Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Sample and Extraction of Essential Oils
2.2. Microorganism and Preparation
2.3. Determination of the Anti-Listerial Activity of the Essential Oil
2.4. Evaluation of the Antimicrobial Activity of SHEO Against Listeria monocytogenes in Cooked Chicken Meat Stored at Different Temperatures
2.5. Evaluation of the Antimicrobial Activity of SHEO Against Listeria monocytogenes in Cooked Chicken Meat Stored Under Traditional Packaging Conditions
2.6. Evaluation of the Antimicrobial Activity of SHEO Against Listeria monocytogenes in Cooked Chicken Meat Stored Under Vacuum Packaging Conditions
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthur, M.; Afari, E.L.; Alexa, E.A.; Zhu, M.J.; Gaffney, M.T.; Celayeta, J.M.F.; Burgess, C.M. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70083. [Google Scholar] [CrossRef]
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef]
- Hafner, L.; Pichon, M.; Burucoa, C.; Nusser, S.H.; Moura, A.; Garcia-Garcera, M.; Lecuit, M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 2021, 12, 6826. [Google Scholar] [CrossRef]
- Hua, Z.; Zhu, M.J. Comprehensive strategies for controlling Listeria monocytogenes biofilms on food-contact surfaces. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13348. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Chen, X.; Qu, C. Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci. Technol. 2021, 116, 24–35. [Google Scholar] [CrossRef]
- Ryser, E.T. Listeria. In Foodborne Infections and Intoxications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 201–220. [Google Scholar]
- Mpundu, P.; Mbewe, A.R.; Muma, J.B.; Mwasinga, W.; Mukumbuta, N.; Munyeme, M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Vet. World 2021, 14, 2219. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Mishra, S.; Tuglo, L.S.; Sarangi, A.K.; Kandi, V.; Al Ibrahim, A.A.; Alsaif, H.A.; Rabaan, A.A.; Zahan, M.K.E. Recurring food source-based Listeria outbreaks in the United States: An unsolved puzzle of concern? Health Sci. Rep. 2024, 7, e1863. [Google Scholar] [CrossRef]
- Belias, A.; Bolten, S.; Wiedmann, M. Challenges and opportunities for risk-and systems-based control of Listeria monocytogenes transmission through food. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70071. [Google Scholar] [CrossRef] [PubMed]
- Zahid, R.; Arbab, Z.; Tahir, Z.; Tehseen, U.; Ali, S.; Bukhsh, S.; Javaid, A.; Rehman, A.; Khan, A. Global Prevalence of Listeriosis. In Zoonosis; Unique Scientific Publishers: Faisalabad, Pakistan, 2023; Volume 4, pp. 319–328. [Google Scholar]
- Koopmans, M.M.; Brouwer, M.C.; Vázquez-Boland, J.A.; van de Beek, D. Human listeriosis. Clin. Microbiol. Rev. 2023, 36, e0006019. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, L.; Liu, X.; Wang, Y.; Wang, Y.; Qi, Y.; Yang, S.; Yan, L.; Yang, D.; Liu, Z.; et al. Quantitative risk assessment of Listeria monocytogenes in cooked meat products from retail to consumption in China. Food Control 2025, 178, 111499. [Google Scholar] [CrossRef]
- GB 4789.30-2010; National Food Safety Standard Food Microbiological Examination: Listeria monocytogenes. Ministry of Health of People’s Republic of China Beijing: Beijing, China, 2010.
- Bumunang, E.W.; Zaheer, R.; Niu, D.; Narvaez-Bravo, C.; Alexander, T.; McAllister, T.A.; Stanford, K. Bacteriophages for the targeted control of foodborne pathogens. Foods 2023, 12, 2734. [Google Scholar] [CrossRef]
- Göçmez, E.B.; İlhak, O.İ. Effect of marination with bioprotective culture-containing marinade on Salmonella spp. and Listeria monocytogenes in chicken breast meat. J. Food Sci. 2025, 90, e70174. [Google Scholar] [CrossRef]
- Serter, B.; Önen, A.; Osman, I.I. Antimicrobial efficacy of postbiotics of lactic acid bacteria and their effects on food safety and shelf life of chicken meat. Ann. Anim. Sci. 2024, 24, 277–287. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Delgado, J.; Córdoba, J.J. Strategies for biocontrol of Listeria monocytogenes using lactic acid bacteria and their metabolites in ready-to-eat meat-and dairy-ripened products. Foods 2022, 11, 542. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J. Food Qual. 2021, 2021, 6653190. [Google Scholar] [CrossRef]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Bektas, S.; Ozdal, M.; Gürkök, S. Characterization of the active compounds of Satureja hortensis L. aerial parts essential oil and its antioxidant, antimicrobial, and anti-biofilm properties against fish pathogenic microorganisms. J. Essent. Oil Bear. Plants 2025, 28, 1–13. [Google Scholar] [CrossRef]
- Topdemir, S.; Kürşat, M.; Bozarı, S. Phylogenetic analysis of some taxa belonging to the family Lamiaceae in Bitlis province using RAPD-PCR technique. Osman. Korkut Ata Üniversitesi Fen. Bilim. Enstitüsü Derg. 2024, 7, 563–580. [Google Scholar] [CrossRef]
- Abbad, I.; Soulaimani, B.; Iriti, M.; Barakate, M. Chemical Composition and Synergistic Antimicrobial Effects of Essential Oils From Four Commonly Used Satureja Species in Combination With Two Conventional Antibiotics. Chem. Biodivers. 2025, 22, e202402093. [Google Scholar] [CrossRef]
- Amiri, Z.; Sohrabi, N. Evaluation of the antimicrobial effects of Satureja montana essential oil alone and in combination with Nisin on Escherichia coli and Staphylococcus aureus. J. Res. Med. Dent. Sci. 2018, 6, 54. [Google Scholar]
- Vitanza, L.; Maccelli, A.; Marazzato, M.; Scazzocchio, F.; Comanducci, A.; Fornarini, S.; Crestoni, M.E.; Filippi, A.; Fraschetti, C.; Rinaldi, F. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microb. Pathog. 2019, 126, 323–331. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Saharkhiz, M.J.; Zomorodian, K.; Taban, A.; Pakshir, K.; Heshmati, K.; Rahimi, M.J. Chemical composition and antimicrobial activities of three satureja species against food-borne pathogens. J. Essent. Oil Bear. Plants 2016, 19, 1984–1992. [Google Scholar] [CrossRef]
- Tomičić, R.M.; Čabarkapa, I.S.; Varga, A.O.; Tomičić, Z.M. Antimicrobial activity of essential oils against Listeria monocytogenes. Food Feed Res. 2018, 45, 37–44. [Google Scholar] [CrossRef]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Al-Moghazy, M.; ElSayed, A.A.A. The in vitro cytotoxicity, antioxidant and antibacterial potential of Satureja hortensis L. essential oil cultivated in Egypt. Bioorganic Chem. 2020, 95, 103559. [Google Scholar] [CrossRef]
- Schneider, G.; Steinbach, A.; Putics, Á.; Solti-Hodován, Á.; Palkovics, T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023, 11, 1364. [Google Scholar] [CrossRef]
- Kartal, M.; Yildiz, A.N.; İnal, E.; Kınoglu, B.K.; Dirmenci, T.; Gören, A.C. Review on the Biological Activities and Phytochemistry of the Genus Satureja. Rec. Nat. Prod. 2025, 19, 400–427. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Møretrø, T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr. Opin. Food Sci. 2021, 37, 171–178. [Google Scholar] [CrossRef]
- Grigore-Gurgu, L.; Bucur, F.I.; Mihalache, O.A.; Nicolau, A.I. Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods 2024, 13, 734. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Datir, R.; Rajput, H.; Singh, B.; Patil, S.O.; Das, B. Antibacterial and Food Preservation Properties of Essential Oils: A Review. Eur. J. Nutr. Food Saf. 2025, 17, 206–232. [Google Scholar] [CrossRef]
- Valarezo, E.; Ledesma-Monteros, G.; Jaramillo-Fierro, X.; Radice, M.; Meneses, M.A. Antimicrobial Activity of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review. Antibiotics 2025, 14, 494. [Google Scholar] [CrossRef]
- Vidaković Knežević, S.; Knežević, S.; Vranešević, J.; Kravić, S.; Lakićević, B.; Kocić-Tanackov, S.; Karabasil, N. Effects of Selected Essential Oils on Listeria monocytogenes in Biofilms and in a Model Food System. Foods 2023, 12, 1930. [Google Scholar] [CrossRef]
- El-Soufi, A.; Al Khatib, A.; Khazaal, S.; El Darra, N.; Raafat, K. Evaluation of Essential Oils as Natural Antibacterial Agents for Eggshell Sanitization and Quality Preservation. Processes 2025, 13, 224. [Google Scholar] [CrossRef]
- Vale, I.R.R.; Oliveira, G.d.S.; de Jesus, L.M.; de Castro, M.B.; McManus, C.; Dos Santos, V.M. Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils. Antibiotics 2024, 13, 1025. [Google Scholar] [CrossRef]
- Bozarı, S.; Çakmak, B.; Kurt, H. Satureja hortensis bitkisinin uçucu yağlarının Hordeum vulgare l. tohumları üzerine genotoksik etkileri. KSÜ Doğa Bilim. Derg. 2017, 20, 185–192. [Google Scholar] [CrossRef]
- Bauer, A.; Kirby, W.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Seres-Steinbach, A.; Szabó, P.; Bányai, K.; Schneider, G. Effect of Temperature, Surface, and Medium Qualities on the Biofilm Formation of Listeria monocytogenes and Their Influencing Effects on the Antibacterial, Biofilm-Inhibitory, and Biofilm-Degrading Activities of Essential Oils. Foods 2025, 14, 2097. [Google Scholar] [CrossRef]
- Kačániová, M.; Kunová, S.; Čmiková, N. Green Lemon Essential Oil Antimicrobial Activity Against Listeria monocytogenes Inoculated in Chicken Meat. Sci. Pap. Anim. Sci. Biotechnol. 2023, 56, 237. [Google Scholar]
- Ben Akacha, B.; Ben Hsouna, A.; Generalić Mekinić, I.; Ben Belgacem, A.; Ben Saad, R.; Mnif, W.; Kačániová, M.; Garzoli, S. Salvia officinalis L. and Salvia sclarea essential oils: Chemical composition, biological activities and preservative effects against Listeria monocytogenes inoculated into minced beef meat. Plants 2023, 12, 3385. [Google Scholar] [CrossRef]
- Firouzi, R.; Shekarforoush, S.S.; Nazer, A.H.K.; Borumand, Z.; Jooyandeh, A.R. Effects of Essential Oils of Oregano and Nutmeg on Growth and Survival of Yersinia enterocolitica and Listeria monocytogenes in Barbecued Chicken. J. Food Prot. 2007, 70, 2626–2630. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar]
- Su, Y.; Liu, A.; Zhu, M.-J. Mapping the Landscape of Listeriosis Outbreaks (1998–2023): Trends, Challenges, and Regulatory Responses in the United States. Trends Food Sci. Technol. 2024, 104750. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, C.; Liu, Y.; Zhang, P.; Wu, Y.; Li, M.; Zhao, J.; Zhang, X.; Ma, X. Pre-packaged cold-chain ready-to-eat food as a source of sporadic listeriosis in Beijing, China. J. Infect. 2024, 89, 106254. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Osek, J.; Wieczorek, K. Methods of Controlling Microbial Contamination of Food. Pathogens 2025, 14, 492. [Google Scholar] [CrossRef]
- Osei-Kwarteng, M.; Ogwu, M.C.; Mahunu, G.K.; Afoakwah, N.A. Post-harvest Food Quality and Safety in the Global South: Sustainable Management Perspectives. In Food Safety and Quality in the Global South; Springer: Berlin/Heidelberg, Germany, 2024; pp. 151–195. [Google Scholar]
- Peerzade, I.J.; Kudre, T.; Halami, P.M. Poultry and Meat Processing. In Frontiers in Food Biotechnology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 427–444. [Google Scholar]
- Authority, E.F.S.; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; et al. Peer review of the pesticide risk assessment of the active substance tolclofos-methyl. EFSA J. 2018, 16, e05130. [Google Scholar]
- Li, W.; Wang, Q.; Deng, Z.; Du, Y.; Song, Y.; Xu, T.; Shan, L.; Chen, J. Integrating kinetic models and BP-ANN for predicting growth and shelf-life of Listeria monocytogenes in ready-to-eat salads. LWT 2025, 221, 117607. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV+ individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef]
- Farzaneh, M.; Kiani, H.; Sharifi, R.; Reisi, M.; Hadian, J. Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera, and S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biol. Technol. 2015, 109, 145–151. [Google Scholar] [CrossRef]
- Ladan Moghadam, A.R. Antioxidant Activity and Essential Oil Evaluation of Satureja hortensis L. (Lamiaceae) from Iran. J. Essent. Oil Bear. Plants 2015, 18, 455–459. [Google Scholar] [CrossRef]
- Shariatzadeh, S.; Talebi, S.M.; Ghorbanpour, M. Variability in seed essential oil composition of the cultivated Satureja hortensis L. (Lamiaceae) populations in Iran. BMC Plant Biol. 2025, 25, 1055. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Rezaei, P.; Akbarzadeh, A.; Beiranvand, M. Quantitative Monitoring of the Volatiles from the Aerial Parts of Satureja hortensis by the Use of HS-SPME-GC-MS Approach. Orient. J. Chem. 2016, 32, 2559–2566. [Google Scholar] [CrossRef]
- Vidovic, S.; Paturi, G.; Gupta, S.; Fletcher, G.C. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit. Rev. Food Sci. Nutr. 2024, 64, 1817–1835. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Brackett, R.E. Survival and growth of Listeria monocytogenes on lettuce as influenced by shredding, chlorine treatment, modified atmosphere packaging and temperature. J. Food Sci. 1990, 55, 755–758. [Google Scholar] [CrossRef]
- Ming, X.; Weber, G.H.; Ayres, J.W.; Sandine, W.E. Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 1997, 62, 413–415. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes–how this pathogen survives in food-production environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M.; Sip, A. Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms 2020, 8, 1764. [Google Scholar] [CrossRef] [PubMed]
- Hantus, C.E.; Moppel, I.J.; Frizzell, J.K.; Francis, A.E.; Nagashima, K.; Ryno, L.M. L-rhamnose globally changes the transcriptome of planktonic and biofilm Escherichia coli cells and modulates biofilm growth. Microorganisms 2024, 12, 1911. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.N.; Rall, V.L.M.; Fernandes, A.A.H.; Ushimaru, P.I.; da Silva Probst, I.; Fernandes, A., Jr. Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathog. Dis. 2009, 6, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Casalini, S.; Baschetti, M.G.; Cappelletti, M.; Guerreiro, A.C.; Gago, C.M.; Nici, S.; Antunes, M.D. Antimicrobial activity of different nanocellulose films embedded with thyme, cinnamon, and oregano essential oils for active packaging application on raspberries. Front. Sustain. Food Syst. 2023, 7, 1190979. [Google Scholar] [CrossRef]
- Mith, H.; Dure, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.; Ma, L.; Lu, X. Impact of lactic acid bacteria on the control of Listeria monocytogenes in ready-to-eat foods. Food Qual. Saf. 2022, 6, fyac045. [Google Scholar] [CrossRef]
Packaging Type | Temperature | Most Significant Day(s) | EO Effective Duration | ANOVA p-Values | Microbiological Observation |
---|---|---|---|---|---|
Traditional | 4 °C | Days 1–5 | Up to 7 days | p < 0.01 | Significant reduction in Listeria counts |
Traditional | 10 °C | Days 3–5 | Up to 14 days | p < 0.05 | Moderate effect, diminishes by day 14 |
Traditional | −20 °C | Day 0 & 28 | Inconsistent | p < 0.05 (only days 0 & 28) | Loss of efficacy |
Vacuum | 4 °C | Days 1–7 | Up to 14 days | p < 0.001 | Sustained Listeria suppression |
Vacuum | 10 °C | Days 1–14 | Up to 28 days | p < 0.01 | Long-term stable inhibition |
Vacuum | −20 °C | Days 0–5 | Up to 7 days | p < 0.05 | Short-term effect, then diminishes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toplu, Y.; Önlü, H. Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures. Microbiol. Res. 2025, 16, 195. https://doi.org/10.3390/microbiolres16090195
Toplu Y, Önlü H. Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures. Microbiology Research. 2025; 16(9):195. https://doi.org/10.3390/microbiolres16090195
Chicago/Turabian StyleToplu, Yüsra, and Harun Önlü. 2025. "Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures" Microbiology Research 16, no. 9: 195. https://doi.org/10.3390/microbiolres16090195
APA StyleToplu, Y., & Önlü, H. (2025). Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures. Microbiology Research, 16(9), 195. https://doi.org/10.3390/microbiolres16090195