Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Preparation
2.3. Amino Acids and Acylcarnitines Profile and Mass Spectrometry
2.4. Decision Criteria for Interpretation
3. Results
3.1. Amino Acid Disorders
3.2. Urea Cycle Disorders
3.3. Organic Acidemias
3.4. Fatty Acid Oxidation Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guthrie, R. Blood Screening for Phenylketonuria. JAMA 1961, 178, 863. [Google Scholar] [CrossRef]
- Mac Cready, R.A. Testing for Phenylketonuria. J. Pediatr. 1963, 62, 954–955. [Google Scholar] [CrossRef]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef]
- Wilson, J.M.; Jungner, Y.G. Principles and practice of mass screening for disease. Bol. Oficina Sanit. Panam. Pan Am. Sanit. Bur. 1968, 65, 281–393. [Google Scholar]
- Loeber, J.G.; Platis, D.; Zetterström, R.H.; Almashanu, S.; Boemer, F.; Bonham, J.R.; Borde, P.; Brincat, I.; Cheillan, D.; Dekkers, E.; et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen. 2021, 7, 15. [Google Scholar] [CrossRef]
- Watson, M.S.; Lloyd-Puryear, M.A.; Howell, R.R. The Progress and Future of US Newborn Screening. Int. J. Neonatal. Screen. 2022, 8, 41. [Google Scholar] [CrossRef]
- Dussault, J.H.; Laberge, C. Thyroxine (T4) determination by radioimmunological method in dried blood eluate: New diagnostic method of neonatal hypothyroidism? Union Med. Can. 1973, 102, 2062–2064. [Google Scholar]
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem Mass Spectrometry: A New Method for Acylcarnitine Profiling with Potential for Neonatal Screening for Inborn Errors of Metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Millington, D.S.; Terada, N.; Chace, D.H.; Chen, Y.T.; Ding, J.H.; Kodo, N.; Roe, C.R. The Role of Tandem Mass Spectrometry in the Diagnosis of Fatty Acid Oxidation Disorders. Prog. Clin. Biol. Res. 1992, 375, 339–354. [Google Scholar]
- Chace, D.H.; Millington, D.S.; Terada, N.; Kahler, S.G.; Roe, C.R.; Hofman, L.F. Rapid Diagnosis of Phenylketonuria by Quantitative Analysis for Phenylalanine and Tyrosine in Neonatal Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 1993, 39, 66–71. [Google Scholar] [CrossRef]
- Zytkovicz, T.H.; Fitzgerald, E.F.; Marsden, D.; Larson, C.A.; Shih, V.E.; Johnson, D.M.; Strauss, A.W.; Comeau, A.M.; Eaton, R.B.; Grady, G.F. Tandem Mass Spectrometric Analysis for Amino, Organic, and Fatty Acid Disorders in Newborn Dried Blood Spots: A Two-Year Summary from the New England Newborn Screening Program. Clin. Chem. 2001, 47, 1945–1955. [Google Scholar] [CrossRef]
- Lehotay, D.C.; Hall, P.; Lepage, J.; Eichhorst, J.C.; Etter, M.L.; Greenberg, C.R. LC–MS/MS Progress in Newborn Screening. Clin. Biochem. 2011, 44, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Lindner, M.; Kohlmüller, D.; Olgemöller, K.; Mayatepek, E.; Hoffmann, G.F. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, C.M.; Lee, H.-C.H.; Chan, A.Y.-W.; Lam, C.-W. Inborn Errors of Metabolism and Expanded Newborn Screening: Review and Update. Crit. Rev. Clin. Lab. Sci. 2013, 50, 142–162. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, M.; Benmeakel, M.; Hossain, M.A.; Al Mutairi, F.; Al Othaim, A.; Alfares, A.A.; Al Balwi, M.; Alzaben, A.; Eyaid, W. Thirteen Year Retrospective Review of the Spectrum of Inborn Errors of Metabolism Presenting in a Tertiary Center in Saudi Arabia. Orphanet J. Rare Dis. 2016, 11, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, S.; Green, A.; Preece, M.A.; Burton, H. The Incidence of Inherited Metabolic Disorders in the West Midlands, UK. Arch. Dis. Child. 2006, 91, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Saudubray, J.M.; Garcia-Cazorla, À. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr. Clin. N. Am. 2018, 65, 179–208. [Google Scholar] [CrossRef]
- Bradford, L.; Therrell, B.L.; Lloyd-Puryear, M.A.; Ohene-Frempong, K.; Ware, R.E.; Padilla, C.D.; Ambrose, E.E.; Barkat, A.; Ghazal, H.; Kiyaga, C.; et al. Empowering Newborn Screening Programs in African Countries through Establishment of an International Collaborative Effort. J. Community Genet. 2020, 11, 253–268. [Google Scholar] [CrossRef]
- Maniar, S.; Amor, C.; Bijjou, A. Screening of Congenital Hyperthyroidism in Morocco: A Pilot Study. East. Mediterr. Health J. 2018, 24, 1066–1073. [Google Scholar] [CrossRef]
- Oulmaati, A.; Hmami, F.; Hida, M.; Bouharrou, A. L’hypothyroïdie congénitale est une cause fréquente d’hospitalisation en réanimation néonatale au Maroc. Arch. Pédiatrie 2016, 23, 105–106. [Google Scholar] [CrossRef]
- Al Riyami, S.; Al Maney, M.; Joshi, S.N.; Bayoumi, R. Detection of Inborn Errors of Metabolism Using Tandem Mass Spectrometry among High-Risk Omani Patients. Oman Med. J. 2012, 27, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Han, F.; Ye, J.; Qiu, W.; Zhang, H.; Gao, X.; Wang, Y.; Ji, W.; Gu, X. Spectrum Analysis of Common Inherited Metabolic Diseases in Chinese Patients Screened and Diagnosed by Tandem Mass Spectrometry. J. Clin. Lab. Anal. 2015, 29, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Taieb, S.; Nasrallah, F.; Hammami, M.B.; Elasmi, M.; Sanhaji, H.; Moncef, F.; Kaabachi, N. Aminoacidopathies and Organic Acidurias in Tunisia: A Retrospective Survey over 23 Years. Tunis. Med. 2012, 90, 258–261. [Google Scholar] [PubMed]
- AlObaidy, H. Patterns of Inborn Errors of Metabolism: A 12 Year Single-Center Hospital-Based Study in Libya. Qatar Med. J. 2013, 2013, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lonlay, P.; Dubois, S.; Valayannopoulos, V.; Depondt, E.; Ottolenghi, C.; Rabier, D. Prise En Charge Médicale et Diététique Des Maladies Héréditaires Du Métabolisme; Springer: Paris, France, 2013. [Google Scholar] [CrossRef]
- Meiouet, F.; El Kabbaj, S.; Debray, F.G.; Boemer, F. Diagnosis and Monitoring of Phenylketonuria by LC-MS-MS in Morocco. Ann. Biol. Clin. 2021, 79, 49–55. [Google Scholar] [CrossRef]
- El-Metwally, A.; Yousef Al-Ahaidib, L.; Ayman Sunqurah, A.; Al-Surimi, K.; Househ, M.; Alshehri, A.; Da’Ar, O.B.; Abdul Razzak, H.; Alodaib, A.N. The Prevalence of Phenylketonuria in Arab Countries, Turkey, and Iran: A Systematic Review. BioMed. Res. Int. 2018, 2018, 7697210. [Google Scholar] [CrossRef] [Green Version]
- Khemir, S.; El Asmi, M.; Sanhaji, H.; Feki, M.; Jemaa, R.; Tebib, N.; Dhondt, J.L.; Ben Dridi, M.F.; Mebazaa, A.; Kaabachi, N. Phenylketonuria Is Still a Major Cause of Mental Retardation in Tunisia despite the Possibility of Treatment. Clin. Neurol. Neurosurg. 2011, 113, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, D.; Mamatha, S.N.; De, T.; Christopher, R. Screening for Inborn Errors of Metabolism Using Automated Electrospray Tandem Mass Spectrometry: Study in High-Risk Indian Population. Clin. Biochem. 2010, 43, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Shibata, N.; Hasegawa, Y.; Yamada, K.; Kobayashi, H.; Purevsuren, J.; Yang, Y.; Dung, V.C.; Khanh, N.N.; Verma, I.C.; Bijarnia-Mahay, S.; et al. Diversity in the Incidence and Spectrum of Organic Acidemias, Fatty Acid Oxidation Disorders, and Amino Acid Disorders in Asian Countries: Selective Screening vs. Expanded Newborn Screening. Mol. Genet. Metab. Rep. 2018, 16, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Magoulas, P.L.; El-Hattab, A.W. Systemic Primary Carnitine Deficiency: An Overview of Clinical Manifestations, Diagnosis, and Management. Orphanet J. Rare Dis. 2012, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Pajares, S.; Arranz, J.A.; Ormazabal, A.; Del Toro, M.; García-Cazorla, Á.; Navarro-Sastre, A.; López, R.M.; Meavilla, S.M.; de los Santos, M.M.; García-Volpe, C.; et al. Implementation of Second-Tier Tests in Newborn Screening for the Detection of Vitamin B12 Related Acquired and Genetic Disorders: Results on 258,637 Newborns. Orphanet J. Rare Dis. 2021, 16, 195. [Google Scholar] [CrossRef]
- Jaouad, I.C.; Elalaoui, S.C.; Sbiti, A.; Elkerh, F.; Belmahi, L.; Sefiani, A. Consanguineous Marriages in Morocco and the Consequence for the Incidence of Autosomal Recessive Disorders. J. Biosoc. Sci. 2009, 41, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Schulpen, T.W.J.; van Wieringen, J.C.M.; van Brummen, P.J.; van Riel, J.M.; Beemer, F.A.; Westers, P.; Huber, J. Infant Mortality, Ethnicity, and Genetically Determined Disorders in The Netherlands. Eur. J. Public Health 2006, 16, 290–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazan, G.; Hershkovitz, E.; Staretz-Chacham, O. Incidence of Inherited Metabolic Disorders in Southern Israel: A Comparison between Consanguinity and Non-Consanguinity Communities. Orphanet J. Rare Dis. 2020, 15, 331. [Google Scholar] [CrossRef] [PubMed]
- Afzal, R.M.; Lund, A.M.; Skovby, F. The Impact of Consanguinity on the Frequency of Inborn Errors of Metabolism. Mol. Genet. Metab. Rep. 2018, 15, 6–10. [Google Scholar] [CrossRef] [PubMed]
Disorder | Cut Off (µmol/L) | Cut Off Molar Ratio |
---|---|---|
Phenylketonuria Hyperphenylalaninemia | Phe > 120 | Phe/Tyr > 3 |
Tyrosinemia type 1 | Tyr > 127.1 Succinylacetone > 1 | |
Tyrosinemia type 2 | Tyr > 127.1 | |
Tyrosinemia type 3 | Tyr > 127.1 | |
Citrullinemia type 1 | Cit > 38.5 | |
Hyperprolinemia | Pro > 274.1 | |
Hyperornithinemia | Orn > 142.3 | |
Hypermethioninemia | Met > 27.3 | |
Maple syrup urine disease | Leu/iso > 223.74 | |
Nonketotic hyperglycinemia | DBS: Gly > 417.7 Plasma: Gly > 291 Cerebrospinal fluid (CSF): Gly > 8.4 | Gly CSF/Gly plasma > 0.03 |
Homocystinuria | Met > 27.3 | |
Argininemia | Arg > 56.5 |
Disorder | Cut Off Marker (µmol/L) | Cut Off Marker Molar Ratio |
---|---|---|
Propionic aciduria (PA) | C3 > 2.46 | C3/C0 > 0.08 C3/C2 > 0.14 |
Methylmalonic aciduria (MMA) | C3 > 2.46 C4DC > 0.86 | C3/C0 > 0.08 C3/C2 > 0.14 |
Glutaric aciduria type 1 (GA I) | C5DC > 0.45 | |
Glutaric aciduria type 2 (GA II) | C4 > 0.94 C5 > 0.33 | |
Isovaleric aciduria (IVA) | C5 > 0.33 | |
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (HMG) | C5OH > 0.5 C6DC > 0.1 | |
β-ketothiolase deficiency (BKT) | C5:1 > 0.07 | |
3-methylcrotonyl-CoA carboxylase deficiency (3-MCC) | C5OH > 0.51 | |
3-methyl glutaconic aciduria (3-MGA) | C5OH > 0.51 | |
Ethylmalonic encephalopathy (EE) | C4 > 0.94 C5 > 0.33 | |
Malonic aciduria | C3DC > 0.15 | |
Medium chain acyl-CoA dehydrogenase deficiency (MCAD) | C8 > 0.24 C6 > 0.14 C10:1 > 0.49 | C8/C2 > 0.01 C8/C10 > 2.17 |
Very long chain acyl-CoA dehydrogenase deficiency (VLCAD) | C14:1 > 0.18 C12:1 > 0.13 C12 > 0.22 C14:2 > 0.08 C14 > 0.37 | C14:1/C12:1 > 4.53 |
Long chain hydroxy acyl-CoA dehydrogenase (LCHAD) | C16-OH > 0.08 C18:2-OH > 0.06 C18:1-OH > 0.07 C14-OH > 0.06 C16:1-OH > 0.12 | |
Carnitine palmitoyltransferase deficiency type 1 (CPT 1) | C0 > 52.98 C16 < 0.38 C18 < 0.23 | C0/C16 + C18 > 37.48 |
Carnitine palmitoyltransferase deficiency type 2 (CPT 2) | C18 > 1.18 C18:2 > 0.8 C18:1 > 1.92 C16:1 > 0.4 C16 > 2.94 C0 < 13.63 | C16+ C18:1/C2 > 0.27 |
Carnitine-acylcarnitine translocase deficiency (CACT) | C16 > 2.94 C18:1 > 1.92 C18:2 > 0.8 C18 > 1.18 C0 < 13.63 | |
Carnitine uptake defect (CUD)/Primary carnitine deficiency (PCD) | C0 < 5 | |
Short chain acyl-CoA dehydrogenase deficiency (SCAD) | C4 > 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meiouet, F.; El Kabbaj, S.; Abilkassem, R.; Boemer, F. Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry. Pediatr. Rep. 2023, 15, 227-236. https://doi.org/10.3390/pediatric15010018
Meiouet F, El Kabbaj S, Abilkassem R, Boemer F. Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry. Pediatric Reports. 2023; 15(1):227-236. https://doi.org/10.3390/pediatric15010018
Chicago/Turabian StyleMeiouet, Faïza, Sâad El Kabbaj, Rachid Abilkassem, and François Boemer. 2023. "Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry" Pediatric Reports 15, no. 1: 227-236. https://doi.org/10.3390/pediatric15010018
APA StyleMeiouet, F., El Kabbaj, S., Abilkassem, R., & Boemer, F. (2023). Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry. Pediatric Reports, 15(1), 227-236. https://doi.org/10.3390/pediatric15010018