Benefits of a Wearable Cyborg HAL (Hybrid Assistive Limb) in Patients with Childhood-Onset Motor Disabilities: A 1-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. The Lower Limb Type HAL
2.3. Study Design
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D.; Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Gäbler, G.; Coenen, M.; Lycett, D.; Stamm, T. Towards a standardized nutrition and dietetics terminology for clinical practice: An Austrian multicenter clinical documentation analysis based on the International Classification of Functioning, Disability and Health (ICF)-Dietetics. Clin. Nutr. 2019, 38, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Engsberg, J.R.; Ross, S.A.; Olree, K.S.; Park, T.S. Ankle spasticity and strength in children with spastic diplegic cerebral palsy. Dev. Med. Child Neurol. 2000, 42, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, S.K.; Binder-Macleod, S.A.; Lee, S.C. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve 2005, 31, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Opheim, A.; Jahnsen, R.; Olsson, E.; Stanghelle, J.K. Walking function, pain, and fatigue in adults with cerebral palsy: A 7-year follow-up study. Dev. Med. Child Neurol. 2009, 51, 381–388. [Google Scholar] [CrossRef]
- Morgan, P.; McGinley, J. Gait function and decline in adults with cerebral palsy: A systematic review. Disabil. Rehabil. 2014, 36, 1–9. [Google Scholar] [CrossRef]
- Murphy, K.P.; Molnar, G.E.; Lankasky, K. Medical and functional status of adults with cerebral palsy. Dev. Med. Child Neurol. 1995, 37, 1075–1084. [Google Scholar] [CrossRef]
- Smania, N.; Bonetti, P.; Gandolfi, M.; Cosentino, A.; Waldner, A.; Hesse, S.; Werner, C.; Bisoffi, G.; Geroin, C.; Munari, D. Improved gait after repetitive locomotor training in children with cerebral palsy. Am. J. Phys. Med. Rehabil. 2011, 90, 137–149. [Google Scholar] [CrossRef]
- Meyer-Heim, A.; Borggraefe, I.; Ammann-Reiffer, C.; Berweck, S.; Sennhauser, F.H.; Colombo, G.; Knecht, B.; Heinen, F. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev. Med. Child Neurol. 2007, 49, 900–906. [Google Scholar] [CrossRef]
- Schroeder, A.S.; Homburg, M.; Warken, B.; Auffermann, H.; Koerte, I.; Berweck, S.; Jahn, K.; Heinen, F.; Borggraefe, I. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur. J. Paediatr. Neurol. 2014, 18, 502–510. [Google Scholar] [CrossRef]
- Borggraefe, I.; Kiwull, L.; Schaefer, J.S.; Koerte, I.; Blaschek, A.; Meyer-Heim, A.; Heinen, F. Sustainability of motor performance after robotic-assisted treadmill therapy in children: An open, non-randomized baseline-treatment study. Eur. J. Phys. Rehabil. Med. 2010, 46, 125–131. [Google Scholar] [PubMed]
- Aurich-Schuler, T.; Grob, F.; van Hedel, H.J.A.; Labruyère, R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J. Neuroeng. Rehabil. 2017, 14, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggard, P.; Clark, S.; Kalogeras, J. Voluntary action and conscious awareness. Nat. Neurosci. 2002, 5, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sankai, Y. Virtual impedance adjustment in unconstrained motion for an exoskeletal robot assisting the lower limb. Adv. Robot. 2005, 19, 773–795. [Google Scholar] [CrossRef]
- Sankai, Y.; Sakurai, T. Exoskeletal cyborg-type robot. Sci. Robot. 2018, 3, eaat3912. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Mizukami, M.; Kawamoto, H.; Sano, A.; Koseki, K.; Sano, K.; Asakawa, Y.; Kohno, Y.; Nakai, K.; Gosho, M.; et al. Gait training with Hybrid Assistive Limb enhances the gait functions in subacute stroke patients: A pilot study. NeuroRehabilitation 2017, 40, 87–97. [Google Scholar] [CrossRef]
- Aach, M.; Cruciger, O.; Sczesny-Kaiser, M.; Höffken, O.; Meindl, R.C.; Tegenthoff, M.; Schwenkreis, P.; Sankai, Y.; Schildhauer, T.A. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: A pilot study. Spine J. 2014, 14, 2847–2853. [Google Scholar] [CrossRef]
- Tanaka, H.; Nankaku, M.; Nishikawa, T.; Hosoe, T.; Yonezawa, H.; Mori, H.; Kikuchi, T.; Nishi, H.; Takagi, Y.; Miyamoto, S.; et al. Spatiotemporal gait characteristic changes with gait training using the hybrid assistive limb for chronic stroke patients. Gait Posture 2019, 71, 205–210. [Google Scholar] [CrossRef]
- Brinkemper, A.; Aach, M.; Grasmücke, D.; Jettkant, B.; Rosteius, T.; Dudda, M.; Yilmaz, E.; Schildhauer, T.A. Improved physiological gait in acute and chronic SCI patients after training with wearable cyborg hybrid assistive limb. Front. Neurorobot. 2021, 15, 723206. [Google Scholar] [CrossRef]
- Grasmücke, D.; Zieriacks, A.; Jansen, O.; Fisahn, C.; Sczesny-Kaiser, M.; Wessling, M.; Meindl, R.C.; Schildhauer, T.A.; Aach, M. Against the odds: What to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg. Focus 2017, 42, E15. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Mataki, Y.; Mutsuzaki, H.; Yoshikawa, K.; Takahashi, K.; Enomoto, K.; Sano, K.; Mizukami, M.; Tomita, K.; Ohguro, H.; et al. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy. J. Phys. Ther. Sci. 2018, 30, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Mutsuzaki, H.; Mataki, Y.; Yoshikawa, K.; Matsuda, M.; Enomoto, K.; Sano, K.; Kubota, A.; Mizukami, M.; Iwasaki, N.; et al. Safety and immediate effect of gait training using a Hybrid Assistive Limb in patients with cerebral palsy. J. Phys. Ther. Sci. 2018, 30, 1009–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; Iwasaki, N.; Mataki, Y.; Mutsuzaki, H.; Yoshikawa, K.; Takahashi, K.; Enomoto, K.; Sano, K.; Kubota, A.; Nakayama, T.; et al. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Brain Dev. 2018, 40, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Mutsuzaki, H.; Mataki, Y.; Endo, Y.; Kamada, H.; Yamazaki, M. Improvement and sustainability of walking ability with hybrid assistive limb training in a patient with cerebral palsy after puberty: A case report. J. Phys. Ther. Sci. 2019, 31, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Goto, R.; Tanaka, N.; Matsumura, A.; Yanagi, H. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. NeuroRehabilitation 2017, 40, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Nankaku, M.; Nishikawa, T.; Yonezawa, H.; Mori, H.; Kikuchi, T.; Nishi, H.; Takagi, Y.; Miyamoto, S.; Ikeguchi, R.; et al. A follow-up study of the effect of training using the Hybrid Assistive Limb on gait ability in chronic stroke patients. Top. Stroke Rehabil. 2019, 26, 491–496. [Google Scholar] [CrossRef]
- Borggraefe, I.; Schaefer, J.S.; Klaiber, M.; Dabrowski, E.; Ammann-Reiffer, C.; Knecht, B.; Berweck, S.; Heinen, F.; Meyer-Heim, A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 2010, 14, 496–502. [Google Scholar] [CrossRef]
- Thompson, P.; Beath, T.; Bell, J.; Jacobson, G.; Phair, T.; Salbach, N.M.; Wright, F.V. Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev. Med. Child Neurol. 2008, 50, 370–376. [Google Scholar] [CrossRef]
- Haley, S.; Ludlow, L.H.; Haltiwanger, J.T.; Andrellos, P.J. Pediatric Evaluation of Disability Inventory (PEDITM): Development, Standardization and Administration Manual; Trustees of Boston University: Boston, MA, USA, 1992. [Google Scholar]
- Cusick, A.; Lannin, N.A.; Lowe, K. Adapting the Canadian Occupational Performance Measure for use in a paediatric clinical trial. Disabil. Rehabil. 2007, 29, 761–766. [Google Scholar] [CrossRef]
- Storm, F.A.; Petrarca, M.; Beretta, E.; Strazzer, S.; Piccinini, L.; Maghini, C.; Panzeri, D.; Corbetta, C.; Morganti, R.; Reni, G.; et al. Minimum clinically important difference of gross motor function and gait endurance in children with motor impairment: A comparison of distribution-based approaches. Biomed Res. Int. 2020, 2020, 2794036. [Google Scholar] [CrossRef]
- Oeffinger, D.; Bagley, A.; Rogers, S.; Gorton, G.; Kryscio, R.; Abel, M.; Damiano, D.; Barnes, D.; Tylkowski, C. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008, 50, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Sczesny-Kaiser, M.; Kowalewski, R.; Schildhauer, T.A.; Aach, M.; Jansen, O.; Grasmücke, D.; Güttsches, A.K.; Vorgerd, M.; Tegenthoff, M. Treadmill training with HAL exoskeleton-a novel approach for symptomatic therapy in patients with limb-girdle muscular dystrophy-preliminary study. Front. Neurosci. 2017, 11, 449. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Sankai, Y.; Takata, S.; Kobayashi, Y.; Ando, Y.; Nakagawa, M.; Saito, T.; Saito, K.; Ishida, C.; Tamaoka, A.; et al. Cybernic treatment with wearable cyborg Hybrid Assistive Limb (HAL) improves ambulatory function in patients with slowly progressive rare neuromuscular diseases: A multicentre, randomised, controlled crossover trial for efficacy and safety (NCY-3001). Orphanet J Rare Dis. 2021, 16, 304. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Ranganathan, R.; Dhaher, Y.Y.; Rymer, W.Z. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation. PLoS ONE 2013, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Pennycott, A.; Wyss, D.; Vallery, H.; Klamroth-Marganska, V.; Riener, R. Towards more effective robotic gait training for stroke rehabilitation: A review. J. Neuroeng. Rehabil. 2012, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Lotze, M.; Braun, C.; Birbaumer, N.; Anders, S.; Cohen, L.G. Motor learning elicited by voluntary drive. Brain 2003, 126, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Lewek, M.D.; Cruz, T.H.; Moore, J.L.; Roth, H.R.; Dhaher, Y.Y.; Hornby, T.G. Allowing Intralimb kinematic variability during Locomotor training Poststroke improves kinematic consistency: A subgroup analysis from a randomized clinical trial. Phys. Ther. 2009, 89, 829–839. [Google Scholar] [CrossRef]
- van Hedel, H.J.; Rosselli, I.; Baumgartner-Ricklin, S. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments. J. Neuroeng. Rehabil. 2021, 18, 29. [Google Scholar] [CrossRef]
- CYBERDYNE. Longterm Outcome Survey of “HAL for Medical Use (Lower Limb Type)”, JMA-IIA00301 2017. Available online: https://dbcentre3.jmacct.med.or.jp/JMACTR/App/JMACTRE02_04/JMACTRE02_04.aspx?kbn=3&seqno=6950 (accessed on 10 February 2023).
- Shortland, A. Muscle deficits in cerebral palsy and early loss of mobility: Can we learn something from our elders? Dev. Med. Child Neurol. 2009, 51, 59–63. [Google Scholar] [CrossRef]
- Hanna, S.E.; Rosenbaum, P.L.; Bartlett, D.J.; Palisano, R.J.; Walter, S.D.; Avery, L.; Russell, D.J. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev. Med. Child Neurol. 2009, 51, 295–302. [Google Scholar] [CrossRef]
- Lissom, L.O.; Lamberti, N.; Lavezzi, S.; Basaglia, N.; Manfredini, F.; Straudi, S. Is robot-assisted gait training intensity a determinant of functional recovery early after stroke? A pragmatic observational study of clinical care. Int. J. Rehabil. Res. 2022, 45, 189–194. [Google Scholar] [CrossRef] [PubMed]
- van Hedel, H.J.A.; Bulloni, A.; Gut, A. Prefrontal Cortex and Supplementary Motor Area Activation during Robot-Assisted Weight-Supported Over-Ground Walking in Young Neurological Patients: A Pilot fNIRS Study. Front Rehabil. Sci. 2021, 10, 788087. [Google Scholar] [CrossRef] [PubMed]
Patient | Sex | Age (Years) | Height (cm) | Weight (kg) | Etiology | Paralysis Type | GMFCS | Walking Distance/ Session (m), Median (Range) | HAL Mode of Action (Hip/Knee) |
---|---|---|---|---|---|---|---|---|---|
1 | M | 16 | 160 | 45 | CP | SD | II | 570 (200–840) | CVC/CVC |
2 | M | 32 | 173 | 61 | CIP | SP | III | 192 (40–280) | CVC/CVC |
3 | M | 24 | 160 | 49 | CP | SD | III | 390 (200–520) | CVC/CVC |
4 | F | 22 | 156 | 41 | CP | SD | III | 233 (120–280) | CVC/CVC |
5 | M | 17 | 153 | 51 | CP | SD | III | 350 (240–480) | CVC/CVC |
6 | F | 17 | 140 | 49 | CP | SD | III | 362 (80–520) | CVC/CVC |
7 | F | 15 | 168 | 78 | Encephalitis | SP | III | 183 (40–320) | CAC/CVC |
8 | F | 13 | 142 | 48 | CP | SD | III | 249 (80–420) | CVC/CVC |
9 | M | 14 | 153 | 51 | CP | SQ | IV | 220 (80–320) | CVC/CVC |
Average | 18.9 | 156.1 | 52.6 | ||||||
Standard deviation | 6.1 | 10.8 | 11.0 |
Outcome Measure | n | Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | 1 Month after | 2 Months after | 3 Months after | 1 Year after | ||||||
Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | F | p | η2 | |||
Motor function | GMFM total (score) | 9 | 159.0 ± 17.4 | 165.9 ± 20.3 a,d | 165.7 ± 20.7 d | 166.3 ± 21.8 d | 166.7 ± 20.7 d | 166.6 ± 21.7 d | 8.713 | <0.001 | 0.52 |
Walking ability | SWS gait speed (m/s) | 9 | 0.46 ± 0.24 | 0.62 ± 0.42 a,c | 0.61 ± 0.35 b | 0.57 ± 0.34 | 0.61 ± 0.41 b | 0.59 ± 0.32 | 3.671 | 0.009 | 0.34 |
step length (cm) | 9 | 41.5 ± 10.0 | 44.8 ± 11.3 | 45.6 ± 10.0 | 43.5 ± 9.7 | 45.2 ± 10.2 | 44.0 ± 5.8 | 2.926 | 0.026 | 0.30 | |
cadence (steps/min) | 9 | 65.4 ± 29.0 | 78 ± 38.9 a,b | 77.2 ± 37.9 | 77.1 ± 36.4 | 76.5 ± 41.1 | 78.6 ± 39.3 | 3.005 | 0.023 | 0.30 | |
MWS gait speed (m/s) | 8 | 0.65 ± 0.34 | 0.83 ± 0.49 a,c | 0.78 ± 0.38 | 0.81 ± 0.44 b | 0.77 ± 0.38 | 0.76 ± 0.43 | 2.802 | 0.031 | 0.29 | |
step length (cm) | 8 | 46.9 ± 8.2 | 49.2 ± 9.2 | 49.5 ± 8.4 | 49.1 ± 9.0 | 49.7 ± 9.5 | 47.9 ± 8.8 | 0.950 | 0.461 | 0.12 | |
cadence (steps/min) | 8 | 82.0 ± 38.9 | 95.7 ± 46.9 a,c | 92.5 ± 39.8 | 93.9 ± 39.6 b | 91.3 ± 39.0 | 93.0 ± 46.0 b | 3.016 | 0.023 | 0.30 | |
Walking endurance | 6MD (m) | 8 | 161.4 ± 67.1 | 188.5 ± 84.6 a | 193.8 ± 87.9 b | 188.9 ± 73.5 | 196.6 ± 84.8 b | 179.6 ± 81.8 | 2.925 | 0.026 | 0.30 |
Subjective evaluation | COPM performance (score) | 9 | 3.4 ± 0.9 | 4.4 ± 1.3 a | 4.5 ± 1.4 | 3.9 ± 1.4 | 3.8 ± 1.7 | 4.2 ± 1.5 | 0.595 | 0.704 | 0.09 |
COPM satisfaction (score) | 9 | 2.9 ± 1.2 | 3.9 ± 1.3 a | 4.0 ± 1.5 | 3.5 ± 1.5 | 3.8 ± 1.7 | 3.8 ± 1.6 | 0.914 | 0.485 | 0.13 | |
ADL | PEDI (score) | 9 | 159.6 ± 30.5 | 159.6 ± 30.5 | 159.8 ± 30.5 | 159.9 ± 30.6 | 160.0 ± 30.6 | 162.4 ± 30.7 | 1.759 | 0.147 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroda, M.M.; Iwasaki, N.; Mutsuzaki, H.; Yoshikawa, K.; Takahashi, K.; Nakayama, T.; Nakayama, J.; Takeuchi, R.; Mataki, Y.; Ohguro, H.; et al. Benefits of a Wearable Cyborg HAL (Hybrid Assistive Limb) in Patients with Childhood-Onset Motor Disabilities: A 1-Year Follow-Up Study. Pediatr. Rep. 2023, 15, 215-226. https://doi.org/10.3390/pediatric15010017
Kuroda MM, Iwasaki N, Mutsuzaki H, Yoshikawa K, Takahashi K, Nakayama T, Nakayama J, Takeuchi R, Mataki Y, Ohguro H, et al. Benefits of a Wearable Cyborg HAL (Hybrid Assistive Limb) in Patients with Childhood-Onset Motor Disabilities: A 1-Year Follow-Up Study. Pediatric Reports. 2023; 15(1):215-226. https://doi.org/10.3390/pediatric15010017
Chicago/Turabian StyleKuroda, Mayumi Matsuda, Nobuaki Iwasaki, Hirotaka Mutsuzaki, Kenichi Yoshikawa, Kazushi Takahashi, Tomohiro Nakayama, Junko Nakayama, Ryoko Takeuchi, Yuki Mataki, Haruka Ohguro, and et al. 2023. "Benefits of a Wearable Cyborg HAL (Hybrid Assistive Limb) in Patients with Childhood-Onset Motor Disabilities: A 1-Year Follow-Up Study" Pediatric Reports 15, no. 1: 215-226. https://doi.org/10.3390/pediatric15010017