Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Chemical Characterization of the Soil
2.3. Soil eDNA Extraction and 16S rRNA Detection
2.4. Library Preparation
2.5. Bioinformatic Analysis Workflow
2.6. Taxonomy Annotation
2.7. Functional Analysis
2.8. Statistical Analysis
3. Results
3.1. Chemical Analysis of the Soil
3.2. Assessment of Microbial Community Diversity Through e-DNA Sequencing
3.3. Identification and Distribution of the Soil Bacterial Communities
3.4. Relationships Among the Bacterial Species
3.5. Evolutionary Relationships of the Soil Bacteria
3.6. Identification of Core and Unique Bacterial Taxa
3.7. Microbial Community Dominance Patterns
3.8. Alpha Diversity Analysis
3.9. Predicted Functional Roles of the Soil Microbial Communities
3.10. Network Analysis
3.11. Correlation Heatmap of the Soil Chemical Analysis and Microbial (Bacterial) Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
eDNA | environmental DNA |
EC | electrical conductivity |
SRA | sequence read archive |
TC | total carbon |
TIC | total inorganic carbon |
TN | total nitrogen |
PCR | polymerase chain reaction |
OTU | operational taxonomic unit |
References
- Telo da Gama, J. The role of soils in sustainability, climate change, and ecosystem services: Challenges and opportunities. Ecologies 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Gayan, A.; Borah, P.; Nath, D.; Kataki, R. Soil microbial diversity, soil health and agricultural sustainability. In Sustainable Agriculture and the Environment; Academic Press: Cambridge, MA, USA, 2023; Chapter 4; pp. 107–126. [Google Scholar]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; ur Rehman, S.; Oetting, J.N. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Mishra, A.K.; Bhowmick, M.K.; Das, R.; Pidikiti, P.; Maurya, P.K.; Sharma, S.; Peramaiyan, P.; Singh, S. Potentials and Prospects of AMF for Soil Carbon Sequestration and Nutrient Cycling in Rice-Based Cropping System. In Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management; Springer: Berlin/Heidelberg, Germany, 2024; pp. 113–129. [Google Scholar]
- Wu, S.; Fu, W.; Rillig, M.C.; Chen, B.; Zhu, Y.G.; Huang, L. Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi–an updated conceptual framework. New Phytol. 2024, 242, 1417–1425. [Google Scholar] [CrossRef]
- Sikorski, J. The Prokaryotic Biology of Soil: Invited Review. Soil Org. 2015, 87, 1–28. [Google Scholar]
- Dragone, N.B.; Hoffert, M.; Strickland, M.S.; Fierer, N. The taxonomic and genomic attributes of oligotrophic soil bacteria. ISME Commun. 2024, 4, ycae081. [Google Scholar] [CrossRef] [PubMed]
- Purakayastha, T.J.; Trivedi, A.; Biswas, S.; Kumar, D. Soil Health and Climate Change. In Climate Change Impacts on Soil-Plant-Atmosphere Continuum; Springer: Berlin/Heidelberg, Germany, 2024; pp. 107–137. [Google Scholar]
- Ali, N.; Nafees, M. Climate change and land use in the GCC countries with a specific reference to Qatar peninsula. Arabia 2023, 214, 32–39. [Google Scholar]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.M.; Devi, K.D. Role of micro-organism for improving soil health. In Sustainable Management of Soil Health; Bhumi Publishing: Kolhapur, India, 2023; p. 7. [Google Scholar]
- Pandao, M.R.; Thakare, A.A.; Choudhari, R.J.; Navghare, N.R.; Sirsat, D.D.; Rathod, S.R. Soil Health and Nutrient Management. Int. J. Plant Soil Sci. 2024, 36, 873–883. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Dinelli, G.; Negri, L. Towards an agroecological approach to crop health: Reducing pest incidence through synergies between plant diversity and soil microbial ecology. npj Sustain. Agric. 2024, 2, 6. [Google Scholar] [CrossRef]
- Nabi, M. Role of microorganisms in plant nutrition and soil health. In Sustainable Plant Nutrition; Elsevier: Amsterdam, The Netherlands, 2023; pp. 263–282. [Google Scholar]
- Thies, J.E.; Grossman, J.M. The soil habitat and soil ecology. In Biological Approaches to Regenerative Soil Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 69–84. [Google Scholar]
- Kamal, N.; Saharan, B.S. Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—People, planet, and prosperity. Arab. J. Geosci. 2025, 18, 34. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Essential and Functional Mineral Elements. In Plant Physiology, Development and Metabolism; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–49. [Google Scholar]
- Chaudhary, S.; Sindhu, S.S.; Dhanker, R.; Kumari, A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol. Res. 2023, 271, 127340. [Google Scholar] [CrossRef]
- El Rasafi, T.; Haouas, A.; Tallou, A.; Chakouri, M.; Aallam, Y.; El Moukhtari, A.; Hamamouch, N.; Hamdali, H.; Oukarroum, A.; Farissi, M. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Chemosphere 2023, 341, 140121. [Google Scholar] [CrossRef]
- Ćirić, V.; Prekop, N.; Šeremesic, S.; Vojnov, B.; Pejić, B.; Radovanović, D.; Marinković, D. The Implication of cation exchange capcaity (CEC) assessment for soil quality management and improvement. Agric. For. Poljopr. I Šumar. 2023, 69, 113–133. [Google Scholar]
- Kuśmierz, S.; Skowrońska, M.; Tkaczyk, P.; Lipiński, W.; Mielniczuk, J. Soil organic carbon and mineral nitrogen contents in soils as affected by their pH, texture and fertilization. Agronomy 2023, 13, 267. [Google Scholar] [CrossRef]
- Pace, R.; Schiano Di Cola, V.; Monti, M.M.; Affinito, A.; Cuomo, S.; Loreto, F.; Ruocco, M. Artificial intelligence in soil microbiome analysis: A potential application in predicting and enhancing soil health—A review. Discov. Appl. Sci. 2025, 7, 85. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T. Culturing the uncultured microbial majority in activated sludge: A critical review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 601–624. [Google Scholar] [CrossRef]
- Nayak, N.; Satyamoorthy, K.; Murali, T.S. Next-generation sequencing technology for the diagnosis of microbial infections in hard-to-heal wounds. J. Wound Care 2023, 32, xcvii–cix. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.P.; Rout, A.K.; Rao, E.V.; Pradhan, S.K. Genomics Data Analysis Techniques in Bioinformatics. In Current Trends in Fisheries Biotechnology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 139–152. [Google Scholar]
- Bajaj, T.; Bhattacharya, S.; Gupta, J. Microbial Genomics; Springer Nature: Singapore, 2024; p. 307. [Google Scholar]
- Garg, D.; Patel, N.; Rawat, A.; Rosado, A.S. Cutting edge tools in the field of soil microbiology. Curr. Res. Microb. Sci. 2024, 6, 100226. [Google Scholar] [CrossRef]
- Pinto, Y.; Bhatt, A.S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 2024, 25, 829–845. [Google Scholar] [CrossRef]
- Offiong, N.-A.O.; Edet, J.B.; Shaibu, S.E.; Akan, N.E.; Atakpa, E.O.; Sanganyado, E.; Okop, I.J.; Benson, N.U.; Okoh, A. Metagenomics: An emerging tool for the chemistry of environmental remediation. Front. Environ. Chem. 2023, 4, 1052697. [Google Scholar] [CrossRef]
- Madison, J.D.; LaBumbard, B.C.; Woodhams, D.C. Shotgun metagenomics captures more microbial diversity than targeted 16S rRNA gene sequencing for field specimens and preserved museum specimens. PLoS ONE 2023, 18, e0291540. [Google Scholar] [CrossRef]
- Kauserud, H. ITS alchemy: On the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 2023, 65, 101274. [Google Scholar] [CrossRef]
- Ejaz, M.R.; Badr, K.; Hassan, Z.U.; Al-Thani, R.; Jaoua, S. Metagenomic approaches and opportunities in arid soil research. Sci. Total Environ. 2024, 953, 176173. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, A. Functional Gene Diversity and Metabolic Potential of Uncultured Bacteria. In Microbial Diversity in the Genomic Era; Elsevier: Amsterdam, The Netherlands, 2024; pp. 481–491. [Google Scholar]
- Coleine, C.; Delgado-Baquerizo, M.; DiRuggiero, J.; Guirado, E.; Harfouche, A.L.; Perez-Fernandez, C.; Singh, B.K.; Selbmann, L.; Egidi, E. Dryland microbiomes reveal community adaptations to desertification and climate change. ISME J. 2024, 18, wrae056. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Liu, J.; Hua, Z.-S.; Chen, L.-X.; Kuang, J.-L.; Li, S.-J.; Shu, W.-S.; Huang, L.-N. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl. Environ. Microbiol. 2014, 80, 3677–3686. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Zhang, A.; Zhong, H.; Jiang, H.; Tsui, M.T.-K.; Li, M.; Pan, K. Impact of geochemistry and microbes on the methylmercury production in mangrove sediments. J. Hazard. Mater. 2024, 479, 135627. [Google Scholar] [CrossRef]
- Quero, G.M.; Cassin, D.; Botter, M.; Perini, L.; Luna, G.M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 2015, 6, 1053. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Shen, J.; Pan, Y.; Lin, W. Metabolic versatility of soil microbial communities below the rocks of the hyperarid Dalangtan Playa. Appl. Environ. Microbiol. 2023, 89, e01072-23. [Google Scholar] [CrossRef] [PubMed]
- de Cos-Gandoy, A.; Serrano-Bellón, A.; Macías-Daza, M.; Pérez-Uz, B.; Williams, R.A.; Sanchez-Jimenez, A.; Martín-Cereceda, M. Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park. Diversity 2024, 16, 544. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Cho, G.; Kim, S.; Riu, M.; Song, J. Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide. Chemosphere 2024, 354, 141583. [Google Scholar] [CrossRef]
- Ortúzar, M.; Riesco, R.; Criado, M.; del Pilar Alonso, M.; Trujillo, M.E. Unraveling the dynamic interplay of microbial communities associated to Lupinus angustifolius in response to environmental and cultivation conditions. Sci. Total Environ. 2024, 946, 174277. [Google Scholar] [CrossRef]
- Pan, C.; Yuan, F.; Liu, Y.; Yu, X.; Liu, J. Soil bacterial and fungal diversity and composition respond differently to desertified system restoration. PLoS ONE 2025, 20, e0309188. [Google Scholar] [CrossRef]
- Skariah, S.; Abdul-Majid, S.; Hay, A.G.; Acharya, A.; Kano, N.; Al-Ishaq, R.K.; de Figueiredo, P.; Han, A.; Guzman, A.; Dargham, S.R. Soil properties correlate with microbial community structure in Qatari arid soils. Microbiol. Spectr. 2023, 11, e03462-22. [Google Scholar] [CrossRef]
- Smets, W.; Leff, J.W.; Bradford, M.A.; McCulley, R.L.; Lebeer, S.; Fierer, N. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 2016, 96, 145–151. [Google Scholar] [CrossRef]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Tu, N.; Wu, Z.; He, S.; Zhao, Y.; Yue, M.; Hong, M. Identification of bacteria and fungi responsible for litter decomposition in desert steppes via combined DNA stable isotope probing. Front. Microbiol. 2024, 15, 1353629. [Google Scholar] [CrossRef] [PubMed]
- Al-Awthan, Y.S.; Mir, R.; Alatawi, F.A.; Alatawi, A.S.; Almutairi, F.M.; Khafaga, T.; Shohdi, W.M.; Fakhry, A.M.; Alharbi, B.M. Metagenome Analysis Identified Novel Microbial Diversity of Sandy Soils Surrounded by Natural Lakes and Artificial Water Points in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia. Life 2024, 14, 1692. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.; Alwali, A.; Mair, M.; Rodriguez-Orduña, L.; Contreras-Peruyero, H.; Modi, R.; Roberts, C.; Sélem-Mojica, N.; Licona-Cassani, C.; Parkinson, E.I. Actinomycetota bioprospecting from ore-forming environments. Microb. Genom. 2024, 10, 001253. [Google Scholar] [CrossRef]
- Siro, G.; Pipite, A.; Christi, K.; Srinivasan, S.; Subramani, R. Marine actinomycetes associated with stony corals: A potential hotspot for specialized metabolites. Microorganisms 2022, 10, 1349. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef]
- Csorba, C.; Rodić, N.; Antonielli, L.; Sessitsch, A.; Vlachou, A.; Ahmad, M.; Compant, S.; Puschenreiter, M.; Molin, E.M.; Assimopoulou, A.N. Soil pH, developmental stages and geographical origin differently influence the root metabolomic diversity and root-related microbial diversity of Echium vulgare from native habitats. Front. Plant Sci. 2024, 15, 1369754. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Eldridge, D.J.; Berdugo, M.; Trivedi, P.; Sokoya, B.; Cano-Díaz, C.; Abades, S.; Alfaro, F.; Bamigboye, A.R.; Bastida, F. Unearthing the soil-borne microbiome of land plants. Glob. Change Biol. 2024, 30, e17295. [Google Scholar] [CrossRef] [PubMed]
- Córdoba-Agudelo, M.; Arboleda-Rivera, J.C.; Borrego-Muñoz, D.A.; Ramírez-Cuartas, C.A.; Pérez-Jaramillo, J.E. Key Chemical Soil Parameters for the Assembly of Rhizosphere Bacteria Associated with Avocado Cv Hass Grafted on Landrace Rootstocks. Curr. Microbiol. 2024, 81, 412. [Google Scholar] [CrossRef] [PubMed]
- Pellegrinetti, T.A.; de Cássia Mesquita da Cunha, I.; Chaves, M.G.d.; Freitas, A.S.d.; Passos, G.S.; Silva, A.V.R.d.; Cotta, S.R.; Tsai, S.M.; Mendes, L.W. Genomic insights of Fictibacillus terranigra sp. nov., a versatile metabolic bacterium from Amazonian Dark Earths. Braz. J. Microbiol. 2024, 55, 1817–1828. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Microbial ecology of Qatar, the arabian gulf: Possible roles of microorganisms. Front. Mar. Sci. 2021, 8, 697269. [Google Scholar] [CrossRef]
- Xie, F.; Pathom-Aree, W. Actinobacteria from desert: Diversity and biotechnological applications. Front. Microbiol. 2021, 12, 765531. [Google Scholar] [CrossRef]
- Alsharif, W.; Saad, M.M.; Hirt, H. Desert microbes for boosting sustainable agriculture in extreme environments. Front. Microbiol. 2020, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- Kuźniar, A.; Kruczyńska, A.; Włodarczyk, K.; Vangronsveld, J.; Wolińska, A. Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture. Appl. Sci. 2025, 15, 1253. [Google Scholar] [CrossRef]
- Galisteo, C.; Puente-Sánchez, F.; de la Haba, R.R.; Bertilsson, S.; Sánchez-Porro, C.; Ventosa, A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. Sci. Total Environ. 2024, 951, 175497. [Google Scholar] [CrossRef]
- Huang, H.; Zan, S.; Shao, K.; Chen, H.; Fan, J. Spatial distribution characteristics and interaction effects of DOM and microbial communities in kelp cultivation areas. Sci. Total Environ. 2024, 920, 170511. [Google Scholar] [CrossRef]
- de Carvalho, F.M.; Laux, M.; Ciapina, L.P.; Gerber, A.L.; Guimarães, A.P.C.; Kloh, V.P.; Apolinário, M.; Paes, J.E.S.; Jonck, C.R.; de Vasconcelos, A.T.R. Finding microbial composition and biological processes as predictive signature to access the ongoing status of mangrove preservation. Int. Microbiol. 2024, 27, 1485–1500. [Google Scholar] [CrossRef]
- Wang, L.; Gu, B.; Zhang, L.; Zhu, Z. Recent Advances in Bacterial Biofilm Studies: Formation, Regulation, and Eradication in Human Infections; Books on Demand: Norderstedt, Germany, 2024. [Google Scholar]
- Su, B.; Gao, C.; Ji, J.; Zhang, H.; Zhang, Y.; Mouazen, A.M.; Shao, S.; Jiao, H.; Yi, S.; Li, S. Soil bacterial succession with different land uses along a millennial chronosequence derived from the Yangtze River flood plain. Sci. Total Environ. 2024, 908, 168531. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, M.; Xie, S.; Zang, J.; Wang, X.; Yang, Y.; Li, C.; Wang, J. Homogenization of bacterial plastisphere community in soil: A continental-scale microcosm study. ISME Commun. 2024, 4, ycad012. [Google Scholar] [CrossRef]
- Gong, X.; Feng, Y.; Dang, K.; Jiang, Y.; Qi, H.; Feng, B. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. Sci. Total Environ. 2023, 881, 163536. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Razdan, N.; Saharan, K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol. Res. 2022, 254, 126901. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Amina, M.; Lotfi, G. An Overview of Extremophile: Microbial Diversity, Adaptive Strategies, and Potential Applications. Microbiol. Biotechnol. Lett. 2024, 52, 233–254. [Google Scholar] [CrossRef]
- Streletskii, R.A.; Astaykina, A.A.; Belov, A.A.; Cheptsov, V.S.; Vetrova, A.A. Beneficial soil microorganisms and their role in sustainable agriculture. In Sustainable Agricultural Practices; Elsevier: Amsterdam, The Netherlands, 2024; pp. 293–333. [Google Scholar]
- Endress, M.-G.; Chen, R.; Blagodatskaya, E.; Blagodatsky, S. The coupling of carbon and energy fluxes reveals anaerobiosis in an aerobic soil incubation with a Bacillota-dominated community. Soil Biol. Biochem. 2024, 195, 109478. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Wang, J.; Li, Y.; Ma, L.; Chen, W.; Duan, Y.; Zhai, Y.; Li, D. High value-added chemical production through anaerobic codigestion of corn straw with a microbial consortium, cow manure and cow digestion solution. Anaerobe 2024, 89, 102900. [Google Scholar] [CrossRef]
- Gupta, S.; Tanveer, A.; Dwivedi, S.; Morya, V.K.; Yadav, M.K.; Yadav, D. Microbial Laccases: Structure, Function, and Applications. Microb. Enzym. Prod. Purif. Ind. Appl. 2025, 2, 665–695. [Google Scholar]
- Tournier, V.; Duquesne, S.; Guillamot, F.; Cramail, H.; Taton, D.; Marty, A.; André, I. Enzymes’ power for plastics degradation. Chem. Rev. 2023, 123, 5612–5701. [Google Scholar] [CrossRef]
- Yadav, S.; Koenen, M.; Bale, N.J.; Reitsma, W.; Engelmann, J.C.; Stefanova, K.; Damsté, J.S.S.; Villanueva, L. Organic matter degradation in the deep, sulfidic waters of the Black Sea: Insights into the ecophysiology of novel anaerobic bacteria. Microbiome 2024, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L.; Yuan, H.; Li, E.; Yang, X. The Impact of Artificial Afforestation on the Soil Microbial Community and Function in Desertified Areas of NW China. Forests 2024, 15, 1140. [Google Scholar] [CrossRef]
- Ansabayeva, A.; Makhambetov, M.; Rebouh, N.Y.; Abdelkader, M.; Saudy, H.S.; Hassan, K.M.; Nasser, M.A.; Ali, M.A.; Ebrahim, M. Plant Growth-Promoting Microbes for Resilient Farming Systems: Mitigating Environmental Stressors and Boosting Crops Productivity—A Review. Horticulturae 2025, 11, 260. [Google Scholar] [CrossRef]
- Hao, J.; Liu, Q.; Song, F.; Cui, X.; Liu, L.; Fu, L.; Zhang, S.; Wu, X.; Zhang, X. Community Diversity of Endophytic Bacteria in the Leaves and Roots of Pea Seedlings. Agronomy 2024, 14, 2030. [Google Scholar] [CrossRef]
- Arslan Aydogdu, E.; Avci, Y.; Rachid, N.; Çolak, B.; Dogruoz Gungor, N. Screening of bacteria in yarik sinkhole, Antalys, Turkey for carbonate dissolution, biomineralization and biotechnological potentials. Pergled Bakarterij v Vertaci Yarik, Antalja, Turcija, V Zvezi Z Raztaplanjem Karbonata, Biomineralizacijo In Biotehnoloskim Potenciali. Acta Carsologica 2023, 52, 147–166. [Google Scholar]
- Barbaś, P.; Sawicka, B.; Pszczółkowski, P.; Krochmal-Marczak, B. Application of Biotechnological Techniques in the Breeding and Sustainable Production of Marigold (Tagetes spp.). In Breeding of Ornamental Crops: Annuals and Cut Flowers; Springer: Cham, Switzerland, 2025; pp. 297–330. [Google Scholar]
- Mariano, D.C.; Dias, G.M.; Castro, M.R.; Tschoeke, D.A.; de Oliveira, F.J.; Sérvulo, E.F.C.; Neves, B.C. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024, 10, e34336. [Google Scholar] [CrossRef]
- Lashani, E.; Amoozegar, M.A.; Turner, R.J.; Moghimi, H. Use of microbial consortia in bioremediation of metalloid polluted environments. Microorganisms 2023, 11, 891. [Google Scholar] [CrossRef]
- Alvarado-Campo, K.L.; Quintero, M.; Cuadrado-Cano, B.; Montoya-Giraldo, M.; Otero-Tejada, E.L.; Blandón, L.; Sánchez, O.; Zuleta-Correa, A.; Gómez-León, J. Heavy metal tolerance of microorganisms isolated from coastal marine sediments and their lead removal potential. Microorganisms 2023, 11, 2708. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Tahvanainen, T.; Malard, L.; Chen, L.; Pérez-Pérez, J.; Berninger, F. Global analysis of soil bacterial genera and diversity in response to pH. Soil Biol. Biochem. 2024, 198, 109552. [Google Scholar] [CrossRef]
- Gonçalves, O.S.; Fernandes, A.S.; Tupy, S.M.; Ferreira, T.G.; Almeida, L.N.; Creevey, C.J.; Santana, M.F. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil Biol. Biochem. 2024, 192, 109369. [Google Scholar] [CrossRef]
- Wang, H.; Li, T.-l. Straw return affects the soil carbon and nitrogen pools and microbial structural and functional diversity. ESS Open Arch. Eprints 2024, 378, 37839766. [Google Scholar]
- Liu, S.; Li, X.; Fu, Y.; Li, P.; Qiao, J.; Li, H.; Wu, L.; Wang, B.; Lu, S. Exploring the effects of different fertilizer application durations on the functional microbial profiles of soil carbon and nitrogen cycling by using metagenomics in Paulownia plantations in a subtropical zone. Eur. J. For. Res. 2024, 143, 955–969. [Google Scholar] [CrossRef]
- Selvakumar, P. Fungal Biodegradation: Breaking Down Agricultural Wastes. In Mycological Inventions for Sustainable Agriculture and Food Production; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 261–282. [Google Scholar]
- Aguado-Norese, C.; Cárdenas, V.; Gaete, A.; Mandakovic, D.; Vasquez-Dean, J.; Hodar, C.; Pfeiffer, M.; Gonzalez, M. Topsoil and subsoil bacterial community assemblies across different drainage conditions in a mountain environment. Biol. Res. 2023, 56, 35. [Google Scholar] [CrossRef]
- Ciraolo, A.C.; Snelgrove, P.V.; Algar, C.K. Habitat heterogeneity effects on microbial communities of the Gulf of Maine. Deep Sea Res. Part I Oceanogr. Res. Pap. 2023, 197, 104074. [Google Scholar] [CrossRef]
- García, G.; Carlin, M.; Cano, R.d.J. Holobiome Harmony: Linking Environmental Sustainability, Agriculture, and Human Health for a Thriving Planet and One Health. Microorganisms 2025, 13, 514. [Google Scholar] [CrossRef]
- Naumova, N.; Barsukov, P.; Baturina, O.; Rusalimova, O.; Kabilov, M. Addition of Chicken Litter Compost Changes Bacteriobiome in Fallow Soil. Appl. Microbiol. 2024, 4, 1268–1282. [Google Scholar] [CrossRef]
- Freches, A.; Fradinho, J.C. The biotechnological potential of the Chloroflexota phylum. Appl. Environ. Microbiol. 2024, 90, e01756-23. [Google Scholar] [CrossRef]
- Lundberg, J.; McFarlane, D.A. Time-transgressive microbial diversity in a tropical bat guano accumulation, Deer Cave, Mulu, Borneo. Int. J. Speleol. 2024, 53, 3. [Google Scholar] [CrossRef]
- Demergasso, C.; Neilson, J.W.; Tebes-Cayo, C.; Véliz, R.; Ayma, D.; Laubitz, D.; Barberán, A.; Chong-Díaz, G.; Maier, R.M. Hyperarid soil microbial community response to simulated rainfall. Front. Microbiol. 2023, 14, 1202266. [Google Scholar] [CrossRef]
- Alharbi, S.M.; Al-Sulami, N.; Al-Amrah, H.; Anwar, Y.; Gadah, O.A.; Bahamdain, L.A.; Al-Matary, M.; Alamri, A.M.; Bahieldin, A. Metagenomic Characterization of the Maerua crassifolia Soil Rhizosphere: Uncovering Microbial Networks for Nutrient Acquisition and Plant Resilience in Arid Ecosystems. Genes 2025, 16, 285. [Google Scholar] [CrossRef]
- Grzyb, T.; Szulc, J. Deciphering Molecular Mechanisms and Diversity of Plant Holobiont Bacteria: Microhabitats, Community Ecology, and Nutrient Acquisition. Int. J. Mol. Sci. 2024, 25, 13601. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Hanaka, A. Biochar in the Bioremediation of Metal-Contaminated Soils. Agronomy 2025, 15, 273. [Google Scholar] [CrossRef]
- Mujakić, I.; Andrei, A.-Ş.; Shabarova, T.; Fecskeová, L.K.; Salcher, M.M.; Piwosz, K.; Ghai, R.; Koblížek, M. Common presence of phototrophic Gemmatimonadota in temperate freshwater lakes. Msystems 2021, 6. [Google Scholar] [CrossRef]
- Mujakić, I.; Piwosz, K.; Koblížek, M. Phylum Gemmatimonadota and its role in the environment. Microorganisms 2022, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, M.C.; Haber, M.; Salcher, M.M. Adaptive genetic traits in pelagic freshwater microbes. Environ. Microbiol. 2023, 25, 606–641. [Google Scholar] [CrossRef] [PubMed]
- Parab, A.S.; Manohar, C.S. Bacterial Dynamics in the Northern Indian Ocean Region: Understanding from the Pre-genomics to Present-Day OMICS Era. Geomicrobiol. J. 2025, 42, 113–124. [Google Scholar] [CrossRef]
- Fan, L.; Sun, F. Nitrogen metabolism potential in biofilm microbial communities: Potential applications in the mariculture wastewater treatment. Aquac. Eng. 2024, 104, 102387. [Google Scholar] [CrossRef]
- Gladkov, G.V.; Kimeklis, A.K.; Orlova, O.V.; Lisina, T.O.; Kichko, A.A.; Bezlepsky, A.D.; Andronov, E.E. Dynamics of Cellulose Degradation by Soil Microorganisms from Two Contrasting Soil Types. Microorganisms 2024, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Weng, Y.; Li, B.; Liu, H.; Liu, L.; Tian, Z.; Du, S. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils. Chemosphere 2022, 309, 136642. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Connors, E.; Trinh, R.; Erazo, N.; Dasarathy, S.; Ducklow, H.W.; Steinberg, D.K.; Schofield, O.M.; Bowman, J.S. Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Front. Microbiol. 2023, 14, 1168507. [Google Scholar] [CrossRef] [PubMed]
Soils Chemical Composition | Q1 | Q2 | Q3 | Q4 | Q5 |
---|---|---|---|---|---|
N (%w) | 0.20 ± 0.02 | 0.17 ± 0.01 | 0.01 ± 0.00 | 0.16 ± 0.02 | 0.11 ± 0.00 |
C (%w) | 10.05 ± 0.28 | 7.15 ± 0.44 | 5.35 ± 0.30 | 5.70 ± 0.31 | 4.11 ± 0.10 |
TOC (%w) | 0.13 ± 0.00 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.10 ± 0.00 | 0.05 ± 0.00 |
TIC (%w) | 9.92 ± 0.28 | 7.10 ± 0.44 | 5.35 ± 0.30 | 5.60 ± 0.31 | 4.06 ± 0.10 |
pH | 7.60 ± 0.00 | 7.06 ± 0.00 | 7.35 ± 0.00 | 8.12 ± 0.00 | 7.58 ± 0.00 |
EC (ms/cm) | 9.20 ± 0.00 | 22.70 ± 0.00 | 34.30 ± 0.00 | 36.10 ± 0.00 | 0.90 ± 0.00 |
Na (ppm) | 0.88 ± 0.14 | 26.01 ± 0.71 | 13.81 ± 0.41 | 31.51 ± 0.97 | 0.82 ± 0.03 |
K (ppm) | 0.27 ± 0.00 | 0.45 ± 0.02 | 0.70 ± 0.03 | 1.64 ± 0.06 | 0.27 ± 0.00 |
Ca (ppm) | 17.65 ± 1.36 | 15.34 ± 0.30 | 20.08 ± 0.83 | 97.12 ± 3.52 | 13.90 ± 0.30 |
Mg (ppm) | 0.00 ± 0.00 | 0.91 ± 0.02 | 1.19 ± 0.04 | 1.56 ± 0.01 | 0.00 ± 0.00 |
Cl (ppm) | 0.63 ± 0.00 | 40.96 ± 1.08 | 27.43 ± 0.91 | 48.60 ± 1.62 | 0.00 ± 0.00 |
SO4 (ppm) | 15.79 ± 1.38 | 10.05 ± 0.53 | 18.94 ± 2.41 | 247.15 ± 10.75 | 8.03 ± 0.41 |
Ba (ppm) | 74.36 ± 0.26 | 95.50 ± 0.22 | 47.92 ± 0.34 | 69.63 ± 0.31 | 198.93 ± 0.24 |
Be (ppm) | 0.08 ± 0.04 | 0.26 ± 0.03 | 0.26 ± 0.05 | 0.30 ± 0.04 | 1.07 ± 0.01 |
Co (ppm) | 1.63 ± 0.41 | 5.06 ± 0.84 | 5.49 ± 0.36 | 6.35 ± 0.83 | 21.31 ± 0.28 |
Cr (ppm) | 14.54 ± 0.19 | 32.24 ± 0.16 | 32.57 ± 0.04 | 29.17 ± 0.89 | 107.83 ± 0.56 |
Cu (ppm) | 12.33 ± 1.06 | 23.33 ± 0.40 | 21.30 ± 1.00 | 20.75 ± 0.51 | 45.63 ± 0.47 |
Fe (ppm) | 3655.07 ± 11.90 | 8057.77 ± 10.88 | 8335.04 ± 22.32 | 7034.93 ± 10.61 | 15,680.08 ± 13.23 |
Mn (ppm) | 122.14 ± 0.53 | 267.88 ± 0.39 | 228.49 ± 0.68 | 187.89 ± 0.23 | 577.49 ± 1.75 |
Mo (ppm) | 0.00 ± 0.00 | 0.00 ± 0.00 | 2.34 ± 0.99 | 1.21 ± 1.21 | 1.83 ± 0.26 |
Ni (ppm) | 12.99 ± 0.59 | 32.96 ± 0.53 | 34.73 ± 0.88 | 25.68 ± 2.75 | 86.66 ± 0.56 |
Pb (ppm) | 139.48 ± 4.28 | 362.80 ± 22.09 | 345.23 ± 40.53 | 359.54 ± 20.66 | 944.79 ± 39.37 |
Zn (ppm) | 19.20 ± 0.14 | 25.67 ± 0.26 | 32.51 ± 0.29 | 25.48 ± 0.20 | 59.50 ± 0.28 |
Al (ppm) | 4653.73 ± 14.89 | 9417.05 ± 12.10 | 10,040.53 ± 17.03 | 9107.30 ± 32.00 | 31,464.11 ± 52.62 |
16S rRNA V3-V4 | ||||||
---|---|---|---|---|---|---|
Sample Name | Sobs | Chao | Ace | Shannon | Simpson | Coverage |
Q1 | 1471 | 1632.751 | 1638.77 | 5.884531 | 0.007399 | 0.990801 |
Q2 | 1264 | 1407.52 | 1397.33 | 5.918906 | 0.005366 | 0.993152 |
Q3 | 1459 | 1642.683 | 1620.237 | 5.948955 | 0.006864 | 0.989885 |
Q4 | 1309 | 1505.994 | 1487.976 | 5.85778 | 0.006929 | 0.991445 |
Q5 | 1528 | 1680.675 | 1669.841 | 6.087614 | 0.006976 | 0.991051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, M.R.; Badr, K.; Shabani, F.; Ul Hassan, Z.; Zouari, N.; Al-Thani, R.; Jaoua, S. Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients. Microbiol. Res. 2025, 16, 196. https://doi.org/10.3390/microbiolres16090196
Ejaz MR, Badr K, Shabani F, Ul Hassan Z, Zouari N, Al-Thani R, Jaoua S. Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients. Microbiology Research. 2025; 16(9):196. https://doi.org/10.3390/microbiolres16090196
Chicago/Turabian StyleEjaz, Muhammad Riaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani, and Samir Jaoua. 2025. "Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients" Microbiology Research 16, no. 9: 196. https://doi.org/10.3390/microbiolres16090196
APA StyleEjaz, M. R., Badr, K., Shabani, F., Ul Hassan, Z., Zouari, N., Al-Thani, R., & Jaoua, S. (2025). Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients. Microbiology Research, 16(9), 196. https://doi.org/10.3390/microbiolres16090196