; Jayanthi, N.A.; Marshall, S.W.; Kliethermes, S.A. Current Sport Organization Guidelines from the AMSSM 2019 Youth Early Sport Specialization Research Summit. Sports Health 2022, 14, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, E.; Hadjicharalambous, M.; Tryfonidis, M. School Scoliosis Screening: The Influence of Dominant Limbs and Gender. Adolescents 2024, 4, 62–74. [Google Scholar] [CrossRef]
- Jandrić, S.Đ. Scoliosis and Sport. Sport Logia 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Marsiolo, M.; Careri, S.; Bandinelli, D.; Toniolo, R.M.; Aulisa, A.G. Vertebral Rotation in Functional Scoliosis Caused by Limb-Length Inequality: Correlation between Rotation, Limb Length Inequality, and Obliquity of the Sacral Shelf. JCM 2023, 12, 5571. [Google Scholar] [CrossRef]
- Haleem, S.; Nnadi, C. Scoliosis: A Review. Paediatr. Child Health 2018, 28, 209–217. [Google Scholar] [CrossRef]
- Ilie, E.; Orțănescu, D.; Rusu, L.; Cosma, G. The Short-Term Effect of Kinesio® Taping Applications on Muscule Tonus in Preteens with Functional Scoliosis. Discobolul-Phys. Educ. Sport Kinetotherapy J. 2017, 18, 202–210. [Google Scholar]
- Khubaib, F.; Maqsood, U.; Mahmood, T.; Arshad, H.S.; Mahmood, W. Risk Factors of Non-Structural Scoliosis in Adults with Low Back Pain. Rawal Med. J. 2019, 44, 498–501. [Google Scholar]
- Kobayashi, K.; Ando, K.; Nakashima, H.; Machino, M.; Morozumi, M.; Kanbara, S.; Ito, S.; Inoue, T.; Yamaguchi, H.; Mishima, K.; et al. Scoliosis Caused by Limb-Length Discrepancy in Children. Asian Spine J. 2020, 14, 801–807. [Google Scholar] [CrossRef]
- Raczkowski, J.W.; Daniszewska, B.; Zolynski, K. Clinical Research Functional Scoliosis Caused by Leg Length Discrepancy. Arch. Med. Sci. 2010, 3, 393–398. [Google Scholar] [CrossRef]
- Grivas, T.B.; Angouris, K.; Chandrinos, M.; Kechagias, V. Truncal Changes in Children with Mild Limb Length Inequality: A Surface Topography Study. Scoliosis 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, K.; Schmidtbleicher, D. Side and Age-Specific Postural Adaptations of Male Elite Junior Soccer Players (Under 16, 17 & 19). Br. J. Sports Med. 2017, 51, 326–327. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar] [PubMed]
- Trecroci, A.; Bongiovanni, T.; Cavaggioni, L.; Pasta, G.; Formenti, D.; Alberti, G. Agreement between dribble and change of direction deficits to assess directional asymmetry in young elite football players. Symmetry 2020, 12, 787. [Google Scholar] [CrossRef]
- Trecroci, A.; Cavaggioni, L.; Rossi, A.; Moriondo, A.; Merati, G.; Nobari, H.; Ardigò, L.P.; Formenti, D. Effects of speed, agility and quickness training programme on cognitive and physical performance in preadolescent soccer players. PLoS ONE 2022, 17, e0277683. [Google Scholar] [CrossRef]
- Peña-González, I.; Javaloyes, A.; Cervelló, E.; Moya-Ramón, M. The maturity status but not the relative age influences elite young football players’ physical performance. Sci. Med. Footb. 2022, 6, 309–316. [Google Scholar] [CrossRef]
Intraclass Correlation Coefficient (ICC) | 95% Confidence Interval (CI) | p-Value | |
---|---|---|---|
Scoliometer | 0.988 | 0.981–0.993 | 0.001 * |
Inclinometer T1-T2 | 0.987 | 0.979–0.993 | 0.001 * |
Inclinometer T12-L1 | 0.995 | 0.991–0.997 | 0.001 * |
Inclinometer S2-S3 | 0.995 | 0.991–0.997 | 0.001 * |
Truncal Rotation Degrees | ||
---|---|---|
N | Median ± IQR | |
Whole Group | 609 | 2 ± 2 |
Functional Scoliosis Group | 66 | 5 ± 1 |
Variable | B (SE) | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|
Lower | Upper | |||
Standing Height | −0.07 (0.03) * | 0.93 | 0.87 | 1 |
Kyphosis | −0.02 (0.01) | 0.98 | 0.95 | 1 |
Left Leg Length | 0.16 (0.06) ** | 1.18 | 1.06 | 1.32 |
Constant | −4.10 (1.42) ** | 0.02 |
Variable | B (SE) | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|
Lower | Upper | |||
Higher Shoulder Side (posterior view) | ||||
Right (v. none) | 0.17 (0.34) | 1.18 | 0.6 | 2.32 |
Left (v. none) | 0.75 (0.33) * | 2.13 | 1.11 | 4.08 |
Higher ASIS Side | ||||
Right (v. none) | 0.47 (0.58) | 1.61 | 0.52 | 4.97 |
Left (v. none) | 1.12 (0.31) ** | 3.08 | 1.67 | 5.68 |
Constant | −2.62 (0.21) ** | 0.07 |
Variable | B (SE) | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|
Lower | Upper | |||
Standing Height | 0.25 (0.12) * | 1.29 | 1.02 | 1.62 |
Sitting Height | −0.24 (0.14) | 0.79 | 0.6 | 1.04 |
Right Leg Length | −1.15 (0.55) * | 0.32 | 0.11 | 0.93 |
Left Leg Length | 0.93 (0.52) | 2.53 | 0.92 | 6.98 |
Right Hamstrings Stiffness | −0.07 (0.03) ** | 0.93 | 0.89 | 0.98 |
Constant | 0.77 (3.38) | 2.16 |
Variable | B(SE) | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|
Lower | Upper | |||
Pelvic Tilt Classification | ||||
Anterior (v. normal) | 1.46 (0.65) * | 4.3 | 1.19 | 15.46 |
Posterior (v. normal) | −0.09 (0.91) | 0.92 | 0.16 | 5.41 |
Higher Shoulder Side (posterior view) | ||||
Right (v. none) | −0.87 (0.75) | 0.42 | 0.1 | 1.82 |
Left (v. none) | −1.63 (0.69) * | 0.2 | 0.05 | 0.75 |
Constant | 0.99 (0.53) * | 2.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorou, E.; Grivas, T.B.; Hadjicharalambous, M. The Influence of the Dominant Leg in Body Asymmetries in Children and Adolescent Male Soccer Players. Pediatr. Rep. 2024, 16, 684-695. https://doi.org/10.3390/pediatric16030058
Theodorou E, Grivas TB, Hadjicharalambous M. The Influence of the Dominant Leg in Body Asymmetries in Children and Adolescent Male Soccer Players. Pediatric Reports. 2024; 16(3):684-695. https://doi.org/10.3390/pediatric16030058
Chicago/Turabian StyleTheodorou, Eleni, Theodoros B. Grivas, and Marios Hadjicharalambous. 2024. "The Influence of the Dominant Leg in Body Asymmetries in Children and Adolescent Male Soccer Players" Pediatric Reports 16, no. 3: 684-695. https://doi.org/10.3390/pediatric16030058
APA StyleTheodorou, E., Grivas, T. B., & Hadjicharalambous, M. (2024). The Influence of the Dominant Leg in Body Asymmetries in Children and Adolescent Male Soccer Players. Pediatric Reports, 16(3), 684-695. https://doi.org/10.3390/pediatric16030058